1
|
Chaturvedi A, Sharma V, Rawal RK, Singh M, Singh V. Sustainable protocol for Cu-catalysed A 3-coupling under solvent-free conditions. Org Biomol Chem 2025; 23:854-863. [PMID: 39625717 DOI: 10.1039/d4ob01728e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
A Cu-catalyzed three-component cascade reaction has been developed, involving ortho-alkynylaryl aldehydes, terminal alkynes and aliphatic/aromatic amines or diamines. This diversity oriented methodology successfully delivered a rich library of 72 molecules in good to excellent yields (yields up to 99%) through the application of an A3-coupling reaction. This method is green, straightforward to execute, requires a short reaction time (2 min-4 h), does not require solvents or harsh or inert conditions, i.e. can be performed in open air, and utilizes only a small amount of a cheap and readily available catalyst (2.5 to 10 mol% CuI). It proficiently produced a variety of biphenylacetylene tethered propargylamines, alkyne tethered dihydroisoquinolines, and N-fused benzimidazoles with excellent regioselectivity.
Collapse
Affiliation(s)
- Anjali Chaturvedi
- Department of Chemistry, Central University of Punjab, Bathinda, 151004, Punjab, India.
- Department of Biological and Chemical Science Baba Farid College, Muktsar Road, Bathinda, Punjab 151001, Punjab, India.
| | - Vishal Sharma
- Department of Chemistry, Central University of Punjab, Bathinda, 151004, Punjab, India.
| | - Ravindra K Rawal
- Chemical Sciences and Technology Division, CSIR-North East Institute of Science and Technology (NEIST), Jorhat, 785006, Assam, India
| | - Manpreet Singh
- Department of Biological and Chemical Science Baba Farid College, Muktsar Road, Bathinda, Punjab 151001, Punjab, India.
| | - Virender Singh
- Department of Chemistry, Central University of Punjab, Bathinda, 151004, Punjab, India.
| |
Collapse
|
2
|
Zanotti G, Palmeri F, Raglione V. Phthalocyanines Synthesis: A State-of-The-Art Review of Sustainable Approaches Through Green Chemistry Metrics. Chemistry 2024; 30:e202400908. [PMID: 38837556 DOI: 10.1002/chem.202400908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/27/2024] [Accepted: 06/04/2024] [Indexed: 06/07/2024]
Abstract
Driven by escalating environmental concerns, synthetic chemistry faces an urgent need for a green revolution. Green chemistry, with its focus on low environmental impacting chemicals and minimized waste production, emerges as a powerful tool in addressing this challenge. Metrics such as the E-factor guide the design of environmentally friendly strategies for chemical processes by quantifying the waste generated in obtaining target products, thus enabling interventions to minimize it. Phthalocyanines (Pcs), versatile molecules with exceptional physical and chemical properties, hold immense potential for technological applications. This review aims to bridge the gap between green chemistry and phthalocyanine synthesis by collecting the main examples of environmentally sustainable syntheses documented in the literature. The calculation of the E-factor of a selection of them provides insights on how crucial it is to evaluate a synthetic process in its entirety. This approach allows for a better evaluation of the actual sustainability of the phthalocyanine synthetic process and indicates possible strategies to improve it.
