1
|
Ogoh SN, Özgör E. Characterization, antimicrobial and antioxidant activity of bee bread encapsulated with chitosan nanoparticle. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024:1-23. [PMID: 39704475 DOI: 10.1080/09205063.2024.2441032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 12/05/2024] [Indexed: 12/21/2024]
Abstract
The potential of bee bread as an apitherapeutic agent was investigated in this study, focusing on its immune-stimulating abilities. The novel aspect of the study is how bee bread is combined with chitosan, a biopolymer with antibacterial and antioxidant properties, to increase its therapeutic efficacy. Free freeze-drying technology accomplished encapsulation at a critical temperature of -80 °C. The encapsulated constructs were characterized using analytical techniques like FTIR (Fourier Transform Infrared Spectroscopy), X-ray diffraction (XRD), Zeta potential analysis, and Scanning Electron Microscopy (SEM). Furthermore, the ethanolic extract of bee bread was analyzed using Gas Chromatography-Mass Spectrometry (GCMS) to identify phytochemicals. UV spectrophotometry was used to quantify antioxidant activity. Antibacterial tests using the disc diffusion method revealed a significant inhibitory effect on Bacillus subtilis, a Gram-positive bacterium, whereas Gram-negative bacteria showed reduced sensitivity to the encapsulated agents.
Collapse
Affiliation(s)
- Stanley Nnamdi Ogoh
- Department of Bioengineering, Faculty of Engineering, Cyprus International University, Nicosia, North Cyprus, Turkey
- Cyprus Bee and Bee Products Research Centre, Cyprus International University, Nicosia, North Cyprus, Turkey
| | - Erkay Özgör
- Cyprus Bee and Bee Products Research Centre, Cyprus International University, Nicosia, North Cyprus, Turkey
| |
Collapse
|
2
|
Kacemi R, Campos MG. Bee Pollen as a Source of Biopharmaceuticals for Neurodegeneration and Cancer Research: A Scoping Review and Translational Prospects. Molecules 2024; 29:5893. [PMCID: PMC11677910 DOI: 10.3390/molecules29245893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/18/2024] [Accepted: 11/20/2024] [Indexed: 01/03/2025] Open
Abstract
Bee Pollen (BP) has many advantageous properties relying on its multitargeting potential, a new tendency in managing many challenging illnesses. In cancer and neurodegeneration, the multiple effects of BP could be of unequaled importance and need further investigation. Although still limited, available data interestingly spotlights some floral sources with promising activities in line with this investigation. Adopting scoping review methodology, we have identified many crucial bioactivities that are widely recognized to individual BP compounds but remain completely untapped in this valuable bee cocktail. A wide range of these compounds have been recently found to be endowed with great potential in modulating pivotal processes in neurodegeneration and cancer pathophysiology. In addition, some ubiquitous BP compounds have only been recently isolated, while the number of studied BPs remains extremely limited compared to the endless pool of plant species worldwide. We have also elucidated that clinical profits from these promising perspectives are still impeded by challenging hurdles such as limited bioavailability of the studied phytocompounds, diversity and lack of phytochemical standardization of BP, and the difficulty of selective targeting in some pathophysiological mechanisms. We finally present interesting insights to guide future research and pave the way for urgently needed and simplified clinical investigations.
Collapse
Affiliation(s)
- Rachid Kacemi
- Observatory of Drug-Herb Interactions, Faculty of Pharmacy, Heath Sciences Campus, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
| | - Maria G. Campos
- Observatory of Drug-Herb Interactions, Faculty of Pharmacy, Heath Sciences Campus, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
- Coimbra Chemistry Centre (CQC, FCT Unit 313) (FCTUC), University of Coimbra, Rua Larga, 3004-531 Coimbra, Portugal
| |
Collapse
|
3
|
Alanazi S, Alenzi ND. Evaluation of the antitrypanosomal activity, cytotoxicity and phytochemistry of red Brazilian propolis. PLoS One 2024; 19:e0313987. [PMID: 39561157 PMCID: PMC11575780 DOI: 10.1371/journal.pone.0313987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 11/05/2024] [Indexed: 11/21/2024] Open
Abstract
Recently, the growth in the consumption of functional foods with potential nutritional and health benefits revealed rapid progress in phytochemical analysis to assure quality and profile the chemical composition. Bee propolis, a gummy exudate produced in beehives after harvesting from different plant species and showed to contain bioactive secondary metabolites with biological importance. The main goal of the current study is to profile the chemical composition of red propolis samples from the Brazilian stingless bee Tetragonula biroi for the first time using HPLC-UV-ELSD and NMR analysis for assignment of the abundant metabolites' classes as well as extraction and isolation of the major compounds. Column chromatography and size exclusion chromatography were applied for the purification of the major compounds in red Brazilian propolis. Further, testing the antitrypanosomal and cytotoxic activities against Trypanosoma brucei and human leukemia cell lines (U937) was performed. A total of 29 secondary metabolites were identified as two anthocyanins, 6 flavonoids, 8 isoflavonoids, 10 phenolics, two phenolic acids, and one triterpenoid. Two phenolic compounds were purified and identified using 1D and 2D NMR analysis along with MS analysis as liquiritigenin and calycosin. Red Brazilian propolis FB-3 fraction showed the highest inhibitory activity against T. brucei at 1.6 μg/ml, compared to 12.4 μg/ml of the crude extract. The isolated compounds showed moderate activity with an MIC of 8.5 μg/ml for liquiritigenin and 8.7 μg/ml for calycosin. Moreover, FB-3 fraction and calycosin were showed the potent cytotoxic effect with IC50 = 45.1 and 35.8μg/ml, respectively compared to IC50 = 29.5 μg/ml of the standard diminazen. Hence, red Brazilian propolis is rich source of polyphenols with myriad biological importance. Propolis fractions and purified compounds showed moderate antiprotozoal activity and potent cytotoxic activity against human leukemia cell lines.
