1
|
Marchlewicz A, Dzionek A, Wojcieszyńska D, Borgulat J, Jałowiecki Ł, Guzik U. Changes in Ibuprofen Toxicity and Degradation in Response to Immobilization of Bacillus thuringiensis B1(2015b). Molecules 2024; 29:5680. [PMID: 39683839 DOI: 10.3390/molecules29235680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 11/27/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
Ibuprofen is one of the most commonly used anti-inflammatory drugs by humans, resulting in its appearance in the environment, which can negatively affect organisms living in it. The studies undertaken have shown that the immobilized Bacillus thuringiensis B1(2015b) strain can decompose this drug at a rate of qmax = 0.36 mg/L*h, with a Ks constant of 0.95 mg/L for this process. An analysis of the effect of ibuprofen on the metabolic profile of the immobilized strain B1(2015b) showed an increase in the consumption of carbon, nitrogen, phosphorus, and sulfur compounds by this strain compared to the free strain. Studies on the toxicity of ibuprofen against the B1(2015b) strain indicated a small protective effect of the carrier, manifested by a slightly higher EC50 value = 1190 mg/L (for the free strain EC50 = 1175 mg/L). A toxicity analysis of intermedia formed during ibuprofen degradation indicated that the increase in toxicity is positively correlated with the degree of hydroxylation of ibuprofen metabolites. A toxicity analysis of the post-culture fluid obtained after ibuprofen degradation by the immobilized and free strain indicated that the products formed due to this process are completely safe.
Collapse
Affiliation(s)
- Ariel Marchlewicz
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Science, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland
| | - Anna Dzionek
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Science, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland
| | - Danuta Wojcieszyńska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Science, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland
| | - Jacek Borgulat
- Institute for Ecology of Industrial Areas, Kossutha 6, 40-844 Katowice, Poland
| | - Łukasz Jałowiecki
- Institute for Ecology of Industrial Areas, Kossutha 6, 40-844 Katowice, Poland
| | - Urszula Guzik
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Science, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland
| |
Collapse
|
2
|
Sar T, Marchlewicz A, Harirchi S, Mantzouridou FT, Hosoglu MI, Akbas MY, Hellwig C, Taherzadeh MJ. Resource recovery and treatment of wastewaters using filamentous fungi. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175752. [PMID: 39182768 DOI: 10.1016/j.scitotenv.2024.175752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 06/28/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
Industrial wastewater, often characterized by its proximity to neutral pH, presents a promising opportunity for fungal utilization despite the prevalent preference of fungi for acidic conditions. This review addresses this discrepancy, highlighting the potential of certain industrial wastewaters, particularly those with low pH levels, for fungal biorefinery. Additionally, the economic implications of biomass recovery and compound separation, factors that require explicit were emphasized. Through an in-depth analysis of various industrial sectors, including food processing, textiles, pharmaceuticals, and paper-pulp, this study explores how filamentous fungi can effectively harness the nutrient-rich content of wastewaters to produce valuable resources. The pivotal role of ligninolytic enzymes synthesized by fungi in wastewater purification is examined, as well as their ability to absorb metal contaminants. Furthermore, the diverse benefits of fungal biorefinery are underscored, including the production of protein-rich single-cell protein, biolipids, enzymes, and organic acids, which not only enhance environmental sustainability but also foster economic growth. Finally, the challenges associated with scaling up fungal biorefinery processes for wastewater treatment are critically evaluated, providing valuable insights for future research and industrial implementation. This comprehensive analysis aims to elucidate the potential of fungal biorefinery in addressing industrial wastewater challenges while promoting sustainable resource utilization.