Collapse
Affiliation(s)
- Gloria Zanotti
- Istituto di Struttura della Materia (ISM), Consiglio Nazionale delle Ricerche (CNR), Via Salaria km 29.300, Monterotondo, 00015, Italy
| | - Federica Palmeri
- Istituto di Struttura della Materia (ISM), Consiglio Nazionale delle Ricerche (CNR), Via Salaria km 29.300, Monterotondo, 00015, Italy
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro, 5, Rome, 00185, Italy
| | - Venanzio Raglione
- Istituto di Struttura della Materia (ISM), Consiglio Nazionale delle Ricerche (CNR), Via Salaria km 29.300, Monterotondo, 00015, Italy
| |
Collapse
|
3
|
Molnar M, Jakovljević Kovač M, Pavić V. A Comprehensive Analysis of Diversity, Structure, Biosynthesis and Extraction of Biologically Active Tannins from Various Plant-Based Materials Using Deep Eutectic Solvents. Molecules 2024; 29:2615. [PMID: 38893491 PMCID: PMC11173854 DOI: 10.3390/molecules29112615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/27/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
This paper explores the emerging subject of extracting tannins from various plant sources using deep eutectic solvents (DESs). Tannins are widely used in the food and feed industries as they have outstanding antioxidant qualities and greatly enhance the flavor and nutritional content of a wide range of food products. Organic solvents are frequently used in traditional extraction techniques, which raises questions about their safety for human health and the environment. DESs present a prospective substitute because of their low toxicity, adaptability, and environmental friendliness. The fundamental ideas supporting the application of DESs in the extraction of tannins from a range of plant-based materials frequently used in daily life are all well covered in this paper. Furthermore, this paper covers the impact of extraction parameters on the yield of extracted tannins, as well as possible obstacles and directions for future research in this emerging subject. This includes challenges such as high viscosity, intricated recovery of compounds, thermal degradation, and the occurrence of esterification. An extensive summary of the diversity, structure, biosynthesis, distribution, and roles of tannins in plants is given in this paper. Additionally, this paper thoroughly examines various bioactivities of tannins and their metabolites.
Collapse
Affiliation(s)
- Maja Molnar
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, F. Kuhača 18, 31000 Osijek, Croatia; (M.M.); (M.J.K.)
| | - Martina Jakovljević Kovač
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, F. Kuhača 18, 31000 Osijek, Croatia; (M.M.); (M.J.K.)
| | - Valentina Pavić
- Department of Biology, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 8/A, 31000 Osijek, Croatia
| |
Collapse
|
4
|
Gabriele F, Casieri C, Spreti N. Natural Deep Eutectic Solvents as Rust Removal Agents from Lithic and Cellulosic Substrates. Molecules 2024; 29:624. [PMID: 38338368 PMCID: PMC10856158 DOI: 10.3390/molecules29030624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
The peculiar physicochemical features of deep eutectic solvents (DESs), in particular their tunability, make them ideal media for various applications. Despite their ability to solubilize metal oxides, their use as rust removers from valuable substrates has not yet been thoroughly investigated. In this study, we chose three known DESs, consisting of choline chloride and acetic, oxalic or citric acid for evaluating their ability to remove corrosion products from a cellulose-based material as linen fabric and two different lithotypes, as travertine and granite. The artificial staining was achieved by placing a rusty iron grid on their surfaces. The DESs were applied by means of cellulose poultice on the linen fabrics, while on the rusted stone surfaces with a cotton swab. Macro- and microscopic observations, colorimetry and SEM/EDS analysis were employed to ascertain the cleaning effectiveness and the absence of side effects on the samples after treatment. Oxalic acid-based DES was capable of removing rust stains from both stone and cellulose-based samples, while choline chloride/citric acid DES was effective only on stone specimens. The results suggest a new practical application of DESs for the elimination of rust from lithic and cellulosic substrates of precious and artistic value.
Collapse
Affiliation(s)
| | | | - Nicoletta Spreti
- Department of Physical and Chemical Sciences, University of L’Aquila, I-67100 L’Aquila, Italy; (F.G.); (C.C.)
| |
Collapse
|
5
|
Martos M, Pastor IM. Nickel-Imidazolium Low Transition Temperature Mixtures with Lewis-Acidic Character. Molecules 2023; 28:6338. [PMID: 37687182 PMCID: PMC10490159 DOI: 10.3390/molecules28176338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/16/2023] [Accepted: 08/19/2023] [Indexed: 09/10/2023] Open
Abstract
Low transition temperature mixtures (LTTMs) are a new generation of solvents that have found extensive application in organic synthesis. The interactions between the components often generate highly activated, catalytically active species, thus opening the possibility of using LTTMs as catalysts, rather than solvents. In this work, we introduce a nickel-based imidazolium LTTM, study its thermal behavior and explore its catalytic activity in the solvent-free allylation of heterocycles with allylic alcohols. This system is effective in this reaction, affording the corresponding products in excellent yield without the need for additional purifications, thus resulting in a very environmentally friendly protocol.