Collapse
Affiliation(s)
- Samyah Alanazi
- Clinical Laboratory Sciences Department, College of Applied Medical Sciences, King Saud University, Riyad, Saudi Arabia
| | - Naif D Alenzi
- Research and Laboratories Sector, National Drug and Cosmetic Control Laboratories (NDCCL), Saudi Food and Drug Authority, Riyadh, Saudi Arabia
| |
Collapse
|
4
|
Alcalá-Orozco M, Lobo-Farfan I, Tirado DF, Mantilla-Escalante DC. Enhancing the Nutritional and Bioactive Properties of Bee Pollen: A Comprehensive Review of Processing Techniques. Foods 2024; 13:3437. [PMID: 39517221 PMCID: PMC11544882 DOI: 10.3390/foods13213437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/23/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
Bee pollen is recognized as a superfood due to its high content of nutrients and bioactive compounds. However, its bioavailability is restricted by a degradation-resistant outer layer known as exine. Physical and biotechnological techniques have recently been developed to degrade this layer and improve pollen's nutritional and functional profile. This review examines how processing methods such as fermentation, enzymatic hydrolysis, ultrasound, and drying affect pollen's chemical profile, nutrient content, and bioactive compounds. The review also considers changes in exine structure and possible synergistic effects between these methods. In addition, the challenges associated with the commercialization of processed bee pollen are examined, including issues such as product standardization, stability during storage, and market acceptance. The objective was to provide an understanding of the efficacy of these techniques, their physicochemical conditions, and their effect on the nutritional value of the pollen. The work also analyzes whether pollen transformation is necessary to maximize its benefits and offers conclusions based on the analysis of available methods, helping to determine whether pollen transformation is a valid strategy for inclusion in functional foods and its impact on consumer health. Although the literature reports that pollen transformation influences its final quality, further studies are needed to demonstrate the need for pollen exine modification, which could lead to greater market availability of pollen-based products with functional properties.
Collapse
Affiliation(s)
- María Alcalá-Orozco
- Universidad Nacional Abierta y a Distancia (UNAD), Sede Cartagena, Cartagena de Indias 130015, Colombia;
- Cooperativa Multiactiva de Apicultores Orgánicos Montes de María (COOAPOMIEL), El Carmen de Bolívar 132050, Colombia
| | - Isabella Lobo-Farfan
- Dirección Académica, Universidad Nacional de Colombia, Sede de La Paz, La Paz 202017, Colombia;
| | - Diego F. Tirado
- Dirección Académica, Universidad Nacional de Colombia, Sede de La Paz, La Paz 202017, Colombia;
| | - Diana C. Mantilla-Escalante
- Universidad Nacional Abierta y a Distancia (UNAD), Sede Cartagena, Cartagena de Indias 130015, Colombia;
- Cooperativa Multiactiva de Apicultores Orgánicos Montes de María (COOAPOMIEL), El Carmen de Bolívar 132050, Colombia
- Universidad del Sinú Elías Bechara Zainúm, Seccional Cartagena, Cartagena de Indias 1300001, Colombia
| |
Collapse
|
5
|
Tkacz E, Rujna P, Więcławek W, Lewandowski B, Mika B, Sieciński S. Application of 2D Extension of Hjorth's Descriptors to Distinguish Defined Groups of Bee Pollen Images. Foods 2024; 13:3193. [PMID: 39410227 PMCID: PMC11476096 DOI: 10.3390/foods13193193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/02/2024] [Accepted: 10/06/2024] [Indexed: 10/20/2024] Open
Abstract
Adulteration of food products is a serious problem in the current economy. Honey has become the third most counterfeit food product in the world and requires effective authentication methods. This article presents a new approach to the differentiation of bee pollen, which can support the development of a methodology to test honey quality based on the analysis of bee pollen. The proposed method is built on applying the Hjorth descriptors-Activity, Mobility, and Complexity-known from electroencephalography (EEG) analysis, for 2D bee pollen images. The sources for extracting the bee pollen images were the photos of honey samples, which were taken using a digital camera with a resolution of 5 megapixels connected to the tube of an optical microscope. The honey samples used were prepared according to the Polish standard PN-88/A-77626 (related to the European standard CELEX-32001L0110-PL-TXT). The effectiveness of the proposed method was positively verified for three selected groups of bee pollen-Brassica napus, Helianthus, and Phacelia-containing 35 images. Statistical analysis confirms the ability of the Hjorth descriptors to differentiate the indicated bee pollen groups. Based on the results obtained, there is a significant difference between the bee pollen groups under consideration regarding Activity p<0.00001, Mobility p<0.0001, and Complexity p<0.00001.