Collapse
Affiliation(s)
- Taner Sar
- Swedish Centre for Resource Recovery, University of Borås, 501 90 Borås, Sweden
| | - Ariel Marchlewicz
- University of Silesia in Katowice, The Faculty of Natural Science, Institute of Biology, Biotechnology and Environmental Protection, Jagiellońska 28, 40-032 Katowice, Poland; University of Jyväskylä, The Faculty of Mathematics and Science, The Department of Biological and Environmental Science, Survontie 9c, FI-40500 Jyväskylä, Finland
| | - Sharareh Harirchi
- Swedish Centre for Resource Recovery, University of Borås, 501 90 Borås, Sweden; Department of Biotechnology, Iranian Research Organization for Science and Technology, Tehran P.O. Box 3353-5111, Iran
| | - Fani Th Mantzouridou
- Laboratory of Food Chemistry and Technology, School of Chemistry, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| | - Muge Isleten Hosoglu
- Institute of Biotechnology, Gebze Technical University, Gebze, Kocaeli 41400, Türkiye
| | - Meltem Yesilcimen Akbas
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze, Kocaeli 41400, Türkiye
| | - Coralie Hellwig
- Swedish Centre for Resource Recovery, University of Borås, 501 90 Borås, Sweden
| | | |
Collapse
|
3
|
Dzionek A, Wojcieszyńska D, Menashe O, Szada D, Potocka I, Jesionowski T, Guzik U. The Influence of Activated Sludge Augmentation on Its Ability to Degrade Paracetamol. Molecules 2024; 29:4520. [PMID: 39407450 PMCID: PMC11478205 DOI: 10.3390/molecules29194520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/20/2024] [Accepted: 09/20/2024] [Indexed: 10/20/2024] Open
Abstract
Paracetamol is one of the most commonly used painkillers. Its significant production and consumption result in its presence in the environment. For that reason, paracetamol has a negative impact on the organisms living in ecosystems. Therefore, it is necessary to develop effective methods to remove paracetamol from sewage. One of the methods is the bioaugmentation of activated sludge with organisms with increased degradation potential in relation to paracetamol. This study determined the effectiveness of paracetamol degradation by activated sludge augmented with a free or immobilised Pseudomonas moorei KB4. To immobilise the strain, innovative capsules made of cellulose acetate were used, the structure of which provides an optimal environment for the development of bacteria. Augmentation with both a free and immobilised strain significantly improves the efficiency of paracetamol biodegradation by activated sludge. Over a period of 30 days, examined systems allowed ten doses of paracetamol decomposition, while the unaugmented system degraded only four. At the same time, using the immobilised strain does not significantly affect the functioning of the activated sludge, which was reflected in the stability of processes such as nitrification. Due to the high stability of the preparation, it can become a valuable tool in wastewater treatment processes.
Collapse
Affiliation(s)
- Anna Dzionek
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Science, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland (U.G.)
| | - Danuta Wojcieszyńska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Science, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland (U.G.)
| | - Ofir Menashe
- Water Industry Engineering Department, The Engineering Faculty, Kinneret Academic College on the Sea of Galilee, M.P. Emek ’Ha’Yarden, Zemach Junction 15132, Israel;
- BioCastle Water Technologies Ltd., Edison Industrial Park, Afikim Jordan Valley 1514800, Israel
| | - Daria Szada
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland
| | - Izabela Potocka
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Science, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland (U.G.)
| | - Teofil Jesionowski
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland
| | - Urszula Guzik
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Science, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland (U.G.)
| |
Collapse
|
4
|
Vráblová M, Smutná K, Chamrádová K, Vrábl D, Koutník I, Rusín J, Bouchalová M, Gavlová A, Sezimová H, Navrátil M, Chalupa R, Tenklová B, Pavlíková J. Co-composting of sewage sludge as an effective technology for the production of substrates with reduced content of pharmaceutical residues. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:169818. [PMID: 38184247 DOI: 10.1016/j.scitotenv.2023.169818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/15/2023] [Accepted: 12/29/2023] [Indexed: 01/08/2024]
Abstract
Sewage sludge is a valuable source of elements such as phosphorus and nitrogen. At the same time, heavy metals, emerging organic compounds, micropollutants (pharmaceuticals, pesticides, PCPs, microplastics), or some potentially dangerous bacteria can be present. In this study, the sewage sludge was aerobically treated by composting with other materials (co-composted), and the resulting substrate was tested for suitability of its use in agriculture. Closer attention was focused on the pharmaceuticals (non-steroidal antiphlogistics, sartanes, antiepileptics, caffeine, and nicotine metabolites) content and ecotoxicity of the resulting substrates in the individual phases of sludge co-composting. It has been verified that during co-composting there is a potential for reduction of the content of pharmaceutical in the substrates up to 90 %. The course of the temperature in the thermophilic phase is decisive. Growth and ecotoxicity experiments demonstrated that with a suitable co-composting procedure, the resulting stabilized matter is suitable as a substrate for use in plant production, and the risk of using sewage sludge on agricultural land is substantially reduced.
Collapse
Affiliation(s)
- Martina Vráblová
- VSB-Technical University of Ostrava, CEET, Institute of Environmental Technology, 17. listopadu 15, 708 00 Ostrava, Czech Republic.
| | - Kateřina Smutná
- VSB-Technical University of Ostrava, CEET, Institute of Environmental Technology, 17. listopadu 15, 708 00 Ostrava, Czech Republic
| | - Kateřina Chamrádová
- VSB-Technical University of Ostrava, CEET, Institute of Environmental Technology, 17. listopadu 15, 708 00 Ostrava, Czech Republic
| | - Daniel Vrábl
- University of Ostrava, Faculty of Science, Department of Physics, Chittussiho 10, 710 00 Ostrava, Czech Republic
| | - Ivan Koutník
- VSB-Technical University of Ostrava, CEET, Institute of Environmental Technology, 17. listopadu 15, 708 00 Ostrava, Czech Republic
| | - Jiří Rusín
- VSB-Technical University of Ostrava, CEET, Institute of Environmental Technology, 17. listopadu 15, 708 00 Ostrava, Czech Republic
| | - Markéta Bouchalová
- VSB-Technical University of Ostrava, CEET, Institute of Environmental Technology, 17. listopadu 15, 708 00 Ostrava, Czech Republic
| | - Anna Gavlová
- VSB-Technical University of Ostrava, CEET, Institute of Environmental Technology, 17. listopadu 15, 708 00 Ostrava, Czech Republic
| | - Hana Sezimová
- University of Ostrava, Faculty of Science, Department of Biology and Ecology, Chittussiho 10, 710 00 Ostrava, Czech Republic
| | - Martin Navrátil
- University of Ostrava, Faculty of Science, Department of Physics, Chittussiho 10, 710 00 Ostrava, Czech Republic
| | - Richard Chalupa
- FCC Česká republika, s.r.o., Ďáblická 791/89, 182 00 Praha, Czech Republic
| | - Barbora Tenklová
- FCC Česká republika, s.r.o., Ďáblická 791/89, 182 00 Praha, Czech Republic
| | - Jitka Pavlíková
- FCC Česká republika, s.r.o., Ďáblická 791/89, 182 00 Praha, Czech Republic
| |
Collapse
|
5
|
Dzionek A, Nowak A, Wojcieszyńska D, Potocka I, Smułek W, Guzik U. Decomposition of non-steroidal anti-inflammatory drugs by activated sludge supported by biopreparation in sequencing batch reactor. BIORESOURCE TECHNOLOGY 2024; 395:130328. [PMID: 38242239 DOI: 10.1016/j.biortech.2024.130328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/29/2023] [Accepted: 01/11/2024] [Indexed: 01/21/2024]
Abstract
The presence of non-steroidal anti-inflammatory drugs in wastewater from sewage treatment plants indicates that they are not completely biodegradable. The designed biopreparation based on immobilized bacteria enables the degradation of paracetamol, ibuprofen, naproxen and diclofenac at a rate of 0.50 mg/L*day, 0.14 mg/L*day, 0.16 mg/L*day and 0.04 mg/L*day, respectively. Lower degradation of drugs in the mixture than in monosubstrate systems indicates their additive, antagonistic effect, limiting the degradative capacity of microorganisms. The biopreparation is stable for at least 6 weeks in bioreactor conditions. Biochemical parameters of activated sludge functioning showed increased oxygen demand, which was related to increased ammonia concentration caused by long-term exposure of activated sludge to drugs. Reduced metabolic activity was also observed. The preparation enables decomposing drugs and their metabolites, restoring the activated sludge's functionality. The tested biopreparation can support activated sludge in sewage treatment plants in degrading non-steroidal anti-inflammatory drugs and phenolic compounds.
Collapse
Affiliation(s)
- Anna Dzionek
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Science, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland.
| | - Agnieszka Nowak
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Science, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland.
| | - Danuta Wojcieszyńska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Science, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland.
| | - Izabela Potocka
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Science, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland.
| | - Wojciech Smułek
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland.
| | - Urszula Guzik
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Science, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland.
