1
|
Li Z, Ruan Q, Jiang Y, Wang Q, Yin G, Feng J, Zhang J. Current Status and Perspectives of Novel Radiopharmaceuticals with Heterologous Dual-targeted Functions: 2013-2023. J Med Chem 2024; 67:21644-21670. [PMID: 39648432 DOI: 10.1021/acs.jmedchem.4c01608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
Radiotracers provide molecular- and cellular-level information in a noninvasive manner and have become important tools for precision medicine. In particular, the successful clinical application of radioligand therapeutic (RLT) has further strengthened the role of nuclear medicine in clinical treatment. The complicated microenvironment of the lesion has rendered traditional single-targeted radiopharmaceuticals incapable of fully meeting the requirements. The design and development of dual-targeted and multitargeted radiopharmaceuticals have rapidly emerged. In recent years, significant progress has been made in the development of heterologous dual-targeted radiopharmaceuticals. This perspective aims to provide a comprehensive overview of the recent progress in these heterologous dual-targeted radiopharmaceuticals, with a special focus on the design of ligand structures, pharmacological properties, and preclinical and clinical evaluation. Furthermore, future directions are discussed from this perspective.
Collapse
Affiliation(s)
- Zuojie Li
- Key Laboratory of Radiopharmaceuticals of the Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Qing Ruan
- Key Laboratory of Radiopharmaceuticals of the Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
- Key Laboratory of Beam Technology of the Ministry of Education, College of Physics and Astronomy, Beijing Normal University, Beijing, 100875, P. R. China
| | - Yuhao Jiang
- Key Laboratory of Radiopharmaceuticals of the Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
- Key Laboratory of Beam Technology of the Ministry of Education, College of Physics and Astronomy, Beijing Normal University, Beijing, 100875, P. R. China
| | - Qianna Wang
- Key Laboratory of Radiopharmaceuticals of the Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Guangxing Yin
- Key Laboratory of Radiopharmaceuticals of the Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Junhong Feng
- Key Laboratory of Radiopharmaceuticals of the Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Junbo Zhang
- Key Laboratory of Radiopharmaceuticals of the Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| |
Collapse
|
2
|
Wang X, Zhang X, Zhang X, Guan L, Gao X, Xu L, Pang H, Du J, Zhang J, Cui M. Design, preclinical evaluation, and first-in-human PET study of [ 68Ga]Ga-PSFA-01: a PSMA/FAP heterobivalent tracer. Eur J Nucl Med Mol Imaging 2024:10.1007/s00259-024-06965-7. [PMID: 39520516 DOI: 10.1007/s00259-024-06965-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024]
Abstract
PURPOSE Prostate cancer (PCa), characterized by tumor heterogeneity, may exhibit low or absent prostate-specific membrane antigen (PSMA) expression in cancerous lesions, limiting the detection sensitivity of monospecific probes. Given that fibroblast activation protein (FAP) is frequently overexpressed in the tumor microenvironment (TME), we developed a PSMA/FAP dual-targeting tracer to address this limitation. METHODS The precursor (PSFA-01) was synthesized by coupling a quinolone-based FAP-targeting scaffold and EuK with HBED-CC via amide bonds. The dual-receptor-binding affinity and cell uptake of PSFA-01 and [natGa]Ga-PSFA-01 was evaluated in vitro. Micro-PET/CT imaging was performed on 22Rv1 and U87MG tumor-bearing mice. The feasibility of [68Ga]Ga-PSFA-01 PET/CT in a clinical setting was evaluated in a metastatic prostate cancer patient, and the results were compared with those of [68Ga]Ga-FAPI-04 and [68Ga]Ga-PSMA-11 PET/CT. RESULTS PSFA-01 and [natGa]Ga-PSFA-01 showed high affinity for both FAP and PSMA proteins (Ki = 0.14-1.02 nM). On micro-PET/CT imaging, the 22Rv1 tumor uptake of [68Ga]Ga-PSFA-01 (SUVmax = 3.89 ± 0.47) was higher than that of [68Ga]Ga-PSMA-11 (SUVmax = 2.96 ± 0.48). The U87MG tumor uptake of [68Ga]Ga-PSFA-01 was significantly higher (SUVmax = 7.29 ± 1.13) than [68Ga]Ga-FAPI-04 (SUVmax = 0.28 ± 0.12), showing tumor to muscle ratio as 12.68 ± 1.93 at 1 h p.i. On clinical trial, the primary tumor and metastatic lesions were distinctly identified by [68Ga]Ga-PSFA-01 (21 lesions), demonstrating superior performance compared to [68Ga]Ga-FAPI-04 (3 lesions) and [68Ga]Ga-PSMA-11 (13 lesions) in terms of lesion count and specificity. CONCLUSIONS [68Ga]Ga-PSFA-01 exhibited satisfactory PSMA and FAP dual-receptor-targeting properties both in vitro and in vivo. This study highlights the clinical feasibility of [68Ga]Ga-PSFA-01 PET/CT for detecting metastatic tumors of prostate cancer more sensitively compared to monomeric [68Ga]Ga-PSMA-11 and [68Ga]Ga-FAPI-04, which also suggests that a PSMA/FAP dual-targeted radionuclide therapy could potentially overcome challenges related to tumor heterogeneity and insufficient PSMA expression in PCa. TRIAL REGISTRATION Clinical trial registry NCT06387381, Registered 1 May 2024.
Collapse
Affiliation(s)
- Xinlin Wang
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
- Department of Nuclear Technology and Application, China Institute of Atomic Energy, Beijing, 102413, China
| | - Xiaoyang Zhang
- Department of Nuclear Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Xiaojun Zhang
- Department of Nuclear Medicine, Chinese PLA General Hospital, Beijing, 100853, China
| | - Lili Guan
- Department of Nuclear Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Xi Gao
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Lu Xu
- Department of Nuclear Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Hua Pang
- Department of Nuclear Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| | - Jin Du
- Department of Nuclear Technology and Application, China Institute of Atomic Energy, Beijing, 102413, China
| | - Jinming Zhang
- Department of Nuclear Medicine, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Mengchao Cui
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
3
|
Yu Z, Jiang Z, Cheng X, Yuan L, Chen H, Ai L, Wu Z. Development of fibroblast activation protein-α radiopharmaceuticals: Recent advances and perspectives. Eur J Med Chem 2024; 277:116787. [PMID: 39197253 DOI: 10.1016/j.ejmech.2024.116787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/15/2024] [Accepted: 08/19/2024] [Indexed: 09/01/2024]
Abstract
Fibroblast activation protein-α (FAP) has emerged as a promising target in the field of radiopharmaceuticals due to its selective expression in cancer-associated fibroblasts (CAFs) and other pathological conditions involving fibrosis and inflammation. Recent advancements have focused on developing FAP-specific radioligands for diagnostic imaging and targeted radionuclide therapy. This perspective summarized the latest progress in FAP radiopharmaceutical development, highlighting novel radioligands, preclinical evaluations, and potential clinical applications. Additionally, we analyzed the advantages and existing problems of targeted FAP radiopharmaceuticals, and discussed the key breakthrough directions of this target, so as to improve the development and conversion of FAP-targeted radiopharmaceuticals.
Collapse
Affiliation(s)
- Ziyue Yu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, 100069, China
| | - Zeng Jiang
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, 100069, China
| | - Xuebo Cheng
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, 100069, China
| | - Leilei Yuan
- Department of Nuclear Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Hualong Chen
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, 100069, China
| | - Lin Ai
- Department of Nuclear Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
| | - Zehui Wu
- Department of Nuclear Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
| |
Collapse
|
4
|
Huangfu Z, Yang J, Sun J, Xu B, Tao L, Wu J, Wang F, Wang G, Meng F, Zhong Z. PSMA and Sigma-1 receptor dual-targeted peptide mediates superior radionuclide imaging and therapy of prostate cancer. J Control Release 2024; 375:767-775. [PMID: 39332777 DOI: 10.1016/j.jconrel.2024.09.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/26/2024] [Accepted: 09/23/2024] [Indexed: 09/29/2024]
Abstract
Radionuclide therapy, in particular peptide receptor radionuclide therapy (PRRT), has emerged as a valuable means to combat malignant tumors. The specific affinity of ACUPA peptide toward prostate-specific membrane antigen (PSMA) renders the successful development of PRRT for prostate cancer. The clinical outcome of PRRT is, however, generally challenged by moderate tumor uptake and off-target toxicity. Here, we report on a novel design of Sigma-1 receptor and PSMA dual-receptor targeted peptide (S1R/PSMA-P) for superior radionuclide imaging and therapy of prostate cancer. S1R/PSMA-P was acquired with good purity and could efficiently be labeled with 177Lu to yield 177Lu-S1R/PSMA-P with high specific activity and radiostability. Interestingly, 177Lu-S1R/PSMA-P revealed greatly enhanced affinity to LNCaP cells over single-targeted control 177Lu-PSMA-617. The single photon emission computed tomography (SPECT) imaging demonstrated exceptional uptake and retention of 177Lu-S1R/PSMA-P in LNCaP tumor, affording about 2-fold better tumor accumulation while largely reduced uptake by most normal tissues compared to 177Lu-PSMA-617. The selective uptake in LNCaP tumor was also visualized by positron emission tomography (PET) with 68Ga-S1R/PSMA-P. In accordance, a single and low dosage of 177Lu-S1R/PSMA-P at 11.1 MBq effectively suppressed tumor growth without causing apparent side effects. This dual-targeting strategy presents an appealing radionuclide therapy for malignant tumors.
Collapse
Affiliation(s)
- Zhenyuan Huangfu
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, People's Republic of China; College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, People's Republic of China
| | - Jiangtao Yang
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, People's Republic of China; College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, People's Republic of China
| | - Juan Sun
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, People's Republic of China; College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, People's Republic of China
| | - Bin Xu
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, People's Republic of China; College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, People's Republic of China
| | - Lei Tao
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, People's Republic of China; College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, People's Republic of China
| | - Jiang Wu
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, People's Republic of China
| | - Feng Wang
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, People's Republic of China.
| | - Guanglin Wang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China.
| | - Fenghua Meng
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, People's Republic of China; College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, People's Republic of China
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, People's Republic of China; College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, People's Republic of China.
| |
Collapse
|
5
|
Belge Bilgin G, Bilgin C, Orscelik A, Burkett BJ, Thorpe MP, Johnson DR, Johnson GB, Kallmes DF, Sartor O, Kendi AT. Detection rate of gastrin-releasing peptide receptor (GRPr) targeted tracers for positron emission tomography (PET) imaging in primary prostate cancer: a systematic review and meta-analysis. Ann Nucl Med 2024; 38:865-876. [PMID: 39287742 DOI: 10.1007/s12149-024-01978-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/04/2024] [Indexed: 09/19/2024]
Abstract
The gastrin-releasing peptide receptor (GRPr) has gained recognition as a promising target for both diagnostic and therapeutic applications in a variety of human cancers. This study aims to explore the primary tumor detection capabilities of [68Ga] Ga-GRPr PET imaging, specifically in newly diagnosed intra-prostatic prostate cancer lesions (PCa). Following PRISMA-DTA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses of Diagnostic Test Accuracy Studies) guidelines, a systematic literature search was conducted using the Medline, Embase, Scopus, and Web of Science databases. Data regarding patient characteristics and imaging procedure details-including the type of radiotracer used, administered activity, image acquisition time, scanner modality, criteria, and detection rate of index test-were extracted from the included studies. The pooled patient-and lesion-based detection rates, along with their corresponding 95% confidence intervals (CI), were calculated using a random effects model. The final analysis included 9 studies involving 291 patients and 350 intra-prostatic lesions with [68Ga] Ga-GRPr PET imaging in primary PCa. In per-patient-based analysis of [68Ga] Ga-GRPr PET imaging, the pooled detection rates of overall and patients with Gleason score ≥ 7 were 87.09% (95% CI 74.98-93.82) and 89.01% (95% CI 68.17-96.84), respectively. In per-lesion-based analysis, the pooled detection rate [68Ga] Ga-GRPr PET imaging was 78.54% (95% CI 69.8-85.29). The pooled detection rate mpMRI (multiparametric magnetic resonance imaging) in patient-based analysis was 91.85% (95% CI 80.12-96.92). The difference between the detection rates of the mpMRI and [68Ga] Ga-GRPr PET imaging was not statistically significant (OR 0.90, 95% CI 0.23-3.51). Our findings suggest that [68Ga] Ga-GRPr PET imaging has the potential as a diagnostic target for primary PCa. Future research is needed to determine the effectiveness of [68Ga] Ga-GRPr PET in delivering additional imaging data and guiding therapeutic decisions.
Collapse
Affiliation(s)
| | - Cem Bilgin
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Atakan Orscelik
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
| | | | | | | | - Geoffrey B Johnson
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
- Department of Immunology, Mayo Clinic, Rochester, MN, USA
| | | | - Oliver Sartor
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
- Division of Medical Oncology, Department of Oncology, Mayo Clinic, Rochester, MN, USA
- Department of Urology, Mayo Clinic, Rochester, MN, USA
| | | |
Collapse
|
6
|
Haberkorn U, Altmann A, Giesel FL, Kratochwil C. 1,090 Publications and 5 Years Later: Is FAP-Targeted Theranostics Really Happening? J Nucl Med 2024; 65:1518-1520. [PMID: 39168520 DOI: 10.2967/jnumed.124.267923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/23/2024] [Indexed: 08/23/2024] Open
Affiliation(s)
- Uwe Haberkorn
- Department of Nuclear Medicine, University Hospital Heidelberg, Heidelberg, Germany;
- Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center, Heidelberg, Germany
- Translational Lung Research Center Heidelberg, German Center for Lung Research, Heidelberg, Germany
| | - Annette Altmann
- Department of Nuclear Medicine, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center, Heidelberg, Germany
| | - Frederik L Giesel
- Department of Nuclear Medicine, Medical Faculty and University Hospital Duesseldorf, Duesseldorf, Germany; and
- Institute for Radiation Sciences, Osaka University, Toyonaka, Japan
| | - Clemens Kratochwil
- Department of Nuclear Medicine, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
7
|
Ji T, Zan C, Li L, Cao J, Su Y, Wang H, Wu Z, Yang MF, Dou K, Li S. Molecular Imaging of Fibroblast Activation in Rabbit Atherosclerotic Plaques: a Preclinical PET/CT Study. Mol Imaging Biol 2024; 26:680-692. [PMID: 38664355 DOI: 10.1007/s11307-024-01919-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 04/13/2024] [Accepted: 04/18/2024] [Indexed: 07/28/2024]
Abstract
AIM Atherosclerosis remains the pathological basis of myocardial infarction and ischemic stroke. Early and accurate identification of plauqes is crucial to improve clinical outcomes of atherosclerosis patients. Our study aims to evaluate the potential value of fibroblast activation protein inhibitor (FAPI)-04 PET/CT in identifying plaques via a preclinical rabbit model of atherosclerosis. METHODS New Zealand white rabbits were fed high-fat diet (HFD), and randomly divided into the model group injured by the balloon, and the sham group only with incisions. Ultrasound was performed to detect plaques, and FAPI-avid was determined through Al18F-NOTA-FAPI-04 PET/CT. Mean standardized uptake values (SUVmean) in lesions were compared, and biodistribution of Al18F-NOTA-FAPI-04 and target-to-background ratios (TBRs) were calculated. Histological staining was performed to display arterial plaques, and autoradiography (ARG) was employed to measure the in vitro intensity of Al18F-NOTA-FAPI-04. At last, the correlation among FAP levels, plaque area, SUVmean values and fibrous cap thickness was assessed. RESULTS The rabbit carotid and abdominal atherosclerosis model was established. Al18F-NOTA-FAPI-04 showed a higher uptake in carotid plaques (SUVmean 1.32 ± 0.11) and abdominal plaques (SUVmean 0.73 ± 0.13) compared to corresponding controls (SUVmean 1.07 ± 0.06; 0.46 ± 0.03) (P < 0.05). Biodistribution analysis of Al18F-NOTA-FAPI-04 revealed that the bigger plaques were delineated with higher TBRs. Pathological staining showed the formation of arterial plaques, and ARG staining exhibited a higher intensity of Al18F-NOTA-FAPI-04 in the bigger plaques. Lastly, plaque area was found to be positively correlated to FAP expression and SUVmean, while FAP expression was negatively correlated to fibrous cap thickness of plaques. CONCLUSIONS We successfully achieve molecular imaging of fibroblast activation in atherosclerotic lesions of rabbits, suggesting Al18F-NOTA-FAPI-04 PET/CT may be a potentially valuable tool to identify plaques.
Collapse
Affiliation(s)
- Tianxiong Ji
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, 030001, China
- Shanxi Key Laboratory of Molecular Imaging, Shanxi Medical University, Taiyuan, 030001, China
| | - Chunfang Zan
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, 030001, China
- Shanxi Key Laboratory of Molecular Imaging, Shanxi Medical University, Taiyuan, 030001, China
- Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Shanxi Medical University, Taiyuan, 030001, China
- College of Medical Imaging, Shanxi Medical University, Taiyuan, 030001, China
| | - Lina Li
- Department of Nuclear Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Jianbo Cao
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, 030001, China
- Shanxi Key Laboratory of Molecular Imaging, Shanxi Medical University, Taiyuan, 030001, China
- Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Shanxi Medical University, Taiyuan, 030001, China
| | - Yao Su
- Department of Nuclear Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Hongliang Wang
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, 030001, China
- Shanxi Key Laboratory of Molecular Imaging, Shanxi Medical University, Taiyuan, 030001, China
- Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Shanxi Medical University, Taiyuan, 030001, China
| | - Zhifang Wu
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, 030001, China.
- Shanxi Key Laboratory of Molecular Imaging, Shanxi Medical University, Taiyuan, 030001, China.
- Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Shanxi Medical University, Taiyuan, 030001, China.
| | - Min-Fu Yang
- Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Shanxi Medical University, Taiyuan, 030001, China.
- Department of Nuclear Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China.
| | - Kefei Dou
- State Key Laboratory of Cardiovascular Disease, Beijing, 100037, China.
- Cardiometabolic Medicine Center, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.
| | - Sijin Li
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, 030001, China.
- Shanxi Key Laboratory of Molecular Imaging, Shanxi Medical University, Taiyuan, 030001, China.
- Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Shanxi Medical University, Taiyuan, 030001, China.
| |
Collapse
|
8
|
Rizzo A, Albano D, Elisei F, Racca M, Dondi F, Annunziata S, Cuzzocrea M, Bertagna F, Treglia G. The Potential Role of PSMA-Targeted PET in Salivary Gland Malignancies: An Updated Systematic Review. Diagnostics (Basel) 2024; 14:1516. [PMID: 39061653 PMCID: PMC11275816 DOI: 10.3390/diagnostics14141516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/09/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Recent studies have suggested using positron emission tomography/computed tomography (PET/CT) with prostate-specific membrane antigen (PSMA)-targeting radiopharmaceuticals for the detection of salivary gland malignancies (SGM), particularly adenoid-cystic carcinoma (ACC). METHODS The authors conducted an extensive review of the scientific literature to examine the potential diagnostic role of PET/CT using PSMA-targeting radiopharmaceuticals in salivary gland malignancies (SGMs) and adenoid cystic carcinoma (ACC). This study included newly diagnosed SGM patients and those with disease recurrence in their imaging evaluation. RESULTS This updated systematic review included a total of six studies that examined the diagnostic performance of PSMA-targeted PET/CT in ACC. The articles provided evidence of a high detection rate of PSMA-targeting PET/CT in ACC across all clinical contexts examined. SGMs other than ACC exhibited poorer diagnostic performance. CONCLUSIONS PSMA-targeted PET/CT seems promising in detecting ACC lesions; moreover, PSMA appears to be a suitable potential target for radioligand therapy. Prospective multicentric studies are warranted to strengthen the role of PSMA-targeting radiopharmaceuticals in ACC, as both diagnostic and theragnostic agents.
Collapse
Affiliation(s)
- Alessio Rizzo
- Department of Nuclear Medicine, Candiolo Cancer Institute, FPO—IRCCS, 10060 Turin, Italy; (A.R.); (M.R.)
| | - Domenico Albano
- Division of Nuclear Medicine, Università degli Studi di Brescia and ASST Spedali Civili di Brescia, 25123 Brescia, Italy; (D.A.); (F.D.); (F.B.)
| | - Federica Elisei
- Division of Nuclear Medicine, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy;
| | - Manuela Racca
- Department of Nuclear Medicine, Candiolo Cancer Institute, FPO—IRCCS, 10060 Turin, Italy; (A.R.); (M.R.)
| | - Francesco Dondi
- Division of Nuclear Medicine, Università degli Studi di Brescia and ASST Spedali Civili di Brescia, 25123 Brescia, Italy; (D.A.); (F.D.); (F.B.)
| | - Salvatore Annunziata
- Unità di Medicina Nucleare, TracerGLab, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy;
| | - Marco Cuzzocrea
- Clinic of Nuclear Medicine, Imaging Institute of Southern Switzerland, Ente Ospedaliero Cantonale, 6501 Bellinzona, Switzerland;
| | - Francesco Bertagna
- Division of Nuclear Medicine, Università degli Studi di Brescia and ASST Spedali Civili di Brescia, 25123 Brescia, Italy; (D.A.); (F.D.); (F.B.)
| | - Giorgio Treglia
- Clinic of Nuclear Medicine, Imaging Institute of Southern Switzerland, Ente Ospedaliero Cantonale, 6501 Bellinzona, Switzerland;
- Faculty of Biology and Medicine, University of Lausanne, 1011 Lausanne, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland
| |
Collapse
|
9
|
Rizzo A, Albano D, Dondi F, Cioffi M, Muoio B, Annunziata S, Racca M, Bertagna F, Piccardo A, Treglia G. Diagnostic yield of FAP-guided positron emission tomography in thyroid cancer: a systematic review. Front Med (Lausanne) 2024; 11:1381863. [PMID: 38590320 PMCID: PMC10999586 DOI: 10.3389/fmed.2024.1381863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 02/27/2024] [Indexed: 04/10/2024] Open
Abstract
Background Several recent studies have proposed the possible application of positron emission tomography/computed tomography (PET/CT) administering radiolabelled fibroblast-activation protein (FAP) inhibitors for various forms of thyroid cancer (TC), including differentiated TC (DTC), and medullary TC (MTC). Methods The authors conducted an extensive literature search of original studies examining the effectiveness of FAP-guided PET/CT in patients with TC. The papers included were original publications exploring the use of FAP-targeted molecular imaging in restaging metastatic DTC and MTC patients. Results A total of 6 studies concerning the diagnostic yield of FAP-targeted PET/CT in TC (274 patients, of which 247 DTC and 27 MTC) were included in this systematic review. The included articles reported high values of FAP-targeted PET/CT detection rates in TC, ranging from 81 to 100% in different anatomical sites and overall superior to the comparative imaging method. Conclusion Although there are promising results, the existing literature on the diagnostic accuracy of FAP-guided PET in this context is still quite limited. To thoroughly evaluate its potential significance in TC patients, it is needed to conduct prospective randomized multicentric trials.
Collapse
Affiliation(s)
- Alessio Rizzo
- Department of Nuclear Medicine, Candiolo Cancer Institute, FPO – IRCCS, Turin, Italy
| | - Domenico Albano
- Division of Nuclear Medicine, Università degli Studi di Brescia and ASST Spedali Civili di Brescia, Brescia, Italy
| | - Francesco Dondi
- Division of Nuclear Medicine, Università degli Studi di Brescia and ASST Spedali Civili di Brescia, Brescia, Italy
| | - Martina Cioffi
- Nuclear Medicine Unit, Department of Medical Sciences, AOU Città della Salute e della Scienza, University of Turin, Turin, Italy
| | - Barbara Muoio
- Clinic of Medical Oncology, Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
| | - Salvatore Annunziata
- Unità di Medicina Nucleare, GSTeP Radiopharmacy - TracerGLab, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | - Manuela Racca
- Department of Nuclear Medicine, Candiolo Cancer Institute, FPO – IRCCS, Turin, Italy
| | - Francesco Bertagna
- Division of Nuclear Medicine, Università degli Studi di Brescia and ASST Spedali Civili di Brescia, Brescia, Italy
| | - Arnoldo Piccardo
- Department of Nuclear Medicine, E.O. “Ospedali Galliera,” Genoa, Italy
| | - Giorgio Treglia
- Clinic of Nuclear Medicine, Imaging Institute of Southern Switzerland, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
- Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| |
Collapse
|
10
|
Bendre S, Merkens H, Kuo HT, Ng P, Wong AAWL, Lau WS, Zhang Z, Kurkowska S, Chen CC, Uribe C, Bénard F, Lin KS. Development, preclinical evaluation and preliminary dosimetry profiling of SB03178, a first-of-its-kind benzo[h]quinoline-based fibroblast activation protein-α-targeted radiotheranostic for cancer imaging and therapy. Eur J Med Chem 2024; 268:116238. [PMID: 38367492 DOI: 10.1016/j.ejmech.2024.116238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/03/2024] [Accepted: 02/12/2024] [Indexed: 02/19/2024]
Abstract
Fibroblast activation protein-α (FAP) is a marker of cancer-associated fibroblasts (CAFs) that constitute a significant portion of most carcinomas. Since it plays a critical role in tumor growth and metastasis, its timely detection to identify tumor lesions in early developmental stages using targeted radiopharmaceuticals has gained significant impetus. In the present work, two novel FAP-targeted precursors SB03178 and SB04033 comprising of an atypical benzo[h]quinoline construct were synthesized and either chelated to diagnostic radionuclide gallium-68 or therapeutic radionuclide lutetium-177, with ≥90% radiochemical purities and 22-76% decay-corrected radiochemical yields. natGa-labeled complexes displayed dose-dependent FAP inhibition, with binding potency of natGa-SB03178 being ∼17 times higher than natGa-SB04033. To evaluate their pharmacokinetic profiles, PET imaging and ex vivo biodistribution analyses were executed in FAP-overexpressing HEK293T:hFAP tumor-bearing mice. While both tracers displayed clear tumor visualization that was primarily FAP-arbitrated, with negligible uptake in most peripheral tissues, [68Ga]Ga-SB03178 demonstrated higher tumor uptake and superior tumor-to-background contrast ratios than [68Ga]Ga-SB04033. 177Lu-labeled SB03178 was subjected to tumor retention studies, mouse dosimetry profiling and mouse-to-human dose extrapolations also using the HEK293T:hFAP tumor model. [177Lu]Lu-SB03178 exhibited a combination of high and sustained tumor uptake, with excellent tumor-to-critical organ uptake ratios resulting in a high radiation absorbed dose to the tumor and a low estimated whole-body dose to humans. Our preliminary findings are considerably encouraging to support clinical development of [68Ga]Ga-/[177Lu]Lu-SB03178 theranostic pair for use in a vast majority of FAP-overexpressing neoplasms, particularly carcinomas.
Collapse
Affiliation(s)
- Shreya Bendre
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC, V5Z1L3, Canada
| | - Helen Merkens
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC, V5Z1L3, Canada
| | - Hsiou-Ting Kuo
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC, V5Z1L3, Canada
| | - Pauline Ng
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC, V5Z1L3, Canada
| | - Antonio A W L Wong
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC, V5Z1L3, Canada
| | - Wing Sum Lau
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC, V5Z1L3, Canada
| | - Zhengxing Zhang
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC, V5Z1L3, Canada
| | - Sara Kurkowska
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, V5Z1L3, Canada
| | - Chao-Cheng Chen
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC, V5Z1L3, Canada
| | - Carlos Uribe
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, V5Z1L3, Canada; Department of Molecular Imaging and Therapy, BC Cancer, Vancouver, BC, V5Z4E6, Canada; Department of Radiology, University of British Columbia, Vancouver, BC, V5Z1M9, Canada
| | - François Bénard
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC, V5Z1L3, Canada; Department of Molecular Imaging and Therapy, BC Cancer, Vancouver, BC, V5Z4E6, Canada; Department of Radiology, University of British Columbia, Vancouver, BC, V5Z1M9, Canada
| | - Kuo-Shyan Lin
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC, V5Z1L3, Canada; Department of Molecular Imaging and Therapy, BC Cancer, Vancouver, BC, V5Z4E6, Canada; Department of Radiology, University of British Columbia, Vancouver, BC, V5Z1M9, Canada.
| |
Collapse
|
11
|
Ergül N, Çermik TF, Alçın G, Arslan E, Erol Fenercioğlu Ö, Beyhan E, Şahin R, Baloğlu MC, Baykal Koca S, Türkay R, Yücetaş U. Contribution of 68 Ga-DOTA-FAPI-04 PET/CT to Prostate Cancer Imaging : Complementary Role in PSMA-Negative Cases. Clin Nucl Med 2024; 49:e105-e110. [PMID: 38271254 DOI: 10.1097/rlu.0000000000005064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
PURPOSE Prostate-specific membrane antigen (PSMA)-targeted PET/CT is a well-established imaging method in prostate cancer (PC) for both staging and restaging, and also for theranostic applications. An alternative imaging method is crucial for 15% PSMA-negative cases. We aimed to investigate the contribution of 68 Ga-DOTA-FAPI-04 PET/CT to PC imaging. PATIENTS AND METHODS Thirty-six patients diagnosed with PC were included. Patients underwent both 68 Ga-PSMA PET/CT and 68 Ga-DOTA-FAPI-04 PET/CT imaging within 1 week. In staging group, primary tumor uptake values were compared, and also correlations were done with histopathological findings, MRI findings, and total PSA levels. In biochemical recurrence group, the uptake values in prostatic region and metastases were evaluated to define the local recurrence or metastatic disease. RESULTS In staging group, PSMA PET showed increased uptake in the primary lesion area in 14/27 (52%) patients, whereas 20/27 (74%) patients were positive in FAPI-04 PET. FAPI-04 positivity was found to be quite high, such as 54%, in PSMA-negative patients. A significant difference was observed between ISUP grade 1-3 patients and ISUP grade 4-5 patients in FAPI-04 PET ( P = 0.03). Local recurrence was detected in 3 patients, pelvic lymph node metastasis in 1 patient, and sacrum metastasis in 1 patient in biochemical recurrence group, and all of the lesions had more intense uptake in PSMA PET than FAPI-04 PET. CONCLUSIONS FAPI PET imaging seems to have a potential to contribute PSMA PET imaging with FAPI positivity in more than half of PSMA-negative cases. Also, FAPI-targeted radionuclide therapy may be a promising method in patients resistant to PSMA-targeted therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Mehmnet Can Baloğlu
- Pathology, Istanbul Training and Research Hospital, University of Health Sciences
| | - Sevim Baykal Koca
- Pathology, Istanbul Training and Research Hospital, University of Health Sciences
| | - Rüştü Türkay
- Clinic of Radiology, Haseki Training and Research Hospital, University of Health Sciences
| | - Uğur Yücetaş
- Clinic of Urology, Istanbul Training and Research Hospital, University of Health Sciences, Istanbul, Türkiye
| |
Collapse
|
12
|
Verena A, Merkens H, Chen CC, Chapple DE, Wang L, Bendre S, Wong AAWL, Bénard F, Lin KS. Synthesis and Preclinical Evaluation of Two Novel 68Ga-Labeled Bispecific PSMA/FAP-Targeted Tracers with 2-Nal-Containing PSMA-Targeted Pharmacophore and Pyridine-Based FAP-Targeted Pharmacophore. Molecules 2024; 29:800. [PMID: 38398552 PMCID: PMC10892057 DOI: 10.3390/molecules29040800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Some bispecific radiotracers have been developed to overcome the limitations of monospecific tracers and improve detection sensitivity for heterogeneous tumor lesions. Here, we aim to synthesize two bispecific tracers targeting prostate-specific membrane antigen (PSMA) and fibroblast activation protein (FAP), which are key markers expressed in prostate cancer. A pyridine-based FAP-targeted ligand was synthesized through multi-step organic synthesis and then connected to the 2-Nal-containing PSMA-targeted motif. The Ki(PSMA) values of Ga-complexed bispecific ligands, Ga-AV01084 and Ga-AV01088, were 11.6 ± 3.25 and 28.7 ± 6.05 nM, respectively, and the IC50(FAP) values of Ga-AV01084 and Ga-AV01088 were 10.9 ± 0.67 and 16.7 ± 1.53 nM, respectively. Both [68Ga]Ga-AV01084 and [68Ga]Ga-AV01088 enabled the visualization of PSMA-expressing LNCaP tumor xenografts and FAP-expressing HEK293T:hFAP tumor xenografts in PET images acquired at 1 h post-injection. However, the tumor uptake values from the bispecific tracers were still lower than those obtained from the monospecific tracers, PSMA-targeted [68Ga]Ga-PSMA-617 and FAP-targeted [68Ga]Ga-AV02070. Further investigations are needed to optimize the selection of linkers and targeted pharmacophores to improve the tumor uptake of bispecific PSMA/FAP tracers for prostate cancer imaging.
