1
|
Kozioł Ł, Knap M, Sutor-Świeży K, Górska R, Dziedzic E, Bieniasz M, Mielczarek P, Popenda Ł, Tyszka-Czochara M, Wybraniec S. Identification and reactivity of pigments in prominent vegetable leaves of Basella alba L. var. 'Rubra' (Malabar spinach). Food Chem 2024; 445:138714. [PMID: 38394904 DOI: 10.1016/j.foodchem.2024.138714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/28/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024]
Abstract
The unique profiles of betacyanins as well as their stability and antioxidant activity in purple leaf extracts of the fast-growing, soft-stemmed vine Basella alba L. var. 'Rubra', known as Malabar spinach, are partly characterized for the first time. The distribution of gomphrenin and its acylated derivatives in the leaves is completely different from the profiles of the pigments in the fruits. The most abundant acylated pigment in leaves (24%) turned out 6'-O-E-sinapoyl-gomphrenin (gandolin), however, the most significant difference in the pigment profiles is a presence of two novel pigments tentatively identified as highly abundant 6'-O-(3,4-dimethoxy-E-cinnamoyl)-gomphrenin and 6'-O-(3,4,5-trimethoxy-E-cinnamoyl)-gomphrenin as well as their isoforms. Significant degradation of the pigments in the fruit extracts under the impact of selected metal cations and UV-Vis irradiation as well as high protective activity of the leaf extract matrix were observed. Partial chromatographic purification of the leaf extract resulted in an increase of the pigment concentration which was correlated positively with the increased antioxidant activity of obtained fractions.
Collapse
Affiliation(s)
- Łukasz Kozioł
- Department C-1, Faculty of Chemical Engineering and Technology, Cracow University of Technology, ul. Warszawska 24, 31-155 Krakow, Poland
| | - Mateusz Knap
- Department C-1, Faculty of Chemical Engineering and Technology, Cracow University of Technology, ul. Warszawska 24, 31-155 Krakow, Poland
| | - Katarzyna Sutor-Świeży
- Department C-1, Faculty of Chemical Engineering and Technology, Cracow University of Technology, ul. Warszawska 24, 31-155 Krakow, Poland
| | - Renata Górska
- Department C-1, Faculty of Chemical Engineering and Technology, Cracow University of Technology, ul. Warszawska 24, 31-155 Krakow, Poland
| | - Ewa Dziedzic
- Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, al. 29 Listopada 54, 31-425 Krakow, Poland
| | - Monika Bieniasz
- Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, al. 29 Listopada 54, 31-425 Krakow, Poland
| | - Przemysław Mielczarek
- Department of Analytical Chemistry and Biochemistry, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, al. Adama Mickiewicza 30, 30-059 Krakow, Poland; Laboratory of Proteomics and Mass Spectrometry, Maj Institute of Pharmacology, Polish Academy of Sciences, ul. Smętna 12, 31-343 Krakow, Poland
| | - Łukasz Popenda
- NanoBioMedical Centre, Adam Mickiewicz University, ul. Wszechnicy Piastowskiej 3, 61-614 Poznan, Poland
| | | | - Sławomir Wybraniec
- Department C-1, Faculty of Chemical Engineering and Technology, Cracow University of Technology, ul. Warszawska 24, 31-155 Krakow, Poland.