Collapse
Affiliation(s)
| | - Isidro M. Pastor
- Institute of Organic Synthesis, University of Alicante, ctra. San Vicente del Raspeig s/n, San Vicente del Raspeig, 03690 Alicante, Spain;
| |
Collapse
|
6
|
Sanabria-Sánchez CM, Kouznetsov VV, Ochoa-Puentes C. Diastereoselective multicomponent synthesis of dihydroisoindolo[2,1- a]quinolin-11-ones mediated by eutectic solvents. RSC Adv 2023; 13:26189-26195. [PMID: 37671006 PMCID: PMC10475973 DOI: 10.1039/d3ra05561b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 08/27/2023] [Indexed: 09/07/2023] Open
Abstract
In this contribution, a series of dihydroisoindolo[2,1-a]quinolin-11-ones was synthesized by a one-pot multicomponent Povarov reaction starting from anilines, alkenes (trans-anethole, methyl eugenol and indene) and 2-formylbenzoic acid. Different eutectic solvents bearing Lewis or Brønsted acids were evaluated as reaction media and catalysts for the model reaction employing p-toluidine and trans-anethole finding that the eutectic mixture ChCl/ZnCl2 (1/2) allowed the obtention of the target compound in 77% isolated yield. Under the optimized reaction conditions, 20 derivatives were obtained in good to moderated yields using meta- and para-susbstituted anilines, while the corresponding ortho-analogs followed a different pathway affording isoindolinones. In addition, the eutectic mixture was reused in six cycles without observing a detrimental catalytic activity. This methodology features mild reaction conditions, short reaction time, simple work-up, and utilization of a reusable solvent; and provides straightforward and diastereoselective access to these alkaloid-like heterocyclic molecules.
Collapse
Affiliation(s)
- Carlos M Sanabria-Sánchez
- Laboratorio de Química Orgánica y Biomolecular, Escuela de Química, Universidad Industrial de Santander Cl. 9 # Cra 27 A.A. 680006 Bucaramanga Santander Colombia
- Laboratorio de Síntesis Orgánica Sostenible, Departamento de Química, Universidad Nacional de Colombia-Sede Bogotá Carrera 45 # 26-85 A.A. 5997 Bogotá Cundinamarca Colombia
| | - Vladimir V Kouznetsov
- Laboratorio de Química Orgánica y Biomolecular, Escuela de Química, Universidad Industrial de Santander Cl. 9 # Cra 27 A.A. 680006 Bucaramanga Santander Colombia
| | - Cristian Ochoa-Puentes
- Laboratorio de Síntesis Orgánica Sostenible, Departamento de Química, Universidad Nacional de Colombia-Sede Bogotá Carrera 45 # 26-85 A.A. 5997 Bogotá Cundinamarca Colombia
| |
Collapse
|
7
|
Lomba L, Werner Á, Giner B, Lafuente C. Deep Eutectic Solvents Formed by Glycerol and Xylitol, Fructose and Sorbitol: Effect of the Different Sugars in Their Physicochemical Properties. Molecules 2023; 28:6023. [PMID: 37630275 PMCID: PMC10458529 DOI: 10.3390/molecules28166023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/05/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
The search for new eutectic solvents for different applications (extraction, drug formulation, chemical reactions, etc.) is booming thanks to their high solubility capacity and low toxicity. However, it is necessary to carry out a comprehensive physicochemical characterization of these mixtures to understand the molecular behavior at different experimental conditions. In this study, three deep eutectic solvents (DESs) formed by glycerol and xylitol, fructose and sorbitol and water in the molar ratio 1:2:3 were prepared and several physicochemical properties (refractive index, density, surface tension, viscosity, speed of sound, isobaric heat capacity and isentropic compressibility) were measured and analyzed in the 278.15-338.15 K temperature range. The results indicate a linear dependence with temperature for the following properties: surface tension, refractive index, density and isobaric molar heat capacity while viscosity values have been fitted to the Vogel-Fulcher-Tammann equation.
Collapse
Affiliation(s)
- Laura Lomba
- Facultad de Ciencias de la Salud, Campus Universitario, Universidad San Jorge, Autov. A23 km 299, