1
|
Sharma A, Sharma A, Dheer D, Sharma RR, Puri V, Bibi S, Shamas A, Memon S, Goyal R, Priyanka, Chopra H. Stem cell transplantation therapy for advanced liver damage-associated neurodegenerative disorders. Int J Surg 2024; 110:6873-6882. [PMID: 39699862 DOI: 10.1097/js9.0000000000002001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 07/15/2024] [Indexed: 12/20/2024]
Abstract
Hepatic encephalopathy and other neurodegenerative disorders have profound implications for extensive liver impairment, calling for new ways of treating the condition. The application of stem cell transplantation to treat these severe disorders is a new and encouraging technique. This review article digs deep into the subject of stem cell transplantation therapy, neurodegenerative disorders associated with advanced liver damage, and liver transplantation. It comprehensively analyses the background, rationale, scope, and objectives of using stem cells to treat such challenging conditions. The topic of discussion includes the subtleties of neurodegenerative disorders, the function of liver transplantation, and the possible advantages and disadvantages associated with it. The relevance of patient selection, intraoperative concerns and post-transplant care is discussed. Further, the article explores how stem cell-based therapies can benefit from nanotechnology, specifically how it can improve stem cell distribution, survival, and integration for better therapeutic results. This review aims to offer a thorough analysis of regenerative medicine's present and future possibilities in dealing with the intricate relationship between neurodegeneration and liver damage. It does this by examining the efficacy, safety, and long-term impacts of stem cell transplantation in treating neurodegenerative disorders associated with advanced liver damage. This will incorporate insights from ongoing clinical trials, the patent landscape, and future directions. The goal is to pave the way for innovative and personalized treatment approaches in this evolving research and clinical practice field. Therefore, these efforts represent a promising frontier in medical research that can alleviate the burden of HE and associated neurological complications combined with liver cirrhosis.
Collapse
Affiliation(s)
- Anjna Sharma
- Chitkara University School of Pharmacy, Chitkara University, Himachal Pradesh
| | - Ameya Sharma
- Chitkara University School of Pharmacy, Chitkara University, Himachal Pradesh
| | - Divya Dheer
- Chitkara University School of Pharmacy, Chitkara University, Himachal Pradesh
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Punjab, India
| | - Raghu Rai Sharma
- Chitkara University School of Pharmacy, Chitkara University, Himachal Pradesh
| | - Vivek Puri
- Chitkara University School of Pharmacy, Chitkara University, Himachal Pradesh
| | - Shabana Bibi
- Department of Biosciences, Shifa Tameer-e-Millat University, Islamabad
| | - Amina Shamas
- Department of Bioinformatics and Biosciences. Capital University of Science and Technology, Islamabad, Pakistan
| | | | - Rajat Goyal
- MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana
| | - Priyanka
- Department of Veterinary Microbiology, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Rampura Phul, Bathinda, Punjab
| | - Hitesh Chopra
- Department of Biosciences, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| |
Collapse
|
2
|
Khodaverdi K, Bakhshi A, Mozafari MR, Naghib SM. A review of chitosan-based nanocarriers as drug delivery systems for brain diseases: Critical challenges, outlooks and promises. Int J Biol Macromol 2024; 278:134962. [PMID: 39179064 DOI: 10.1016/j.ijbiomac.2024.134962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/06/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024]
Abstract
The administration of medicinal drugs orally or systemically limits the treatment of specific central nervous system (CNS) illnesses, such as certain types of brain cancers. These methods can lead to severe adverse reactions and inadequate transport of drugs to the brain, resulting in limited effectiveness. The CNS homeostasis is maintained by various barriers within the brain, such as the endothelial, epithelial, mesothelial, and glial barriers, which strictly control the movement of chemicals, solutes, and immune cells. Brain capillaries consist of endothelial cells (ECs) and perivascular pericytes, with pericytes playing a crucial role in maintaining the blood-brain barrier (BBB), influencing new blood vessel formation, and exhibiting secretory capabilities. This article summarizes the structural components and anatomical characteristics of the BBB. Intranasal administration, a non-invasive method, allows drugs to reach the brain by bypassing the BBB, while direct cerebral administration targets specific brain regions with high concentrations of therapeutic drugs. Technical and mechanical tools now exist to bypass the BBB, enabling the development of more potent and safer medications for neurological disorders. This review also covers clinical trials, formulations, challenges, and patents for a comprehensive perspective.
Collapse
Affiliation(s)
- Khashayar Khodaverdi
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran 1684613114, Iran
| | - Ali Bakhshi
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran 1684613114, Iran; Australasian Nanoscience and Nanotechnology Initiative (ANNI), Monash University LPO, Clayton, VIC 3168, Australia; Biomaterials and Tissue Engineering Research Group, Department of Interdisciplinary Technologies, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - M R Mozafari
- Australasian Nanoscience and Nanotechnology Initiative (ANNI), Monash University LPO, Clayton, VIC 3168, Australia
| | - Seyed Morteza Naghib
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran 1684613114, Iran.
| |
Collapse
|
3
|
Arcambal A, Septembre-Malaterre A, Pesnel S, Morel AL, Gasque P, Begue M, Slama Y. The Potential of Human Pulmonary Mesenchymal Stem Cells as Vectors for Radiosensitizing Metallic Nanoparticles: An In Vitro Study. Cancers (Basel) 2024; 16:3239. [PMID: 39335210 PMCID: PMC11430180 DOI: 10.3390/cancers16183239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/08/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND/OBJECTIVES Metallic nanoparticles (NPs) exhibit interesting radiosensitizing effects, and finding a way to accurately deliver them appears to be crucial. Due to their tumor tropism, mesenchymal stem cells (MSCs) represent a strategic approach. Therefore, we aimed to evaluate the impact of core-shell Fe3O4@Au NPs on the functionality of human pulmonary MSCs (HPMSCs). METHODS/RESULTS The results showed that 100 µg/mL Fe3O4@Au NPs, accumulated in HPMSCs (revealed by Prussian blue staining), did not alter cell viability as assessed by cell counting, MTT, and LDH assays. However, caspase 9 and Bcl2 gene expression, evaluated by RT-qPCR, was regulated 72 h after exposure to the NPs. Moreover, the NPs also decreased proinflammatory cytokine/chemokine secretions, except for CXCL8 (ELISA). These modulations were associated with the downregulation of AMPK gene expression at 24 h. In contrast, the NPs did not modulate VEGF, PI3K, or PDGF gene expression. Nevertheless, a decrease in VEGF secretion was observed after 24 h of exposure to the NPs. Interestingly, the Fe3O4@Au NPs did not modulate Nrf2 gene expression, but they did regulate the expression of the genes encoding Nox4 and HMOX-1. Additionally, the NPs increased ROS production, suggesting a redox imbalance. CONCLUSIONS Finally, the Fe3O4@Au NPs did not affect the HPMSCs' viability or proangiogenic/tumorigenic markers. These findings are encouraging for investigating the effects of Fe3O4@Au NPs delivered by HPMSCs to tumor sites in combination with radiation.
Collapse
Affiliation(s)
- Angélique Arcambal
- Laboratoire Interdisciplinaire de Recherche en Santé (LIRS), RunResearch, Sainte-Clotilde Clinic, 127 Route de Bois de Nèfles, 97400 Saint-Denis, Reunion Island, France
| | - Axelle Septembre-Malaterre
- Unité de Recherche Etudes Pharmaco-Immunologiques (EPI), University of La Réunion, CHU of La Réunion, Felix Guyon Site, Allée des Topazes, SC11021, 97400 Saint-Denis, Reunion Island, France
| | - Sabrina Pesnel
- Torskal Nanosciences, 2 Rue Maxime Rivière, 97490 Sainte-Clotilde, Reunion Island, France
| | - Anne-Laure Morel
- Torskal Nanosciences, 2 Rue Maxime Rivière, 97490 Sainte-Clotilde, Reunion Island, France
| | - Philippe Gasque
- Unité de Recherche Etudes Pharmaco-Immunologiques (EPI), University of La Réunion, CHU of La Réunion, Felix Guyon Site, Allée des Topazes, SC11021, 97400 Saint-Denis, Reunion Island, France
| | - Mickael Begue
- Laboratoire Interdisciplinaire de Recherche en Santé (LIRS), RunResearch, Sainte-Clotilde Clinic, 127 Route de Bois de Nèfles, 97400 Saint-Denis, Reunion Island, France
- Department of Radiotherapy, Sainte-Clotilde Clinic, Clinifutur Group, 127 Route de Bois de Nèfles, 97400 Saint-Denis, Reunion Island, France
| | - Youssef Slama
- Laboratoire Interdisciplinaire de Recherche en Santé (LIRS), RunResearch, Sainte-Clotilde Clinic, 127 Route de Bois de Nèfles, 97400 Saint-Denis, Reunion Island, France
- Unité de Recherche Etudes Pharmaco-Immunologiques (EPI), University of La Réunion, CHU of La Réunion, Felix Guyon Site, Allée des Topazes, SC11021, 97400 Saint-Denis, Reunion Island, France
- Department of Radiotherapy, Sainte-Clotilde Clinic, Clinifutur Group, 127 Route de Bois de Nèfles, 97400 Saint-Denis, Reunion Island, France
| |
Collapse
|
4
|
Thamarai P, Karishma S, Kamalesh R, Shaji A, Saravanan A, Bibi S, Vickram AS, Chopra H, Saleem RA, Alsharif KF, Theyab A, Kamel M, Alamoudi MK, Kumer A, Chopra S, Abdel-Daim MM. Current advancements in nanotechnology for stem cells. Int J Surg 2024; 110:01279778-990000000-01935. [PMID: 39236089 PMCID: PMC11634102 DOI: 10.1097/js9.0000000000002082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 08/27/2024] [Indexed: 09/07/2024]
Abstract
Stem cell therapy has emerged as a promising approach for regenerative medicine, offering potential treatments for a wide range of diseases and injuries. Although stem cell therapy has great promise, several obstacles have prevented its broad clinical adoption. The effectiveness of therapy has been inhibited by problems such as ineffective stem cell differentiation, low post-transplantation survival rates, and restricted control over stem cell behaviour. Furthermore, the implementation of stem cell therapies is further complicated by the possibility of immunological rejection and cancer. Innovative strategies that provide precise control over stem cell characteristics and maximize their therapeutic potential are desperately needed to overcome these obstacles. Recent studies have shown that the effectiveness of stem cell treatments can be greatly increased by nanoscale advances. By establishing an ideal microenvironment and precisely offering growth factors, nanomaterials such as nanoparticles, nanocomposites, and quantum dots have been demonstrated to improve stem cell differentiation and proliferation. This article provides an overview of the recent trends and applications of nanoscale innovations in the context of stem cell therapy. The recent development of precision medicine has been facilitated by the incorporation of nanotechnology into stem cell therapy. The ability to manipulate stem cells at the nanoscale offers unprecedented control over their behavior and function, opening up exciting possibilities for personalized and highly effective therapeutic interventions. This review paper highlights the recent trends and applications of nanotechnology in advancing stem cell therapy, showcasing its potential to revolutionize regenerative medicine.
Collapse
Affiliation(s)
- Packiyam Thamarai
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, India
| | - Suresh Karishma
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, India
| | - Raja Kamalesh
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, India
| | - Alan Shaji
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, India
| | - Anbalagan Saravanan
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, India
| | - Shabana Bibi
- Department of Biosciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | | | - Hitesh Chopra
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Rimah A. Saleem
- Biochemistry and Molecular Medicine College of Medicine Alfaisal University, Riyadh
| | - Khalaf F. Alsharif
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif
| | - Abdulrahman Theyab
- Department of Laboratory & Blood Bank, Security Forces Hospital, Mecca
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Mohamed Kamel
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, Cairo, Egypt
| | - Mariam K. Alamoudi
- Department of Pharmacology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Ajoy Kumer
- Laboratory of Computational Research for Drug Design and Material Science, Department of Chemistry, College of Arts and Sciences, IUBAT – International University of Business Agriculture and Technology, Uttara Model Town, Dhaka, Bangladesh
| | - Shivani Chopra
- Department of Biosciences, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | - Mohamed M. Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, Jeddah, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
5
|
Baig MS, Ahmad A, Pathan RR, Mishra RK. Precision Nanomedicine with Bio-Inspired Nanosystems: Recent Trends and Challenges in Mesenchymal Stem Cells Membrane-Coated Bioengineered Nanocarriers in Targeted Nanotherapeutics. J Xenobiot 2024; 14:827-872. [PMID: 39051343 PMCID: PMC11270309 DOI: 10.3390/jox14030047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/09/2024] [Accepted: 06/15/2024] [Indexed: 07/27/2024] Open
Abstract
In the recent past, the formulation and development of nanocarriers has been elaborated into the broader fields and opened various avenues in their preclinical and clinical applications. In particular, the cellular membrane-based nanoformulations have been formulated to surpass and surmount the limitations and restrictions associated with naïve or free forms of therapeutic compounds and circumvent various physicochemical and immunological barriers including but not limited to systemic barriers, microenvironmental roadblocks, and other cellular or subcellular hinderances-which are quite heterogeneous throughout the diseases and patient cohorts. These limitations in drug delivery have been overcome through mesenchymal cells membrane-based precision therapeutics, where these interventions have led to the significant enhancements in therapeutic efficacies. However, the formulation and development of nanocarriers still focuses on optimization of drug delivery paradigms with a one-size-fits-all resolutions. As mesenchymal stem cell membrane-based nanocarriers have been engineered in highly diversified fashions, these are being optimized for delivering the drug payloads in more and better personalized modes, entering the arena of precision as well as personalized nanomedicine. In this Review, we have included some of the advanced nanocarriers which have been designed and been utilized in both the non-personalized as well as precision applicability which can be employed for the improvements in precision nanotherapeutics. In the present report, authors have focused on various other aspects of the advancements in stem cells membrane-based nanoparticle conceptions which can surmount several roadblocks and barriers in drug delivery and nanomedicine. It has been suggested that well-informed designing of these nanocarriers will lead to appreciable improvements in the therapeutic efficacy in therapeutic payload delivery applications. These approaches will also enable the tailored and customized designs of MSC-based nanocarriers for personalized therapeutic applications, and finally amending the patient outcomes.