Collapse
Affiliation(s)
- Arsyangela Verena
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC V5Z1L3, Canada; (A.V.); (H.M.); (C.-C.C.); (D.E.C.); (L.W.); (S.B.); (A.A.W.L.W.); (F.B.)
| | - Helen Merkens
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC V5Z1L3, Canada; (A.V.); (H.M.); (C.-C.C.); (D.E.C.); (L.W.); (S.B.); (A.A.W.L.W.); (F.B.)
| | - Chao-Cheng Chen
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC V5Z1L3, Canada; (A.V.); (H.M.); (C.-C.C.); (D.E.C.); (L.W.); (S.B.); (A.A.W.L.W.); (F.B.)
| | - Devon E. Chapple
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC V5Z1L3, Canada; (A.V.); (H.M.); (C.-C.C.); (D.E.C.); (L.W.); (S.B.); (A.A.W.L.W.); (F.B.)
| | - Lei Wang
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC V5Z1L3, Canada; (A.V.); (H.M.); (C.-C.C.); (D.E.C.); (L.W.); (S.B.); (A.A.W.L.W.); (F.B.)
| | - Shreya Bendre
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC V5Z1L3, Canada; (A.V.); (H.M.); (C.-C.C.); (D.E.C.); (L.W.); (S.B.); (A.A.W.L.W.); (F.B.)
| | - Antonio A. W. L. Wong
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC V5Z1L3, Canada; (A.V.); (H.M.); (C.-C.C.); (D.E.C.); (L.W.); (S.B.); (A.A.W.L.W.); (F.B.)
| | - François Bénard
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC V5Z1L3, Canada; (A.V.); (H.M.); (C.-C.C.); (D.E.C.); (L.W.); (S.B.); (A.A.W.L.W.); (F.B.)
- Department of Molecular Imaging and Therapy, BC Cancer, Vancouver, BC V5Z4E6, Canada
- Department of Radiology, University of British Columbia, Vancouver, BC V5Z1M9, Canada
| | - Kuo-Shyan Lin
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC V5Z1L3, Canada; (A.V.); (H.M.); (C.-C.C.); (D.E.C.); (L.W.); (S.B.); (A.A.W.L.W.); (F.B.)
- Department of Molecular Imaging and Therapy, BC Cancer, Vancouver, BC V5Z4E6, Canada
- Department of Radiology, University of British Columbia, Vancouver, BC V5Z1M9, Canada
| |
Collapse
|
13
|
Rizzo A, Miceli A, Racca M, Bauckneht M, Morbelli S, Albano D, Dondi F, Bertagna F, Galizia D, Muoio B, Annunziata S, Treglia G. Diagnostic Accuracy of [ 68Ga]Ga Labeled Fibroblast-Activation Protein Inhibitors in Detecting Head and Neck Cancer Lesions Using Positron Emission Tomography: A Systematic Review and a Meta-Analysis. Pharmaceuticals (Basel) 2023; 16:1664. [PMID: 38139791 PMCID: PMC10748043 DOI: 10.3390/ph16121664] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/26/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
Several studies have examined the use of positron emission tomography (PET) using [68Ga]Ga-radiolabeled fibroblast-activation protein inhibitors (FAPi) across multiple subtypes of head and neck cancer (HNC). The purpose of the present study was to evaluate the diagnostic accuracy of a newly developed molecular imaging approach in the context of HNC through a comprehensive review and meta-analysis. A thorough literature review was conducted to identify scholarly articles about the diagnostic effectiveness of FAP-targeted PET imaging. The present study incorporates original publications assessing the efficacy of this innovative molecular imaging test in both newly diagnosed and previously treated HNC patients. This systematic review examined eleven investigations, of which nine were deemed suitable for inclusion in the subsequent meta-analysis. The quantitative synthesis yielded a pooled detection rate of 99% for primary HNC lesions. Additionally, on a per patient-based analysis, the pooled sensitivity and specificity for regional lymph node metastases were found to be 90% and 84%, respectively. The analysis revealed a statistical heterogeneity among the studies for the detection rate of primary HNC lesions. The quantitative findings presented in this study indicate a favorable diagnostic performance of FAP-targeted PET imaging in detecting primary HNC tumors. In contrast, discordant results concerning the diagnostic accuracy of lymph node metastases were found. However, further multicentric trials are required to validate the efficacy of FAP-targeted PET in this specific group of patients.
Collapse
Affiliation(s)
- Alessio Rizzo
- Department of Nuclear Medicine, Candiolo Cancer Institute, FPO–IRCCS, 10060 Turin, Italy; (A.R.); (M.R.)
| | - Alberto Miceli
- Nuclear Medicine Unit, Azienda Ospedaliera SS. Antonio e Biagio e Cesare Arrigo, 15121 Alessandria, Italy;
| | - Manuela Racca
- Department of Nuclear Medicine, Candiolo Cancer Institute, FPO–IRCCS, 10060 Turin, Italy; (A.R.); (M.R.)
| | - Matteo Bauckneht
- Division of Nuclear Medicine, IRCCS Ospedale Policlinico San Martino, 16131 Genova, Italy; (M.B.); (S.M.)
- Department of Health Sciences (DISSAL), University of Genova, 16131 Genova, Italy
| | - Silvia Morbelli
- Division of Nuclear Medicine, IRCCS Ospedale Policlinico San Martino, 16131 Genova, Italy; (M.B.); (S.M.)
- Department of Health Sciences (DISSAL), University of Genova, 16131 Genova, Italy
| | - Domenico Albano
- Division of Nuclear Medicine, Università degli Studi di Brescia and ASST Spedali Civili di Brescia, 25123 Brescia, Italy; (D.A.); (F.D.); (F.B.)
| | - Francesco Dondi
- Division of Nuclear Medicine, Università degli Studi di Brescia and ASST Spedali Civili di Brescia, 25123 Brescia, Italy; (D.A.); (F.D.); (F.B.)
| | - Francesco Bertagna
- Division of Nuclear Medicine, Università degli Studi di Brescia and ASST Spedali Civili di Brescia, 25123 Brescia, Italy; (D.A.); (F.D.); (F.B.)
| | - Danilo Galizia
- SC Oncologia Area Nord ASL CN1, 12038 Savigliano, Italy;
| | - Barbara Muoio
- Division of Medical Oncology, Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale, 6501 Bellinzona, Switzerland;
| | - Salvatore Annunziata
- Unità di Medicina Nucleare, GSTeP Radiopharmacy–TracerGLab, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy;
| | - Giorgio Treglia
- Clinic of Nuclear Medicine, Imaging Institute of Southern Switzerland, Ente Ospedaliero Cantonale, 6501 Bellinzona, Switzerland
- Faculty of Biology and Medicine, University of Lausanne, 1011 Lausanne, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland
| |
Collapse
|
14
|
Echavidre W, Fagret D, Faraggi M, Picco V, Montemagno C. Recent Pre-Clinical Advancements in Nuclear Medicine: Pioneering the Path to a Limitless Future. Cancers (Basel) 2023; 15:4839. [PMID: 37835533 PMCID: PMC10572076 DOI: 10.3390/cancers15194839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 10/15/2023] Open
Abstract
The theranostic approach in oncology holds significant importance in personalized medicine and stands as an exciting field of molecular medicine. Significant achievements have been made in this field in recent decades, particularly in treating neuroendocrine tumors using 177-Lu-radiolabeled somatostatin analogs and, more recently, in addressing prostate cancer through prostate-specific-membrane-antigen targeted radionuclide therapy. The promising clinical results obtained in these indications paved the way for the further development of this approach. With the continuous discovery of new molecular players in tumorigenesis, the development of novel radiopharmaceuticals, and the potential combination of theranostics agents with immunotherapy, nuclear medicine is poised for significant advancements. The strategy of theranostics in oncology can be categorized into (1) repurposing nuclear medicine agents for other indications, (2) improving existing radiopharmaceuticals, and (3) developing new theranostics agents for tumor-specific antigens. In this review, we provide an overview of theranostic development and shed light on its potential integration into combined treatment strategies.
Collapse
Affiliation(s)
- William Echavidre
- Biomedical Department, Centre Scientifique de Monaco, 98000 Monaco, Monaco; (W.E.); (V.P.)
| | - Daniel Fagret
- Laboratory of Bioclinical Radiopharmaceutics, Universite Grenoble Alpes, CHU Grenoble Alpes, Inserm, 38000 Grenoble, France;
| | - Marc Faraggi
- Nuclear Medicine Department, Centre Hospitalier Princesse Grace, 98000 Monaco, Monaco;
| | - Vincent Picco
- Biomedical Department, Centre Scientifique de Monaco, 98000 Monaco, Monaco; (W.E.); (V.P.)
| | - Christopher Montemagno
- Biomedical Department, Centre Scientifique de Monaco, 98000 Monaco, Monaco; (W.E.); (V.P.)
| |
Collapse
|
15
|
Zha Z, Ploessl K, Choi SR, Zhao R, Jin W, Wang R, Alexoff D, Zhu L, Kung HF. Lu-177-Labeled Hetero-Bivalent Agents Targeting PSMA and Bone Metastases for Radionuclide Therapy. J Med Chem 2023; 66:12602-12613. [PMID: 37670407 DOI: 10.1021/acs.jmedchem.3c01294] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
Prostate-specific membrane antigen (PSMA) is an excellent target for imaging and radionuclide therapy of prostate cancer. Recently, [177Lu]Lu-PSMA-617 (Pluvicto) was approved by the FDA for radionuclide therapy. To develop hetero-bivalent agents targeting both PSMA and bone metastasis, [177Lu]Lu-P17-079 ([177Lu]Lu-1) and [177Lu]Lu-P17-081 ([177Lu]Lu-2) were prepared. In vivo biodistribution studies of [177Lu]Lu-PSMA-617, [177Lu]Lu-1, and [177Lu]Lu-2 in mice bearing PC3-PIP (PSMA positive) tumor showed high uptake in PSMA-positive tumor (14.5, 14.7, and 11.3% ID/g at 1 h, respectively) and distinctively different bone uptakes (0.52, 6.52, and 5.82% ID/g at 1 h, respectively). PET imaging using [68Ga]Ga-P17-079 ([68Ga]Ga-1) in the same mouse model displayed excellent images confirming the expected dual-targeting to PSMA-positive tumor and bone. Results suggest that [177Lu]Lu-P17-079 ([177Lu]Lu-1) is a promising candidate for further development as a hetero-bivalent radionuclide therapy agent targeting both PSMA expression and bone metastases for the treatment of prostate cancer.
Collapse
Affiliation(s)
- Zhihao Zha
- Five Eleven Pharma Inc., Philadelphia, Pennsylvania 19104, United States
| | - Karl Ploessl
- Five Eleven Pharma Inc., Philadelphia, Pennsylvania 19104, United States
| | - Seok Rye Choi
- Five Eleven Pharma Inc., Philadelphia, Pennsylvania 19104, United States
| | - Ruiyue Zhao
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Wenbin Jin
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Ran Wang
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - David Alexoff
- Five Eleven Pharma Inc., Philadelphia, Pennsylvania 19104, United States
| | - Lin Zhu
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Hank F Kung
- Five Eleven Pharma Inc., Philadelphia, Pennsylvania 19104, United States
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
16
|
Bendre S, Kuo HT, Merkens H, Zhang Z, Wong AAWL, Bénard F, Lin KS. Synthesis and Preclinical Evaluation of Novel 68Ga-Labeled ( R)-Pyrrolidin-2-yl-boronic Acid-Based PET Tracers for Fibroblast Activation Protein-Targeted Cancer Imaging. Pharmaceuticals (Basel) 2023; 16:798. [PMID: 37375746 DOI: 10.3390/ph16060798] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/20/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
Fibroblast activation protein (FAP) is a membrane-tethered serine protease overexpressed in the reactive stromal fibroblasts of >90% human carcinomas, which makes it a promising target for developing radiopharmaceuticals for the imaging and therapy of carcinomas. Here, we synthesized two novel (R)-pyrrolidin-2-yl-boronic acid-based FAP-targeted ligands: SB02055 (DOTA-conjugated (R)-(1-((6-(3-(piperazin-1-yl)propoxy)quinoline-4-carbonyl)glycyl)pyrrolidin-2-yl)boronic acid) and SB04028 (DOTA-conjugated ((R)-1-((6-(3-(piperazin-1-yl)propoxy)quinoline-4-carbonyl)-D-alanyl)pyrrolidin-2-yl)boronic acid). natGa- and 68Ga-complexes of both ligands were evaluated in preclinical studies and compared to previously reported natGa/68Ga-complexed PNT6555. Enzymatic assays showed that FAP binding affinities (IC50) of natGa-SB02055, natGa-SB04028 and natGa-PNT6555 were 0.41 ± 0.06, 13.9 ± 1.29 and 78.1 ± 4.59 nM, respectively. PET imaging and biodistribution studies in HEK293T:hFAP tumor-bearing mice showed that while [68Ga]Ga-SB02055 presented with a nominal tumor uptake (1.08 ± 0.37 %ID/g), [68Ga]Ga-SB04028 demonstrated clear tumor visualization with ~1.5-fold higher tumor uptake (10.1 ± 0.42 %ID/g) compared to [68Ga]Ga-PNT6555 (6.38 ± 0.45 %ID/g). High accumulation in the bladder indicated renal excretion of all three tracers. [68Ga]Ga-SB04028 displayed a low background level uptake in most normal organs, and comparable to [68Ga]Ga-PNT6555. However, since its tumor uptake was considerably higher than [68Ga]Ga-PNT6555, the corresponding tumor-to-organ uptake ratios for [68Ga]Ga-SB04028 were also significantly greater than [68Ga]Ga-PNT6555. Our data demonstrate that (R)-(((quinoline-4-carbonyl)-d-alanyl)pyrrolidin-2-yl)boronic acid is a promising pharmacophore for the design of FAP-targeted radiopharmaceuticals for cancer imaging and radioligand therapy.
