1
|
Predarska I, Körber W, Lönnecke P, Gelman D, Hey-Hawkins E. Synthesis and catalytic activity of heterobimetallic Au/M (M = Rh III, Ir III) complexes with ditopic mono- and triphosphane ligands. Dalton Trans 2024; 53:16159-16169. [PMID: 38953230 DOI: 10.1039/d4dt01247j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
A series of heterobimetallic complexes Au/M (M = RhIII, IrIII) were prepared on the basis of two ditopic ligands: a monophosphane ligand L1H and a triphosphane ligand L2H. The complexes were fully characterised, including single-crystal X-ray diffraction studies. Catalytic activity of cationic L1/AuI/IrIII and L2/AuI/IrIII bis(trifluoromethane)sulfonimide was analysed through their capacity to induce allenyl ether rearrangement and cycloisomerisation of N-propargyl benzamide. While cationic L1/AuI/IrIII showed some ability to induce allenyl ether rearrangement, no conversion was observed for cationic L2/AuI/IrIII. Similarly, N-propargyl benzamide could undergo cycloisomerisation in the presence of cationic L1/AuI/IrIII, whereas cationic L2/AuI/IrIII was again inactive. These findings highlight how crucial the surroundings of the metal centre are to the catalytic activity. Catalytic activity is only possible when Au has a free coordination site; the gold complex becomes inactive when the tridentate ligand is present.
Collapse
Affiliation(s)
- Ivana Predarska
- Leipzig University, Faculty of Chemistry and Mineralogy, Institute of Inorganic Chemistry, Johannisallee 29, 04103 Leipzig, Germany.
| | - Wieland Körber
- Leipzig University, Faculty of Chemistry and Mineralogy, Institute of Inorganic Chemistry, Johannisallee 29, 04103 Leipzig, Germany.
| | - Peter Lönnecke
- Leipzig University, Faculty of Chemistry and Mineralogy, Institute of Inorganic Chemistry, Johannisallee 29, 04103 Leipzig, Germany.
| | - Dmitri Gelman
- The Hebrew University, Institute of Chemistry, Edmond Safra Campus, 9190401 Jerusalem, Israel.
| | - Evamarie Hey-Hawkins
- Leipzig University, Faculty of Chemistry and Mineralogy, Institute of Inorganic Chemistry, Johannisallee 29, 04103 Leipzig, Germany.
| |
Collapse
|
2
|
Lachguar A, Ye CZ, Kelly SN, Jeanneau E, Del Rosal I, Maron L, Veyre L, Thieuleux C, Arnold J, Camp C. CO 2 cleavage by tantalum/M (M = iridium, osmium) heterobimetallic complexes. Chem Commun (Camb) 2024; 60:7878-7881. [PMID: 38984492 PMCID: PMC11271703 DOI: 10.1039/d4cc02207f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/26/2024] [Indexed: 07/11/2024]
Abstract
A novel Ta/Os heterobimetallic complex, [Ta(CH2tBu)3(μ-H)3OsCp*], 2, is prepared by protonolysis of Ta(CHtBu)(CH2tBu)3 with Cp*OsH5. Treatment of 2 and its iridium analogue [Ta(CH2tBu)3(μ-H)2IrCp*], 1, with CO2 under mild conditions reveal the efficient cleavage of CO2, driven by the formation of a tantalum oxo species in conjunction with CO transfer to the osmium or iridium fragments, to form Cp*Ir(CO)H2 and Cp*Os(CO)H3, respectively. This bimetallic reactivity diverges from more classical CO2 insertion into metal-X (X = metal, hydride, alkyl) bonds.
Collapse
Affiliation(s)
- Abdelhak Lachguar
- Laboratory of Catalysis, Polymerization, Processes and Materials (CP2M UMR 5128) CNRS, Universite Claude Bernard Lyon 1, CPE-Lyon, Institut de Chimie de Lyon, 43 Bvd du 11 Novembre 1918, 69616 Villeurbanne, France.
| | - Christopher Z Ye
- Department of Chemistry, University of California, Berkeley, California 94720, USA.
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Sheridon N Kelly
- Department of Chemistry, University of California, Berkeley, California 94720, USA.
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Erwann Jeanneau
- Centre de Diffractométrie Henri Longchambon, Universite Claude Bernard Lyon 1, 5 Rue de la Doua, 69100 Villeurbanne, France
| | - Iker Del Rosal
- Université de Toulouse, CNRS, INSA, UPS, UMR5215, LCPNO, 135 Avenue de Rangueil, F-31077 Toulouse, France
| | - Laurent Maron
- Université de Toulouse, CNRS, INSA, UPS, UMR5215, LCPNO, 135 Avenue de Rangueil, F-31077 Toulouse, France
| | - Laurent Veyre
- Laboratory of Catalysis, Polymerization, Processes and Materials (CP2M UMR 5128) CNRS, Universite Claude Bernard Lyon 1, CPE-Lyon, Institut de Chimie de Lyon, 43 Bvd du 11 Novembre 1918, 69616 Villeurbanne, France.
| | - Chloé Thieuleux
- Laboratory of Catalysis, Polymerization, Processes and Materials (CP2M UMR 5128) CNRS, Universite Claude Bernard Lyon 1, CPE-Lyon, Institut de Chimie de Lyon, 43 Bvd du 11 Novembre 1918, 69616 Villeurbanne, France.
| | - John Arnold
- Department of Chemistry, University of California, Berkeley, California 94720, USA.
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Clément Camp
- Laboratory of Catalysis, Polymerization, Processes and Materials (CP2M UMR 5128) CNRS, Universite Claude Bernard Lyon 1, CPE-Lyon, Institut de Chimie de Lyon, 43 Bvd du 11 Novembre 1918, 69616 Villeurbanne, France.
| |
Collapse
|
3
|
Singh T, Chakraborty S. Molybdenum-catalyzed hydrogenation of carbon dioxide, bicarbonate, and inorganic carbonates to formates. Dalton Trans 2024; 53:10244-10249. [PMID: 38829152 DOI: 10.1039/d4dt00916a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Herein, we report the hydrogenation of carbon dioxide to sodium formate catalyzed by low-valent molybdenum phosphine complexes. The 1,3-bis(diphenylphosphino)propane (DPPP)-based Mo complex was found to be an efficient catalyst in the presence of NaOH affording formate with a TON of 975 at 130 °C in THF/H2O after 24 h utilizing 40 bar (CO2 : H2 = 10 : 30) pressure. The complex was also active in the hydrogenation of sodium bicarbonate and inorganic carbonates to the corresponding formates. Mechanistic investigation revealed that the reaction proceeded via an intermediate formato complex.
Collapse
Affiliation(s)
- Tushar Singh
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar, Jodhpur, 342037, Rajasthan, India.
| | - Subrata Chakraborty
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar, Jodhpur, 342037, Rajasthan, India.
| |
Collapse
|
4
|
Platts JA, Kariuki BM, Newman PD. Welcoming Neighbour or Inhospitable Host? Selective Second Metal Binding in 5- and 6-Phospha-Substituted Bpy Ligands. Molecules 2024; 29:1150. [PMID: 38474663 DOI: 10.3390/molecules29051150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024] Open
Abstract
The controlled formation of mixed-metal bimetallics was realised through use of a fac-[Re(CO)3(N,N'-bpy-P)Cl] complex bearing an exogenous 2,4,6-trioxa-1,3,5,7-tetramethyl-8-phosphaadamantane donor at the 5-position of the bpy. The introduction of gold, silver, and rhodium with appropriate secondary ligands was readily achieved from established starting materials. Restricted rotation about the C(bpy)-P bond was observed in several of the bimetallic complexes and correlated with the relative steric bulk of the second metal moiety. Related chemistry with the 6-substituted derivative proved more limited in scope with only the bimetallic Re/Au complex being isolated.
Collapse
Affiliation(s)
- James A Platts
- School of Chemistry, Cardiff University, Cardiff CF10 3AT, UK
| | | | - Paul D Newman
- School of Chemistry, Cardiff University, Cardiff CF10 3AT, UK
| |
Collapse
|
5
|
Fickenscher ZBG, Lönnecke P, Müller AK, Baumann W, Kirchner B, Hey-Hawkins E. Stronger Together! Mechanistic Investigation into Synergistic Effects during Homogeneous Carbon Dioxide Hydrogenation Using a Heterobimetallic Catalyst. Inorg Chem 2023; 62:12750-12761. [PMID: 37506709 DOI: 10.1021/acs.inorgchem.3c01303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
A series of group 6 heterobimetallic complexes [M0;IrIII] (M = Cr, Mo, W) were synthesized and fully characterized, and the catalytic behavior was studied. The heterobimetallic complex [Mo0;IrIII] (C1) was by far the most active and has shown a considerable synergistic effect, with both metals actively participating in homogeneous carbon dioxide hydrogenation, leading to formate salts. Based on theoretical calculations, the synergistic interaction is due to Pauli repulsion, lowering the transition state and thus enabling higher catalytic activity. The mechanism of both the hydrogenation itself and the synergistic interaction was studied by NMR spectroscopy, kinetic measurements, and theoretical calculations. The homogeneous nature of the reaction was proven using in situ high-pressure (HP) NMR experiments. The same experiments also showed that the octahedral Mo(CO)3P3 moiety of the complex is stable under the reaction conditions. The hydride complex is the resting state because the hydride transfer is the rate-determining step. This is supported by kinetic measurements, in situ HP NMR experiments, and theoretical calculations and is in contrast to the monometallic IrIII counterpart of C1.
Collapse
Affiliation(s)
- Zeno B G Fickenscher
- Institute of Inorganic Chemistry, Universität Leipzig, Johannisallee 29, D-04103 Leipzig, Germany
| | - Peter Lönnecke
- Institute of Inorganic Chemistry, Universität Leipzig, Johannisallee 29, D-04103 Leipzig, Germany
| | - Anna K Müller
- Mulliken Center for Theoretical Chemistry, Institute for Physical and Theoretical Chemistry, Beringstraße 4, 53115 Bonn, Germany
| | - Wolfgang Baumann
- Leibniz-Institut für Katalyse eV, Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| | - Barbara Kirchner
- Mulliken Center for Theoretical Chemistry, Institute for Physical and Theoretical Chemistry, Beringstraße 4, 53115 Bonn, Germany
| | - Evamarie Hey-Hawkins
- Institute of Inorganic Chemistry, Universität Leipzig, Johannisallee 29, D-04103 Leipzig, Germany
| |
Collapse
|
6
|
Fickenscher Z, Hey-Hawkins E. Added Complexity!-Mechanistic Aspects of Heterobimetallic Complexes for Application in Homogeneous Catalysis. Molecules 2023; 28:4233. [PMID: 37241974 PMCID: PMC10224482 DOI: 10.3390/molecules28104233] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Inspired by multimetallic assemblies and their role in enzyme catalysis, chemists have developed a plethora of heterobimetallic complexes for application in homogeneous catalysis. Starting with small heterobimetallic complexes with σ-donating and π-accepting ligands, such as N-heterocyclic carbene and carbonyl ligands, more and more complex systems have been developed over the past two decades. These systems can show a significant increase in catalytic activity compared with their monometallic counterparts. This increase can be attributed to new reaction pathways enabled by the presence of a second metal center in the active catalyst. This review focuses on mechanistic aspects of heterobimetallic complexes in homogeneous catalysis. Depending on the type of interaction of the second metal with the substrates, heterobimetallic complexes can be subdivided into four classes. Each of these classes is illustrated with multiple examples, showcasing the versatility of both, the types of interactions possible, and the reactions accessible.
Collapse
Affiliation(s)
| | - Evamarie Hey-Hawkins
- Institute of Inorganic Chemistry, Universität Leipzig, Johannisallee 29, D-04103 Leipzig, Germany;
| |
Collapse
|