| |
Collapse
|
6
|
Poddar K, Sarkar D, Bhoi R, Sarkar A. Biotransformation of diclofenac by isolated super-degrader Pseudomonas sp. DCα4: Postulated pathways, and attenuated ecotoxicological effects. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123388. [PMID: 38242311 DOI: 10.1016/j.envpol.2024.123388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/05/2023] [Accepted: 01/16/2024] [Indexed: 01/21/2024]
Abstract
Significant concentrations of emerging xenobiotics, like diclofenac (DCF), possessing severe irreversible eco-toxicological threats, has been detected in aquatic systems worldwide, raising the concerns. This present investigation is intended to explore an efficient solution to support the existing wastewater treatment policies to handle DCF contamination by bacteria-mediated biotransformation. DCF-tolerant bacterial strains were isolated from pharmaceutical wastewater and selected based on their non-virulence nature and degradation ability. Among those, Pseudomonas sp. DCα4 was found to be the most dominant DCF degrader exhibiting 99.82% removal of DCF confirmed by HPLC after optimization of temperature at 30.02 °C, pH at 6.9, inoculum of 4.94%, and time 68.02 h. The degradation kinetics exhibited the process of DCF degradation followed a first-order kinetics with k of 0.108/h and specific degradation rate of 0.013/h. Moreover, the enzyme activity study indicated predominant hydrolase activity in the DCF treatment broth of DCα4, implying hydrolysis as the main force behind DCF biotransformation. HRMS analysis confirmed the presence of 2-hydroxyphenylacetic acid, 1,3-dichloro,2-amino, 5-hydroxybenzene, and benzylacetic acid as major intermediates of DCF biodegradation indicating non-specific hydrolysis of DCF. Whole genome analysis of most related strains which were confirmed by near full 16S rRNA gene sequence homology study, predicted involvement of different N-C bond hydrolase producing genes like puud, atzF, astB, nit1, and nylB. The ecotoxicological study using Aliivibrio fischeri exhibited 47.51% bioluminescence inhibition by DCF-containing broth which was comparable to the same caused by 1 mg/mL of K2Cr2O7 whereas remediated broth exhibited only 0.51% inhibition implying reduction of the ecotoxic load caused by DCF contamination. Cost analysis revealed that possible integration of the process with existing ones would increase per litre expense by $0.45. These results indicated that the described process of DCF biodegradation using the super-degrader DCα4 would be an advancement of existing pharmaceutical wastewater treatment processes for DCF bioremediation.
Collapse
Affiliation(s)
- Kasturi Poddar
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Odisha, 769008, India.
| | - Debapriya Sarkar
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Odisha, 769008, India.
| | - Renupama Bhoi
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Odisha, 769008, India.
| | - Angana Sarkar
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Odisha, 769008, India.
| |
Collapse
|
7
|
Aguilar-Romero I, Madrid F, Villaverde J, Morillo E. Ibuprofen-enhanced biodegradation in solution and sewage sludge by a mineralizing microbial consortium. Shift in associated bacterial communities. JOURNAL OF HAZARDOUS MATERIALS 2024; 464:132970. [PMID: 37976863 DOI: 10.1016/j.jhazmat.2023.132970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/07/2023] [Accepted: 11/07/2023] [Indexed: 11/19/2023]
Abstract
Ibuprofen (IBP) is a widely used drug of environmental concern as emerging contaminant due to its low elimination rates by wastewater treatment plants (WWTPs), leading to the contamination of the environment, where IBP is introduced mainly from wastewater discharge and sewage sludge used as fertilizer. This study describes the application of a consortium from sewage sludge and acclimated with ibuprofen (consortium C7) to accelerate its biodegradation both in solution and sewage sludge. 500 mg L-1 IBP was degraded in solution in 28 h, and 66% mineralized in 3 days. IBP adsorbed in sewage sludge (10 mg kg-1) was removed after bioaugmentation with C7 up to 90% in 16 days, with a 5-fold increase in degradation rate. This is the first time that bioaugmentation with bacterial consortia or isolated bacterial strains have been used for IBP degradation in sewage sludge. The bacterial community of consortium C7 was significantly enriched in Sphingomonas wittichii, Bordetella petrii, Pseudomonas stutzeri and Bosea genosp. after IBP degradation, with a special increase in abundance of S. wittichii, probably the main potential bacterial specie responsible for IBP mineralization. Thirteen bacterial strains were isolated from C7 consortium. All of them degraded IBP in presence of glucose, especially Labrys neptuniae. Eight of these bacterial strains (B. tritici, L. neptuniae, S. zoogloeoides, B. petrii, A. denitrificans, S. acidaminiphila, P. nitroreducens, C. flaccumfaciens) had not been previously described as IBP-degraders. The bacterial community that makes up the indigenous consortium C7 appears to have a highly efficient biotic degradation potential to facilitate bioremediation of ibuprofen in contaminated effluents as well as in sewage sludge generated in WWTPs.
Collapse
Affiliation(s)
- Inés Aguilar-Romero
- Institute of Natural Resources and Agrobiology of Seville, Spanish National Research Council (IRNAS-CSIC), 41012 Seville, Spain.
| | - Fernando Madrid
- Institute of Natural Resources and Agrobiology of Seville, Spanish National Research Council (IRNAS-CSIC), 41012 Seville, Spain.
| | - Jaime Villaverde
- Institute of Natural Resources and Agrobiology of Seville, Spanish National Research Council (IRNAS-CSIC), 41012 Seville, Spain.
| | - Esmeralda Morillo
- Institute of Natural Resources and Agrobiology of Seville, Spanish National Research Council (IRNAS-CSIC), 41012 Seville, Spain.
| |
Collapse
|