Collapse
Affiliation(s)
- Ewaryst Tkacz
- Department of Clinical Engineering, Academy of Silesia, Rolna 43, 40-555 Katowice, Poland;
| | | | - Wojciech Więcławek
- Department of Medical Informatics and Artificial Intelligence, Faculty of Biomedical Engineering, Silesian University of Technology, F.D. Roosevelta 40, 41-800 Zabrze, Poland; (W.W.); (B.M.)
| | | | - Barbara Mika
- Department of Medical Informatics and Artificial Intelligence, Faculty of Biomedical Engineering, Silesian University of Technology, F.D. Roosevelta 40, 41-800 Zabrze, Poland; (W.W.); (B.M.)
| | - Szymon Sieciński
- Department of Clinical Engineering, Academy of Silesia, Rolna 43, 40-555 Katowice, Poland;
- Institute of Medical Informatics, University of Luebeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| |
Collapse
|
6
|
Alanazi S, Alenzi ND. Phytochemical profiling and characterization of flavonoid derivatives from propolis sample and investigation of cytotoxic and antiprotozoal activities. Sci Rep 2024; 14:21295. [PMID: 39266600 PMCID: PMC11393427 DOI: 10.1038/s41598-024-72379-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 09/06/2024] [Indexed: 09/14/2024] Open
Abstract
Recently, the growth of consumer demand for functional foods with potential nutritional and health benefits led to rapid growth of analytical tools for profiling of bioactive metabolites and assure quality. Bee propolis is one of the most important bee products owing to its myriad health value. As a gummy exudate produced in beehives after harvesting from different plant species, bee propolis contains bioactive secondary metabolites. The current study aims to profiling the chemical composition of propolis samples from Nigeria using HPLC-UV-ELSD and with the aid of NMR-based analysis for assignment of metabolites classes abundant in Nigerian propolis. Red Nigerian propolis samples were subjected to phytochemical analysis using HPLC-UV-ELSD and NMR. Further chromatographic separation of promising fractions was performed by column chromatography and size exclusion chromatography. Screening of the antitrypanosomal and cytotoxic activities against Trypanosoma brucei and human leukemia cell lines (U937), respectively, was performed. The performance of LC-MS permitted identification of the different components from which 13 compound were identified and allowed combination of fractions to afford 9 fractions from which two isoflavonoids were isolated and identified using 1D and 2D NMR analysis with MS as isosativan and Medicarpin. Red Nigerian propolis crude extract showed the highest inhibitory activity at 6.5 µg/ml compared to moderate activity for the isolated compounds with MIC of 7.6 µg/ml and 12.1 µg/ml for medicarpin and isosativan, respectively. Moreover, the fraction RN-6 from the total extract showed the potent cytotoxic effect with IC50 = 26.5 µg/ml compared to standard diminazen which showed IC50 = 29.5 µg/ml.
Collapse
Affiliation(s)
- Samyah Alanazi
- Clinical Laboratory Sciences Department, College of Applied Medical Sciences, King Saud University, 11451, Riyad, Saudi Arabia.
| | - Naif D Alenzi
- Research and Laboratories Sector, National Drug and Cosmetic Control Laboratories (NDCCL), Saudi Food and Drug Authority, Riyadh, Saudi Arabia
| |
Collapse
|
7
|
Ilie CI, Spoiala A, Chircov C, Dolete G, Oprea OC, Vasile BS, Crainiceanu SA, Nicoara AI, Marinas IC, Stan MS, Ditu LM, Ficai A, Oprea E. Antioxidant, Antitumoral, Antimicrobial, and Prebiotic Activity of Magnetite Nanoparticles Loaded with Bee Pollen/Bee Bread Extracts and 5-Fluorouracil. Antioxidants (Basel) 2024; 13:895. [PMID: 39199141 PMCID: PMC11351729 DOI: 10.3390/antiox13080895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/12/2024] [Accepted: 07/22/2024] [Indexed: 09/01/2024] Open
Abstract
The gut microbiota dysbiosis that often occurs in cancer therapy requires more efficient treatment options to be developed. In this concern, the present research approach is to develop drug delivery systems based on magnetite nanoparticles (MNPs) as nanocarriers for bioactive compounds. First, MNPs were synthesized through the spraying-assisted coprecipitation method, followed by loading bee pollen or bee bread extracts and an antitumoral drug (5-fluorouracil/5-FU). The loaded-MNPs were morphologically and structurally characterized through transmission electron microscopy (TEM), selected area electron diffraction (SAED), scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Dynamic Light Scattering (DLS), and thermogravimetric analysis. UV-Vis spectroscopy was applied to establish the release profiles and antioxidant activity. Furthermore, the antibacterial and antitumoral activity of loaded-MNPs was assessed. The results demonstrate that MNPs with antioxidant, antibacterial, antiproliferative, and prebiotic properties are obtained. Moreover, the data highlight the improvement of 5-FU antibacterial activity by loading on the MNPs' surface and the synergistic effects between the anticancer drug and phenolic compounds (PCs). In addition, the prolonged release behavior of PCs for many hours (70-75 h) after the release of 5-FU from the developed nanocarriers is an advantage, at least from the point of view of the antioxidant activity of PCs. Considering the enhancement of L. rhamnosus MF9 growth and antitumoral activity, this study developed promising drug delivery alternatives for colorectal cancer therapy.
Collapse
Affiliation(s)
- Cornelia-Ioana Ilie
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (C.-I.I.); (A.S.); (C.C.); (G.D.); (S.A.C.); (A.-I.N.)
- National Centre for Micro and Nanomaterials and National Centre for Food Safety, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania;
| | - Angela Spoiala
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (C.-I.I.); (A.S.); (C.C.); (G.D.); (S.A.C.); (A.-I.N.)
- National Centre for Micro and Nanomaterials and National Centre for Food Safety, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania;
- Research Center for Advanced Materials, Products and Processes, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania
| | - Cristina Chircov
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (C.-I.I.); (A.S.); (C.C.); (G.D.); (S.A.C.); (A.-I.N.)
- National Centre for Micro and Nanomaterials and National Centre for Food Safety, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania;
| | - Georgiana Dolete
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (C.-I.I.); (A.S.); (C.C.); (G.D.); (S.A.C.); (A.-I.N.)
- National Centre for Micro and Nanomaterials and National Centre for Food Safety, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania;
- Research Center for Advanced Materials, Products and Processes, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania
| | - Ovidiu-Cristian Oprea
- Academy of Romanian Scientists, 010719 Bucharest, Romania;
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania
| | - Bogdan-Stefan Vasile
- National Centre for Micro and Nanomaterials and National Centre for Food Safety, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania;
- Research Center for Advanced Materials, Products and Processes, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania
- Academy of Romanian Scientists, 010719 Bucharest, Romania;
| | - Simona Adriana Crainiceanu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (C.-I.I.); (A.S.); (C.C.); (G.D.); (S.A.C.); (A.-I.N.)
| | - Adrian-Ionut Nicoara
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (C.-I.I.); (A.S.); (C.C.); (G.D.); (S.A.C.); (A.-I.N.)
- National Centre for Micro and Nanomaterials and National Centre for Food Safety, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania;
| | | | - Miruna Silvia Stan
- The Research Institute, University of Bucharest, 050663 Bucharest, Romania (M.S.S.)
- Department of Biochemistry, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
| | - Lia-Mara Ditu
- The Research Institute, University of Bucharest, 050663 Bucharest, Romania (M.S.S.)
- Department of Botany and Microbiology, Faculty of Biology, University of Bucharest, 060101 Bucharest, Romania;
| | - Anton Ficai
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (C.-I.I.); (A.S.); (C.C.); (G.D.); (S.A.C.); (A.-I.N.)
- National Centre for Micro and Nanomaterials and National Centre for Food Safety, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania;
- Academy of Romanian Scientists, 010719 Bucharest, Romania;
| | - Eliza Oprea
- Department of Botany and Microbiology, Faculty of Biology, University of Bucharest, 060101 Bucharest, Romania;
| |
Collapse
|
8
|
Asoutis Didaras N, Karaiskou I, Nikolaidis M, Siaperopoulou C, Georgi I, Tsadila C, Karatasou K, Amoutzias GD, Mossialos D. Contribution of Microbiota to Bioactivity Exerted by Bee Bread. Pharmaceuticals (Basel) 2024; 17:761. [PMID: 38931428 PMCID: PMC11206572 DOI: 10.3390/ph17060761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/27/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Bee-collected pollen (BCP) and bee bread (BB) are honey bee products known for their beneficial biological properties. The main goal of this study was to investigate BB microbiota and its contribution to bioactivity exerted by BB. The microbiota of BB samples collected at different maturation stages was investigated via culture-independent (Next Generation Sequencing, NGS) and culture-dependent methods. Microbial communities dynamically fluctuate during BB maturation, ending in a stable microbial community structure in mature BB. Bee bread bacterial isolates were tested for phenotypes and genes implicated in the production and secretion of enzymes as well as antibacterial activity. Out of 309 bacterial isolates, 41 secreted hemicellulases, 13 cellulases, 39 amylases, 132 proteinases, 85 Coomassie brilliant blue G or R dye-degrading enzymes and 72 Malachite Green dye-degrading enzymes. Furthermore, out of 309 bacterial isolates, 42 exhibited antibacterial activity against Staphylococcus aureus, 34 against Pseudomonas aeruginosa, 47 against Salmonella enterica ser. Typhimurium and 43 against Klebsiella pneumoniae. Artificially fermented samples exerted higher antibacterial activity compared to fresh BCP, strongly indicating that BB microbiota contribute to BB antibacterial activity. Our findings suggest that BB microbiota is an underexplored source of novel antimicrobial agents and enzymes that could lead to new applications in medicine and the food industry.