| |
Collapse
|
2
|
Araujo-León JA, Sánchez-del Pino I, Ortiz-Andrade R, Hidalgo-Figueroa S, Carrera-Lanestosa A, Brito-Argáez LG, González-Sánchez A, Giácoman-Vallejos G, Hernández-Abreu O, Peraza-Sánchez SR, Xingú-López A, Aguilar-Hernández V. HPLC-Based Metabolomic Analysis and Characterization of Amaranthus cruentus Leaf and Inflorescence Extracts for Their Antidiabetic and Antihypertensive Potential. Molecules 2024; 29:2003. [PMID: 38731493 PMCID: PMC11085149 DOI: 10.3390/molecules29092003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/08/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
The aim of this study was to investigate the potential of Amaranthus cruentus flavonoids (quercetin, kaempferol, catechin, hesperetin, naringenin, hesperidin, and naringin), cinnamic acid derivatives (p-coumaric acid, ferulic acid, and caffeic acid), and benzoic acids (vanillic acid and 4-hydroxybenzoic acid) as antioxidants, antidiabetic, and antihypertensive agents. An analytical method for simultaneous quantification of flavonoids, cinnamic acid derivatives, and benzoic acids for metabolomic analysis of leaves and inflorescences from A. cruentus was developed with HPLC-UV-DAD. Evaluation of linearity, limit of detection, limit of quantitation, precision, and recovery was used to validate the analytical method developed. Maximum total flavonoids contents (5.2 mg/g of lyophilized material) and cinnamic acid derivatives contents (0.6 mg/g of lyophilized material) were found in leaves. Using UV-Vis spectrophotometry, the maximum total betacyanin contents (74.4 mg/g of lyophilized material) and betaxanthin contents (31 mg/g of lyophilized material) were found in inflorescences. The leaf extract showed the highest activity in removing DPPH radicals. In vitro antidiabetic activity of extracts was performed with pancreatic α-glucosidase and intestinal α-amylase, and compared to acarbose. Both extracts exhibited a reduction in enzyme activity from 57 to 74%. Furthermore, the in vivo tests on normoglycemic murine models showed improved glucose homeostasis after sucrose load, which was significantly different from the control. In vitro antihypertensive activity of extracts was performed with angiotensin-converting enzyme and contrasted to captopril; both extracts exhibited a reduction of enzyme activity from 53 to 58%. The leaf extract induced a 45% relaxation in an ex vivo aorta model. In the molecular docking analysis, isoamaranthin and isogomphrenin-I showed predictive binding affinity for α-glucosidases (human maltase-glucoamylase and human sucrase-isomaltase), while catechin displayed binding affinity for human angiotensin-converting enzyme. The data from this study highlights the potential of A. cruentus as a functional food.
Collapse
Affiliation(s)
- Jesús Alfredo Araujo-León
- Unidad de Biología Integrativa, Centro de Investigación Científica de Yucatán (CICY), Mérida 97205, Yucatán, Mexico; (J.A.A.-L.); (L.G.B.-A.)
| | - Ivonne Sánchez-del Pino
- Unidad de Recursos Naturales, Centro de Investigación Científica de Yucatán (CICY), Mérida 97205, Yucatán, Mexico;
| | - Rolffy Ortiz-Andrade
- Facultad de Química, Universidad Autónoma de Yucatán (UADY), Mérida 97069, Yucatán, Mexico;
| | - Sergio Hidalgo-Figueroa
- CONAHCyT-División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica A.C., San Luis Potosí 78216, San Luis Potosí, Mexico;
| | - Areli Carrera-Lanestosa
- División Académica de Ciencias Agropecuarias, Universidad Juárez Autónoma de Tabasco (UJAT), Villahermosa 86280, Tabasco, Mexico;
| | - Ligia Guadalupe Brito-Argáez
- Unidad de Biología Integrativa, Centro de Investigación Científica de Yucatán (CICY), Mérida 97205, Yucatán, Mexico; (J.A.A.-L.); (L.G.B.-A.)
| | - Avel González-Sánchez
- Facultad de Ingeniería, Universidad Autónoma de Yucatán (UADY), Mérida 97203, Yucatán, Mexico; (A.G.-S.); (G.G.-V.)
| | - Germán Giácoman-Vallejos
- Facultad de Ingeniería, Universidad Autónoma de Yucatán (UADY), Mérida 97203, Yucatán, Mexico; (A.G.-S.); (G.G.-V.)
| | - Oswaldo Hernández-Abreu
- Centro de Investigación de Ciencia y Tecnología Aplicada de Tabasco, Universidad Juárez Autónoma de Tabasco (UJAT), Cunduacán 86690, Tabasco, Mexico;
| | - Sergio R. Peraza-Sánchez
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán (CICY), Mérida 97205, Yucatán, Mexico; (S.R.P.-S.); (A.X.-L.)
| | - Andrés Xingú-López
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán (CICY), Mérida 97205, Yucatán, Mexico; (S.R.P.-S.); (A.X.-L.)
| | - Víctor Aguilar-Hernández
- Unidad de Biología Integrativa, Centro de Investigación Científica de Yucatán (CICY), Mérida 97205, Yucatán, Mexico; (J.A.A.-L.); (L.G.B.-A.)
