1
|
Lei P, Dong C, Shuang S, Li M. Long-term tracking of lysosomal dynamics with highly stable fluorescent probe. Talanta 2024; 280:126707. [PMID: 39146870 DOI: 10.1016/j.talanta.2024.126707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/11/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
Monitoring lysosomal dynamics in real-time, especially in vivo, poses significant challenges due to the complex and dynamic nature of cellular environments. It is extremely important to construct fluorescent probes with high stability for imaging lysosomes to minimize interference from other cellular components, in order to ensure prolonged imaging. A fluorescent probe (PDB) has been proposed for targeting lysosomes, which was less affected to changes in the cellular microenvironment (such as pH, viscosity and polarity). PDB can be easily prepared by 4'-piperazinoacetophenone and 2-(4-diethylamino)-2-hydroxybenzoyl) benzoicacid, containing a piperazine group for labeling and imaging lysosomes and the high pKa value (∼9.35) allowed PDB to efficiently track lysosomes. The emission wavelength of PDB in aqueous solution was 634 nm (λex = 572 nm, Фf = 0.11). The dynamic process of lysosome induced by starvation and rapamycin was successfully explored by fluorescence imaging. Compared with the commercially available Lyso-Tracker green, the high photostability fluorescent probe can ensure 3D high-fidelity tracking and resist photobleaching. Therefore, PDB, unaffected by the cell microenvironment, successfully achieved long-term tracking of lysosomal movement, even enabling imaging in tumor-bearing mice over 11 days. The strong fluorescence signal, high stability, and long-term tracking capability indicate that PDB has tremendous potential in monitoring biological processes.
Collapse
Affiliation(s)
- Peng Lei
- College of Chemistry and Chemical Engineering & Institute of Environmental Science, Shanxi University, Taiyuan, 030006, China
| | - Chuan Dong
- College of Chemistry and Chemical Engineering & Institute of Environmental Science, Shanxi University, Taiyuan, 030006, China
| | - Shaomin Shuang
- College of Chemistry and Chemical Engineering & Institute of Environmental Science, Shanxi University, Taiyuan, 030006, China
| | - Minglu Li
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Shanxi Province Clinical Theranostics Technology Innovation Center for Immunologic and Rheumatic Diseases, Shanxi Province Clinical Research Center for Dermatologic and Immunologic Diseases(Rheumatic diseases), Taiyuan, 030032, China
| |
Collapse
|
2
|
Polishchuk V, Kulinich A, Shandura M. Tetraanionic Oligo-Dioxaborines: Strongly Absorbing Near-Infrared Dyes. Chemistry 2024; 30:e202401097. [PMID: 38624080 DOI: 10.1002/chem.202401097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/10/2024] [Accepted: 04/15/2024] [Indexed: 04/17/2024]
Abstract
Polymethine dyes of tetraanionic nature comprising 1,3,2-dioxaborine rings in the polymethine chain and end-groups of different electron-accepting abilities have been synthesized. They can be considered as oligomeric polymethines, where a linear conjugated π-system passes through three 1,3,2-dioxaborine units and a number of tri- and dimethine π-bridges between two end-groups. The obtained dyes exhibit near-infrared absorption and fluorescence, with molar absorption coefficients reaching as high as 564000 M-1 cm-1 in DMF, rendering them among the strongest absorbers known. The novel compounds are bright NIR fluorophores, with fluorescence quantum yields up to 0.13 in DMF. A comparative analysis of the electronic structure of the obtained dyes with respective dianionic and trianionic oligomers was conducted through quantum chemical calculations.