Collapse
Affiliation(s)
- Nikos Asoutis Didaras
- Microbial Biotechnology-Molecular Bacteriology-Virology Laboratory, Department of Biochemistry & Biotechnology, University of Thessaly, 41500 Larissa, Greece; (N.A.D.); (I.K.); (C.S.); (I.G.); (C.T.)
| | - Ioanna Karaiskou
- Microbial Biotechnology-Molecular Bacteriology-Virology Laboratory, Department of Biochemistry & Biotechnology, University of Thessaly, 41500 Larissa, Greece; (N.A.D.); (I.K.); (C.S.); (I.G.); (C.T.)
| | - Marios Nikolaidis
- Bioinformatics Laboratory, Department of Biochemistry & Biotechnology, University of Thessaly, 41500 Larissa, Greece; (M.N.); (G.D.A.)
| | - Christina Siaperopoulou
- Microbial Biotechnology-Molecular Bacteriology-Virology Laboratory, Department of Biochemistry & Biotechnology, University of Thessaly, 41500 Larissa, Greece; (N.A.D.); (I.K.); (C.S.); (I.G.); (C.T.)
| | - Irini Georgi
- Microbial Biotechnology-Molecular Bacteriology-Virology Laboratory, Department of Biochemistry & Biotechnology, University of Thessaly, 41500 Larissa, Greece; (N.A.D.); (I.K.); (C.S.); (I.G.); (C.T.)
| | - Christina Tsadila
- Microbial Biotechnology-Molecular Bacteriology-Virology Laboratory, Department of Biochemistry & Biotechnology, University of Thessaly, 41500 Larissa, Greece; (N.A.D.); (I.K.); (C.S.); (I.G.); (C.T.)
| | - Katerina Karatasou
- Apicultural Centre of Larissa, Federation of Greek Beekeepers Associations, 41222 Larissa, Greece;
| | - Grigoris D. Amoutzias
- Bioinformatics Laboratory, Department of Biochemistry & Biotechnology, University of Thessaly, 41500 Larissa, Greece; (M.N.); (G.D.A.)
| | - Dimitris Mossialos
- Microbial Biotechnology-Molecular Bacteriology-Virology Laboratory, Department of Biochemistry & Biotechnology, University of Thessaly, 41500 Larissa, Greece; (N.A.D.); (I.K.); (C.S.); (I.G.); (C.T.)
| |
Collapse
|
9
|
Pokajewicz K, Lamaka D, Hudz N, Adamchuk L, Wieczorek PP. Volatile profile of bee bread. Sci Rep 2024; 14:6870. [PMID: 38519512 PMCID: PMC10959932 DOI: 10.1038/s41598-024-57159-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 03/14/2024] [Indexed: 03/25/2024] Open
Abstract
Bee bread is one of the least studied bee products. In this study, ten bee bread samples were characterized using palynology and HS-SPME-GC-MS (headspace solid-phase microextraction gas chromatography-mass spectrometry). In total, over one hundred different volatile components were identified, belonging to different chemical groups. Only ten common components were detected in all the samples. These volatiles were ethanol, ethylene chloride, ethyl acetate, acetic acid, α-pinene, furfural, nonane, nonanal, n-hexane and isovaleric acid. Several other components were commonly shared among various bee bread samples. Over sixty detected compounds have not been previously reported in bee bread. The analysis required a mild extraction temperature of 40 °C, as higher temperatures resulted in the Maillard reaction, leading to the production of furfural. The profile of volatile compounds of the tested bee pollen samples was complex and varied. Some relationships have been shown between botanical origin and volatile organic compound profile.
Collapse
Affiliation(s)
| | - Darya Lamaka
- Department of Analytical Chemistry, University of Opole, 45-052, Opole, Poland
| | - Nataliia Hudz
- Department of Pharmacy and Ecological Chemistry, University of Opole, 45-052, Opole, Poland
- Department of Drug Technology and Biopharmaceutics, Danylo Halytsky Lviv National Medical University, Lviv, 79010, Ukraine
| | - Leonora Adamchuk
- Department of Standardization and Certification of Agricultural Products, National University of Life and Environmental Sciences of Ukraine, Heroiv Oborony Street 15, Kyiv, 03041, Ukraine
- Laboratory of Methods for Assessing the Quality and Safety of Beekeeping Products, National Science Center "PI Prokopovich Institute of Beekeeping", Akademika Zabolotnoho Street 19, Kyiv, 03680, Ukraine
| | | |
Collapse
|
10
|
Aksoy A, Altunatmaz SS, Aksu F, Tokatlı Demirok N, Yazıcı K, Yıkmış S. Bee Bread as a Functional Product: Phenolic Compounds, Amino Acid, Sugar, and Organic Acid Profiles. Foods 2024; 13:795. [PMID: 38472908 PMCID: PMC10931289 DOI: 10.3390/foods13050795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 02/28/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024] Open
Abstract
Bee bread (perga) is a natural bee product formed by the fermentation of the pollen collected by bees via lactic acid bacteria and yeasts. This study aims to determine the bioactive compounds, amino acid, sugar, and organic acid profile of bee bread samples collected from the Ardahan province of Türkiye. The highest total phenolic, total flavonoid, and DPPH values in bee bread samples were determined as 18.35 mg GAE/g, 2.82 mg QE/g, and 3.90 mg TEAC/g, respectively. Among phenolic compounds, gallic acid had the highest value at 39.97 µ/g. While all essential amino acids except tryptophan were detected in the samples, aspartic acid was the most dominant, followed by pyrroline and glutamic acid. Among sugars, fructose was seen at the highest level. Succinic acid, among organic acids, had the highest amount at 73.63 mg/g. Finally, all the data were subjected to a principal components analysis (PCA). Bee bread samples were grouped according to the analysis results of the districts they were collected from. This study provides information about the bioactive components and some chemical properties of bee bread, a natural product that has been the subject of recent research. It also contains essential data for future functional food production.
Collapse
Affiliation(s)
- Aksem Aksoy
- Department of Food Engineering, Faculty of Engineering Architecture, Kafkas University, 36100 Kars, Türkiye;
| | - Sema Sandıkçı Altunatmaz
- Food Processing Department, Veterinary Vocational High School, Istanbul University-Cerrahpaşa, Avcılar, 34320 Istanbul, Türkiye; (S.S.A.); (F.A.)
| | - Filiz Aksu
- Food Processing Department, Veterinary Vocational High School, Istanbul University-Cerrahpaşa, Avcılar, 34320 Istanbul, Türkiye; (S.S.A.); (F.A.)
| | - Nazan Tokatlı Demirok
- Department of Nutrition and Dietetics, Tekirdağ Namık Kemal University, 59030 Tekirdağ, Türkiye
| | - Kemal Yazıcı
- Department of Plant and Animal Production, Posof Vocational School, Ardahan University, 75800 Ardahan, Türkiye;
| | - Seydi Yıkmış
- Department of Food Technology, Tekirdağ Namık Kemal University, 59830 Tekirdağ, Türkiye
| |
Collapse
|
11
|
Liu Y, Jiang B, Wang K. A review of fermented bee products: Sources, nutritional values, and health benefits. Food Res Int 2023; 174:113506. [PMID: 37986501 DOI: 10.1016/j.foodres.2023.113506] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/15/2023] [Accepted: 09/22/2023] [Indexed: 11/22/2023]
Abstract
Bee products have garnered considerable interest due to their abundant nutritional content and versatile biological activities. The utilization of bee products as fermentation materials has shown favorable potential for increasing nutrients, altering texture, and endorsing unique tastes. This review critically examines the existing literature on fermented bee products, with a specific emphasis on the impact of fermentation on their nutritional composition and potential health benefits. The raw materials, strains, conditions, and methodologies employed in the fermentation of bee products, as well as the utilization of bee products as fermentation raw materials/excipients, are reviewed. We also present a special focus on the nutritional composition and content of bioactive substances, such as polyphenols and volatile organic compounds, in fermented bee products. Additionally, the influence of fermentation on bee product ingredients and their health benefits is summarized. Fermented bee products substantially benefit human health, with superior antioxidant, anti-inflammatory, and anti-allergic properties compared to non-fermented bee products. Finally, this article discusses the types, strains, health benefits, production processes, and market prospects of fermented bee products, which are expected to become an important part of human food culture as functional food or nutritional supplements. The aforementioned findings highlight the remarkable nutritional value and bioactive properties exhibited by fermented bee products.
Collapse
Affiliation(s)
- Yang Liu
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Bokai Jiang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Kai Wang
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China.
| |
Collapse
|
12
|
Miłek M, Mołoń M, Kielar P, Sidor E, Bocian A, Marciniak-Lukasiak K, Pasternakiewicz A, Dżugan M. The Comparison of Honey Enriched with Laboratory Fermented Pollen vs. Natural Bee Bread in Terms of Nutritional and Antioxidant Properties, Protein In Vitro Bioaccessibility, and Its Genoprotective Effect in Yeast Cells. Molecules 2023; 28:5851. [PMID: 37570819 PMCID: PMC10420809 DOI: 10.3390/molecules28155851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
The aim of the study was to compare the nutritional value and bioactivity of honey enriched with a 10% addition of natural bee bread and its substitutes obtained as a result of laboratory fermentation of bee pollen. Physicochemical parameters, antioxidant properties, as well as the bioaccessibility of proteins using an in vitro static digestion model were analyzed. The bioactivity of the obtained enriched honeys was tested using the yeast model. The research indicates the similarity of honeys with the addition of "artificial bee bread" to honey with natural ones. During in vitro digestion, good bioaccessibility of the protein from the tested products was demonstrated. The ability of the products to protect yeast cells against hydrogen superoxide-induced oxidative stress was demonstrated using a qualitative spot test, which was stronger in the case of enriched honey than in pure rapeseed control honey. Significant inhibition of the growth of both strains of yeast exposed to bee pollen-enriched honeys was also demonstrated. Furthermore, all tested samples showed significant genoprotective activity against the genotoxic effect of zeocin and the reduction of the number of DNA double-strand breaks by a minimum of 70% was observed.
Collapse
Affiliation(s)
- Michał Miłek
- Department of Chemistry and Food Toxicology, Institute of Food Technology and Nutrition, University of Rzeszow, Ćwiklińskiej 1a St., 35-601 Rzeszów, Poland; (E.S.); (A.P.); (M.D.)
| | - Mateusz Mołoń
- Institute of Biology, University of Rzeszów, 35-601 Rzeszów, Poland; (M.M.); (P.K.)
| | - Patrycja Kielar
- Institute of Biology, University of Rzeszów, 35-601 Rzeszów, Poland; (M.M.); (P.K.)
| | - Ewelina Sidor
- Department of Chemistry and Food Toxicology, Institute of Food Technology and Nutrition, University of Rzeszow, Ćwiklińskiej 1a St., 35-601 Rzeszów, Poland; (E.S.); (A.P.); (M.D.)
- Doctoral School, University of Rzeszów, Rejtana 16c, 35-959 Rzeszów, Poland
| | - Aleksandra Bocian
- Department of Biotechnology and Bioinformatics, Faculty of Chemistry, Rzeszów University of Technology, Powstańców Warszawy 6, 35-959 Rzeszow, Poland;
| | - Katarzyna Marciniak-Lukasiak
- Institute of Food Sciences, Faculty of Food Assessment and Technology, Warsaw University of Life Sciences (WULS-SGGW), Nowoursynowska 159c, 02-776 Warsaw, Poland;
| | - Anna Pasternakiewicz
- Department of Chemistry and Food Toxicology, Institute of Food Technology and Nutrition, University of Rzeszow, Ćwiklińskiej 1a St., 35-601 Rzeszów, Poland; (E.S.); (A.P.); (M.D.)
| | - Małgorzata Dżugan
- Department of Chemistry and Food Toxicology, Institute of Food Technology and Nutrition, University of Rzeszow, Ćwiklińskiej 1a St., 35-601 Rzeszów, Poland; (E.S.); (A.P.); (M.D.)
| |
Collapse
|
13
|
Qi D, Lu M, Li J, Ma C. Metabolomics Reveals Distinctive Metabolic Profiles and Marker Compounds of Camellia ( Camellia sinensis L.) Bee Pollen. Foods 2023; 12:2661. [PMID: 37509753 PMCID: PMC10378613 DOI: 10.3390/foods12142661] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Camellia bee pollen (CBP) is a major kind of bee product which is collected by honeybees from tea tree (Camellia sinensis L.) flowers and agglutinated into pellets via oral secretion. Due to its special healthcare value, the authenticity of its botanical origin is of great interest. This study aimed at distinguishing CBP from other bee pollen, including rose, apricot, lotus, rape, and wuweizi bee pollen, based on a non-targeted metabolomics approach using ultra-high performance liquid chromatography-mass spectrometry. Among the bee pollen groups, 54 differential compounds were identified, including flavonol glycosides and flavone glycosides, catechins, amino acids, and organic acids. A clear separation between CBP and all other samples was observed in the score plots of the principal component analysis, indicating distinctive metabolic profiles of CBP. Notably, L-theanine (864.83-2204.26 mg/kg) and epicatechin gallate (94.08-401.82 mg/kg) were identified exclusively in all CBP and were proposed as marker compounds of CBP. Our study unravels the distinctive metabolic profiles of CBP and provides specific and quantified metabolite indicators for the assessment of authentic CBP.
Collapse
Affiliation(s)
- Dandan Qi
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
- Tea Research Institute, Shangdong Academy of Agricultural Sciences, Jinan 250000, China
| | - Meiling Lu
- Agilent Technologies (China) Co., Ltd., Beijing 100102, China
| | - Jianke Li
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Chuan Ma
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| |
Collapse
|
14
|
Miłek M, Mołoń M, Kula-Maximenko M, Sidor E, Zaguła G, Dżugan M. Chemical Composition and Bioactivity of Laboratory-Fermented Bee Pollen in Comparison with Natural Bee Bread. Biomolecules 2023; 13:1025. [PMID: 37509061 PMCID: PMC10377425 DOI: 10.3390/biom13071025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/15/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
Bee bread is a valuable product obtained from the hive on a relatively small scale, while bee pollen is more easily available. Therefore, an effective laboratory method of converting pollen into a bee bread substitute is desired. The aim of the research was to verify the influence of selected factors (temperature, ultrasound) on the quality of obtained product using Lactobacillus rhamnosus inoculum. The composition of the fermented pollen was analyzed using Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES), Raman spectroscopy, and SDS-PAGE and compared to natural bee bread and the original pollen. In vitro biological activity was assessed as antioxidant activity using a yeast model (BY4741 and sod1∆ strains). Fermentation of pollen occurred spontaneously and after inoculation, as demonstrated by lower pH and higher lactic acid content. Raman spectroscopy and ICP-OES confirmed changes in composition compared to the initial pollen. Compared to bee bread, the fermented pollen showed a higher content of polyphenols and comparable antioxidant activity; moreover, it accelerated yeast growth rate. In addition, a protective effect was observed for Cu/Zn-superoxide dismutase 1 (sod1∆ yeast mutant exposed to hydrogen peroxide-induced oxidative stress). The higher fermentation temperature (25 °C) produces a more bee-bread-like product, while the use of ultrasound and starter culture seems to have no positive effect.
Collapse
Affiliation(s)
- Michał Miłek
- Department of Chemistry and Food Toxicology, Institute of Food Technology and Nutrition, University of Rzeszow, Ćwiklińskiej 1a St., 35-601 Rzeszów, Poland
| | - Mateusz Mołoń
- Institute of Biology, University of Rzeszów, 35-601 Rzeszów, Poland
| | - Monika Kula-Maximenko
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, 30-239 Krakow, Poland
| | - Ewelina Sidor
- Department of Chemistry and Food Toxicology, Institute of Food Technology and Nutrition, University of Rzeszow, Ćwiklińskiej 1a St., 35-601 Rzeszów, Poland
- Doctoral School, University of Rzeszów, Rejtana 16c, 35-959 Rzeszów, Poland
| | - Grzegorz Zaguła
- Department of Bioenergetics and Food Analysis, Institute of Food Technology and Nutrition, University of Rzeszow, Ćwiklińskiej 2D, 35-601 Rzeszów, Poland
| | - Małgorzata Dżugan
- Department of Chemistry and Food Toxicology, Institute of Food Technology and Nutrition, University of Rzeszow, Ćwiklińskiej 1a St., 35-601 Rzeszów, Poland
| |
Collapse
|
15
|
Kacemi R, Campos MG. Translational Research on Bee Pollen as a Source of Nutrients: A Scoping Review from Bench to Real World. Nutrients 2023; 15:nu15102413. [PMID: 37242296 DOI: 10.3390/nu15102413] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/11/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
The emphasis on healthy nutrition is gaining a forefront place in current biomedical sciences. Nutritional deficiencies and imbalances have been widely demonstrated to be involved in the genesis and development of many world-scale public health burdens, such as metabolic and cardiovascular diseases. In recent years, bee pollen is emerging as a scientifically validated candidate, which can help diminish conditions through nutritional interventions. This matrix is being extensively studied, and has proven to be a very rich and well-balanced nutrient pool. In this work, we reviewed the available evidence on the interest in bee pollen as a nutrient source. We mainly focused on bee pollen richness in nutrients and its possible roles in the main pathophysiological processes that are directly linked to nutritional imbalances. This scoping review analyzed scientific works published in the last four years, focusing on the clearest inferences and perspectives to translate cumulated experimental and preclinical evidence into clinically relevant insights. The promising uses of bee pollen for malnutrition, digestive health, metabolic disorders, and other bioactivities which could be helpful to readjust homeostasis (as it is also true in the case of anti-inflammatory or anti-oxidant needs), as well as the benefits on cardiovascular diseases, were identified. The current knowledge gaps were identified, along with the practical challenges that hinder the establishment and fructification of these uses. A complete data collection made with a major range of botanical species allows more robust clinical information.
Collapse
Affiliation(s)
- Rachid Kacemi
- Observatory of Drug-Herb Interactions, Laboratory of Pharmacognosy, Faculty of Pharmacy, University of Coimbra, Heath Sciences Campus, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Maria G Campos
- Observatory of Drug-Herb Interactions, Laboratory of Pharmacognosy, Faculty of Pharmacy, University of Coimbra, Heath Sciences Campus, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Coimbra Chemistry Centre (CQC, FCT Unit 313), Faculty of Science and Technology, University of Coimbra, Rua Larga, 3004-516 Coimbra, Portugal
| |
Collapse
|