| |
Collapse
|
3
|
Sutor-Świeży K, Górska R, Kumorkiewicz-Jamro A, Dziedzic E, Bieniasz M, Mielczarek P, Popenda Ł, Pasternak K, Tyszka-Czochara M, Baj-Krzyworzeka M, Stefańska M, Błyszczuk P, Wybraniec S. Basella alba L. (Malabar Spinach) as an Abundant Source of Betacyanins: Identification, Stability, and Bioactivity Studies on Natural and Processed Fruit Pigments. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:2943-2962. [PMID: 38301126 PMCID: PMC10870984 DOI: 10.1021/acs.jafc.3c06225] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 12/01/2023] [Accepted: 12/15/2023] [Indexed: 02/03/2024]
Abstract
The antioxidant and anti-inflammatory activities of acylated and decarboxylated gomphrenins, as well as Basella alba L. fruit extract, were investigated in relation to gomphrenin, known for its high biological potential. The most abundant natural acylated gomphrenins, namely, 6'-O-E-caffeoyl-gomphrenin (malabarin) and 6'-O-E-4-coumaroyl-gomphrenin (globosin), were isolated from B. alba extract for the studies. In addition, controlled thermal decarboxylation of gomphrenin in the purified B. alba extract at 65-75 °C resulted in the formation of the most prevalent decarboxylated products, including 17-decarboxy-gomphrenin and 2,17-bidecarboxy-gomphrenin, along with their isoforms. The structures of the decarboxylated pigments were confirmed by NMR analyses. Exploring the matrix effect on pigment reactivity revealed a tremendous increase in the stability of all betacyanins after the initial stage of extract purification using a cation exchanger under various conditions. This indicates the removal of a substantial portion of the unfavorable matrix from the extract, which presumably contains reactive species that could otherwise degrade the pigments. Furthermore, the high concentration of citrates played a significant role in favoring the formation of 2-decarboxy-gomphrenin to a considerable extent. In vitro screening experiments revealed that the tested compounds demonstrated strong anti-inflammatory properties in lipopolysaccharide (LPS)-activated human macrophages. This effect encompassed the selective inhibition of cytokine and chemokine release from activated macrophages, modulation of the chemotactic activity of immune cells, and the regulation of tissue remodeling mediators' release.
Collapse
Affiliation(s)
- Katarzyna Sutor-Świeży
- Department
C-1, Faculty of Chemical Engineering and Technology, Cracow University of Technology, ul. Warszawska 24, Krakow 31-155, Poland
| | - Renata Górska
- Department
C-1, Faculty of Chemical Engineering and Technology, Cracow University of Technology, ul. Warszawska 24, Krakow 31-155, Poland
| | - Agnieszka Kumorkiewicz-Jamro
- Department
C-1, Faculty of Chemical Engineering and Technology, Cracow University of Technology, ul. Warszawska 24, Krakow 31-155, Poland
- South
Australian Health and Medical Research Institute, Adelaide 5000, SA, Australia
- Faculty
of Health and Medical Sciences, University
of Adelaide, Adelaide 5000, SA, Australia
| | - Ewa Dziedzic
- Faculty
of Biotechnology and Horticulture, University
of Agriculture in Krakow, al. 29 Listopada 54, Krakow 31-425, Poland
| | - Monika Bieniasz
- Faculty
of Biotechnology and Horticulture, University
of Agriculture in Krakow, al. 29 Listopada 54, Krakow 31-425, Poland
| | - Przemysław Mielczarek
- Department
of Analytical Chemistry and Biochemistry, Faculty of Materials Science
and Ceramics, AGH University of Science
and Technology, al. Adama Mickiewicza 30, Krakow 30-059, Poland
- Laboratory
of Proteomics and Mass Spectrometry, Maj Institute of Pharmacology, Polish Academy of Sciences, ul. Smętna 12, Krakow 31-343, Poland
| | - Łukasz Popenda
- NanoBioMedical
Centre, Adam Mickiewicz University, ul. Wszechnicy Piastowskiej 3, Poznan 61-614, Poland
| | - Karol Pasternak
- Institute
of Bioorganic Chemistry, Polish Academy
of Sciences, ul. Noskowskiego
12/14, Poznan 61-704, Poland
| | | | - Monika Baj-Krzyworzeka
- Faculty
of Medicine, Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Kraków 30-688, Poland
| | - Monika Stefańska
- Faculty
of Medicine, Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Kraków 30-688, Poland
| | - Przemysław Błyszczuk
- Faculty
of Medicine, Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Kraków 30-688, Poland
| | - Sławomir Wybraniec
- Department
C-1, Faculty of Chemical Engineering and Technology, Cracow University of Technology, ul. Warszawska 24, Krakow 31-155, Poland
| |
Collapse
|