Collapse
Affiliation(s)
- Shreya Bendre
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
| | - Hsiou-Ting Kuo
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
| | - Helen Merkens
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
| | - Zhengxing Zhang
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
| | - Antonio A W L Wong
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
| | - François Bénard
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
- Department of Functional Imaging, BC Cancer Research Institute, Vancouver, BC V5Z 4E6, Canada
- Department of Radiology, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Kuo-Shyan Lin
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
- Department of Functional Imaging, BC Cancer Research Institute, Vancouver, BC V5Z 4E6, Canada
- Department of Radiology, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| |
Collapse
|
17
|
Bendre S, Zhang Z, Colpo N, Zeisler J, Wong AAWL, Bénard F, Lin KS. Synthesis and Evaluation of 68Ga-Labeled (2 S,4 S)-4-Fluoropyrrolidine-2-Carbonitrile and (4 R)-Thiazolidine-4-Carbonitrile Derivatives as Novel Fibroblast Activation Protein-Targeted PET Tracers for Cancer Imaging. Molecules 2023; 28:molecules28083481. [PMID: 37110717 PMCID: PMC10145249 DOI: 10.3390/molecules28083481] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/08/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Fibroblast activation protein α (FAP-α) is a cell-surface protein overexpressed on cancer-associated fibroblasts that constitute a substantial component of tumor stroma and drive tumorigenesis. FAP is minimally expressed by most healthy tissues, including normal fibroblasts. This makes it a promising pan-cancer diagnostic and therapeutic target. In the present study, we synthesized two novel tracers, [68Ga]Ga-SB03045 and [68Ga]Ga-SB03058, bearing a (2S,4S)-4-fluoropyrrolidine-2-carbonitrile or a (4R)-thiazolidine-4-carbonitrile pharmacophore, respectively. [68Ga]Ga-SB03045 and [68Ga]Ga-SB03058 were evaluated for their FAP-targeting capabilities using substrate-based in vitro binding assays, and in PET/CT imaging and ex vivo biodistribution studies in an HEK293T:hFAP tumor xenograft mouse model. The IC50 values of natGa-SB03045 (1.59 ± 0.45 nM) and natGa-SB03058 (0.68 ± 0.09 nM) were found to be lower than those of the clinically validated natGa-FAPI-04 (4.11 ± 1.42 nM). Contrary to the results obtained in the FAP-binding assay, [68Ga]Ga-SB03058 demonstrated a ~1.5 fold lower tumor uptake than that of [68Ga]Ga-FAPI-04 (7.93 ± 1.33 vs. 11.90 ± 2.17 %ID/g), whereas [68Ga]Ga-SB03045 (11.8 ± 2.35 %ID/g) exhibited a tumor uptake comparable to that of [68Ga]Ga-FAPI-04. Thus, our data suggest that the (2S,4S)-4-fluoropyrrolidine-2-carbonitrile scaffold holds potential as a promising pharmacophore for the design of FAP-targeted radioligands for cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Shreya Bendre
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
| | - Zhengxing Zhang
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
| | - Nadine Colpo
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
| | - Jutta Zeisler
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
| | - Antonio A W L Wong
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
| | - François Bénard
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
- Department of Functional Imaging, BC Cancer, Vancouver, BC V5Z 4E6, Canada
- Department of Radiology, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Kuo-Shyan Lin
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
- Department of Functional Imaging, BC Cancer, Vancouver, BC V5Z 4E6, Canada
- Department of Radiology, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| |
Collapse
|
18
|
Novel 68Ga-Labeled Pyridine-Based Fibroblast Activation Protein-Targeted Tracers with High Tumor-to-Background Contrast. Pharmaceuticals (Basel) 2023; 16:ph16030449. [PMID: 36986548 PMCID: PMC10057391 DOI: 10.3390/ph16030449] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/11/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
Compared to quinoline-based fibroblast activation protein (FAP)-targeted radiotracers, pyridine-based FAP-targeted tracers are expected to have faster pharmacokinetics due to their smaller molecular size and higher hydrophilicity, which we hypothesize would improve the tumor-to-background image contrast. We aim to develop 68Ga-labeled pyridine-based FAP-targeted tracers for cancer imaging with positron emission tomography (PET), and compare their imaging potential with the clinically validated [68Ga]Ga-FAPI-04. Two DOTA-conjugated pyridine-based AV02053 and AV02070 were synthesized through multi-step organic synthesis. IC50(FAP) values of Ga-AV02053 and Ga-AV02070 were determined by an enzymatic assay to be 187 ± 52.0 and 17.1 ± 4.60 nM, respectively. PET imaging and biodistribution studies were conducted in HEK293T:hFAP tumor-bearing mice at 1 h post-injection. The HEK293T:hFAP tumor xenografts were clearly visualized with good contrast on PET images by [68Ga]Ga-AV02053 and [68Ga]Ga-AV02070, and both tracers were excreted mainly through the renal pathway. The tumor uptake values of [68Ga]Ga-AV02070 (7.93 ± 1.88%ID/g) and [68Ga]Ga-AV02053 (5.6 ± 1.12%ID/g) were lower than that of previously reported [68Ga]Ga-FAPI-04 (12.5 ± 2.00%ID/g). However, both [68Ga]Ga-AV02070 and [68Ga]Ga-AV02053 showed higher tumor-to-background (blood, muscle, and bone) uptake ratios than [68Ga]Ga-FAPI-04. Our data suggests that pyridine-based pharmacophores are promising for the design of FAP-targeted tracers. Future optimization on the selection of a linker will be explored to increase tumor uptake while maintaining or even further improving the high tumor-to-background contrast.
Collapse
|