Collapse
Affiliation(s)
- Mirza Salman Baig
- Anjuman-I-Islam Kalsekar Technical Campus School of Pharmacy, Sector-16, Near Thana Naka, Khandagao, New Panvel, Navi Mumbai 410206, Maharashtra, India;
| | - Anas Ahmad
- Julia McFarlane Diabetes Research Centre (JMDRC), Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Hotchkiss Brain Institute, Cumming School of Medicine, Foothills Medical Centre, University of Calgary, Calgary, AB T2N 4N1, Canada
| | | | - Rakesh Kumar Mishra
- School of Health Sciences and Technology, University of Petroleum and Energy Studies (UPES), Bidholi, Dehradun 248007, Uttarakhand, India;
| |
Collapse
|
6
|
Matsuzaka Y, Yashiro R. Current Strategies and Therapeutic Applications of Mesenchymal Stem Cell-Based Drug Delivery. Pharmaceuticals (Basel) 2024; 17:707. [PMID: 38931374 PMCID: PMC11206583 DOI: 10.3390/ph17060707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/21/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
Mesenchymal stem cells (MSCs) have emerged as a promising approach for drug delivery strategies because of their unique properties. These strategies include stem cell membrane-coated nanoparticles, stem cell-derived extracellular vesicles, immunomodulatory effects, stem cell-laden scaffolds, and scaffold-free stem cell sheets. MSCs offer advantages such as low immunogenicity, homing ability, and tumor tropism, making them ideal for targeted drug delivery systems. Stem cell-derived extracellular vesicles have gained attention for their immune properties and tumor-homing abilities, presenting a potential solution for drug delivery challenges. The relationship between MSC-based drug delivery and the self-renewal and differentiation capabilities of MSCs lies in the potential of engineered MSCs to serve as effective carriers for therapeutic agents while maintaining their intrinsic properties. MSCs exhibit potent immunosuppressive functions in MSC-based drug delivery strategies. Stem cell-derived EVs have low immunogenicity and strong therapeutic potential for tissue repair and regeneration. Scaffold-free stem cell sheets represent a cutting-edge approach in regenerative medicine, offering a versatile platform for tissue engineering and regeneration across different medical specialties. MSCs have shown great potential for clinical applications in regenerative medicine because of their ability to differentiate into various cell types, secrete bioactive factors, and modulate immune responses. Researchers are exploring these innovative approaches to enhance drug delivery efficiency and effectiveness in treating various diseases.
Collapse
Affiliation(s)
- Yasunari Matsuzaka
- Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
- Administrative Section of Radiation Protection, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira 187-8551, Tokyo, Japan;
- Department of Medical Molecular Informatics, Meiji Pharmaceutical University, Kiyose 204-8588, Tokyo, Japan
| | - Ryu Yashiro
- Administrative Section of Radiation Protection, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira 187-8551, Tokyo, Japan;
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| |
Collapse
|
7
|
Song D, Pan S, Jin W, Wu R, Zhao T, Jiang J, Zhu M. Minoxidil delivered via a stem cell membrane delivery controlled release system promotes hair growth in C57BL/6J mice. Front Bioeng Biotechnol 2024; 11:1331754. [PMID: 38260729 PMCID: PMC10800965 DOI: 10.3389/fbioe.2023.1331754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/05/2023] [Indexed: 01/24/2024] Open
Abstract
Objective: Umbilical cord-derived mesenchymal stem cell membrane-loaded minoxidil (MXD) nanoparticles (STCM-MXD-NPs) were prepared to investigate their effects on hair growth in C57BL/6J mice. Methods: STCM-MXD-NPs were obtained by freeze-thawing and differential centrifugation, and their effects on hair growth were evaluated using C57BL/6J mice. The mRNA and protein expression levels of vascular endothelial growth factor (VEGF) and insulin-like growth factor-1 (IGF-1) were detected by real-time polymerase chain reaction and enzyme-linked immunosorbent assays, respectively. Protein expression levels of marker of proliferation Ki-67 (MKI67) and β-catenin (CTNNB) in skin tissue were detected by immunohistochemistry. Results: STCM-MXD-NPs improved MXD solubility. They released the drug slowly, increasing its transdermal properties, accumulation in the skin, and content in the hair bulb tissues with a better efficacy than that of ordinary MXD. Moreover, STCM-MXD-NPs significantly upregulated the mRNA and protein levels of VEGF and IGF-1 and promoted the protein expression of MKI67 and CTNNB in mouse skin tissues, promoting mouse hair growth. Conclusion: Stem cell membrane-loaded MXD nanoparticles with slow-release properties increased MXD accumulation in the skin by improving its transdermal properties, increasing VEGF, IGF-1, MKI67, and CTNNB expression levels and promoting hair growth in C57BL/6J mice.