Collapse
Affiliation(s)
- Vladyslav Polishchuk
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Akademika Kukharya Street 5, 02094, Kyiv, Ukraine
| | - Andrii Kulinich
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Akademika Kukharya Street 5, 02094, Kyiv, Ukraine
| | - Mykola Shandura
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Akademika Kukharya Street 5, 02094, Kyiv, Ukraine
| |
Collapse
|
3
|
Li H, Li XD, Yan CH, Ni ZH, Lü MH, Zou LW, Yang L. Rational design of a near-infrared fluorescent probe for monitoring butyrylcholinesterase activity and its application in development of inhibitors. Front Bioeng Biotechnol 2024; 12:1387146. [PMID: 38638318 PMCID: PMC11024273 DOI: 10.3389/fbioe.2024.1387146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 03/22/2024] [Indexed: 04/20/2024] Open
Abstract
Butyrylcholinesterase (BChE) is widely expressed in multiple tissues and has a vital role in several key human disorders, such as Alzheimer's disease and tumorigenesis. However, the role of BChE in human disorders has not been investigated. Thus, to quantitatively detect and visualize dynamical variations in BChE activity is essential for exploring the biological roles of BChE in the progression of a number of human disorders. Herein, based on the substrate characteristics of BChE, we customized and synthesized three near-infrared (NIR) fluorescent probe substrates with cyanine-skeleton, and finally selected a NIR fluorescence probe substrate named CYBA. The CYBA demonstrated a significant increase in fluorescence when interacting with BChE, but mainly avoided AChE. Upon the addition of BChE, CYBA could be specifically hydrolyzed to TBO, resulting in a significant NIR fluorescence signal enhancement at 710 nm. Systematic evaluation revealed that CYBA exhibited exceptional chemical stability in complex biosamples and possessed remarkable selectivity and sensitivity towards BChE. Moreover, CYBA was successfully applied for real-time imaging of endogenous BChE activity in two types of nerve-related living cells. Additionally, CYBA demonstrated exceptional stability in the detection of complex biological samples in plasma recovery studies (97.51%-104.01%). Furthermore, CYBA was used to construct a high-throughput screening (HTS) method for BChE inhibitors using human plasma as the enzyme source. We evaluated inhibitory effects of a series of natural products and four flavonoids were identified as potent inhibitors of BChE. Collectively, CYBA can serve as a practical tool to track the changes of BChE activity in complicated biological environments due to its excellent capabilities.
Collapse
Affiliation(s)
- Hao Li
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xiao-Dong Li
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chao-Hua Yan
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhen-Hua Ni
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mu-Han Lü
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Li-Wei Zou
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ling Yang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
4
|
Breton V, Nazac P, Boulet D, Danglot L. Molecular mapping of neuronal architecture using STORM microscopy and new fluorescent probes for SMLM imaging. NEUROPHOTONICS 2024; 11:014414. [PMID: 38464866 PMCID: PMC10923464 DOI: 10.1117/1.nph.11.1.014414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/27/2024] [Accepted: 01/31/2024] [Indexed: 03/12/2024]
Abstract
Imaging neuronal architecture has been a recurrent challenge over the years, and the localization of synaptic proteins is a frequent challenge in neuroscience. To quantitatively detect and analyze the structure of synapses, we recently developed free SODA software to detect the association of pre and postsynaptic proteins. To fully take advantage of spatial distribution analysis in complex cells, such as neurons, we also selected some new dyes for plasma membrane labeling. Using Icy SODA plugin, we could detect and analyze synaptic association in both conventional and single molecule localization microscopy, giving access to a molecular map at the nanoscale level. To replace those molecular distributions within the neuronal three-dimensional (3D) shape, we used MemBright probes and 3D STORM analysis to decipher the entire 3D shape of various dendritic spine types at the single-molecule resolution level. We report here the example of synaptic proteins within neuronal mask, but these tools have a broader spectrum of interest since they can be used whatever the proteins or the cellular type. Altogether with SODA plugin, MemBright probes thus provide the perfect toolkit to decipher a nanometric molecular map of proteins within a 3D cellular context.