Collapse
Affiliation(s)
- Dandan Song
- Department of Dermatology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Shouxi Pan
- Norman Bethune College of Medicine, Jilin University, Changchun, China
| | - Wenxia Jin
- Lanzhou Institute of Biological Products Co., Ltd., Lanzhou, China
| | - Ronghui Wu
- Department of Dermatology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Tianqi Zhao
- Department of Dermatology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jinlan Jiang
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Mingji Zhu
- Department of Dermatology, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
8
|
Mdlovu NV, Juang RS, Weng MT, Lin KS. Green synthesis and characterization of silicate nanostructures coated with Pluronic F127/gelatin for triggered drug delivery in tumor microenvironments. Int J Biol Macromol 2023; 251:126337. [PMID: 37586620 DOI: 10.1016/j.ijbiomac.2023.126337] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/11/2023] [Accepted: 08/12/2023] [Indexed: 08/18/2023]
Abstract
Thermo-/pH-sensitive nanocomposites based on mesoporous silicate MCM-41 (MSNCs) derived from rice husk ash were synthesized and characterized. MSNCs were coated with thermo-/pH-sensitive Pluronic® F127 and gelatin to form MSNCs@gp nanocomposites, serving as carriers for controlled release of the anticancer drug doxorubicin (Dox). The in vitro and in vivo antitumor efficacy of MSNCs@gp-Dox against liver cancer was evaluated. Fourier-transform infrared (FTIR) spectra confirmed the silica nature of MSNCs@gp by detecting the Si-O-Si group. Under acidic microenvironments (pH 5.4) and 42 °C, MSNCs@gp-Dox exhibited significantly higher Dox release (47.33 %) compared to physiological conditions. Thermo-/pH-sensitive drug release (47.33 %) was observed in simulated tumor environments. The Makoid-Banakar model provided the best fit at pH 7.4 and 37 °C with a mean squared error of 0.4352, an Akaike Information Criterion of 15.00, and a regression coefficient of 0.9972. Cytotoxicity tests have demonstrated no significant toxicity in HepG2 cells treated with various concentrations of MSNCs@gp, while MSNCs@gp-Dox induced considerable cell apoptosis. In vivo studies in nude mice revealed effective suppression of liver cancer growth by MSNCs@gp-Dox, indicating high pharmaceutical efficacy. The investigated MSNCs@gp-based drug delivery system shows promise for liver cancer therapy, offering enhanced treatment efficiency with minimal side effects.
Collapse
Affiliation(s)
- Ndumiso Vukile Mdlovu
- Department of Chemical and Materials Engineering, Chang Gung University, Guishan, Taoyuan 33302, Taiwan; Division of Nephrology, Department of Internal Medicine, Chang Gung Memorial Hospital Linkou, Taoyuan 33305, Taiwan; Department of Chemical Engineering and Materials Science, Yuan Ze University, Chungli, Taoyuan 32003, Taiwan
| | - Ruey-Shin Juang
- Department of Chemical and Materials Engineering, Chang Gung University, Guishan, Taoyuan 33302, Taiwan; Division of Nephrology, Department of Internal Medicine, Chang Gung Memorial Hospital Linkou, Taoyuan 33305, Taiwan; Department of Safety, Health and Environmental Engineering, Ming Chi University of Technology, Taishan, New Taipei City 24301, Taiwan.
| | - Meng-Tzu Weng
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 100233, Taiwan; Department of Medical Research, National Taiwan University Hospital Hsinchu Branch, Hsinchu 302, Taiwan.
| | - Kuen-Song Lin
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Chungli, Taoyuan 32003, Taiwan.
| |
Collapse
|