Collapse
Affiliation(s)
- Victor Breton
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, Membrane Traffic in Healthy and Diseased Brain, Paris, France
| | - Paul Nazac
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, Membrane Traffic in Healthy and Diseased Brain, Paris, France
| | - David Boulet
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, Membrane Traffic in Healthy and Diseased Brain, Paris, France
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, NeurImag Core Facility, Paris, France
| | - Lydia Danglot
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, Membrane Traffic in Healthy and Diseased Brain, Paris, France
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, NeurImag Core Facility, Paris, France
| |
Collapse
|
5
|
Zhu W, Li Q, Gong S, Feng G. Cell membrane targetable NIR fluorescent polarity probe for selective visualization of cancer cells and early tumor. Anal Chim Acta 2023; 1278:341748. [PMID: 37709476 DOI: 10.1016/j.aca.2023.341748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/05/2023] [Accepted: 08/22/2023] [Indexed: 09/16/2023]
Abstract
The development of a sensitive method for early cancer diagnosis is very important because the early diagnosis of cancer is crucial in preventing the spread of cancer cells and improving patient survival rates. Recent studies showed that cancer cell membranes have lower polarity than normal cell membranes, which provides a new approach for cancer diagnosis at the cell membrane level. We developed herein a highly sensitive cell membrane polarity probe (Cal-M) for early diagnosis of cancer. This probe has low cytotoxicity, good photostability, near-infrared (NIR) fluorescence emission (>700 nm), large Stokes shift, high sensitivity for polarity, excellent cell membrane localization performance, and the ability to selectively light up cancer cells. Using this probe staining, the fluorescence of cancer cells is ∼63 times higher than that of normal cells, demonstrating excellent sensitivity and selectivity of Cal-M. This probe was also successfully used to detect polarity changes on cancer cell membranes and selectively visualize tumors in mice. Notably, the tumor could be visualized sensitively with a size as small as 1.37 mm3, indicating that Cal-M is promising for early diagnosis of tumors.
Collapse
Affiliation(s)
- Wenlong Zhu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, 430079, PR China
| | - Qianhua Li
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, 430079, PR China
| | - Shengyi Gong
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, 430079, PR China
| | - Guoqiang Feng
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, 430079, PR China.
| |
Collapse
|
6
|
He Z, Xu K, Li Y, Gao H, Miao T, Zhao R, Huang Y. Molecularly Targeted Fluorescent Sensors for Visualizing and Tracking Cellular Senescence. BIOSENSORS 2023; 13:838. [PMID: 37754071 PMCID: PMC10526510 DOI: 10.3390/bios13090838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/12/2023] [Accepted: 08/20/2023] [Indexed: 09/28/2023]
Abstract
Specific identification and monitoring of senescent cells are essential for the in-depth understanding and regulation of senescence-related life processes and diseases. Fluorescent sensors providing real-time and in situ information with spatiotemporal resolution are unparalleled tools and have contributed greatly to this field. This review focuses on the recent progress in fluorescent sensors for molecularly targeted imaging and real-time tracking of cellular senescence. The molecular design, sensing mechanisms, and biological activities of the sensors are discussed. The sensors are categorized by the types of markers and targeting ligands. Accordingly, their molecular recognition and fluorescent performance towards senescence biomarkers are summarized. Finally, the perspective and challenges in this field are discussed, which are expected to assist future design of next-generation sensors for monitoring cellular senescence.
Collapse
Affiliation(s)
- Zhirong He
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China;
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (K.X.); (Y.L.); (H.G.); (R.Z.)
| | - Kun Xu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (K.X.); (Y.L.); (H.G.); (R.Z.)
- School of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongming Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (K.X.); (Y.L.); (H.G.); (R.Z.)
- School of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Han Gao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (K.X.); (Y.L.); (H.G.); (R.Z.)
- School of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tingting Miao
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China;
| | - Rui Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (K.X.); (Y.L.); (H.G.); (R.Z.)
- School of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanyan Huang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (K.X.); (Y.L.); (H.G.); (R.Z.)
- School of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|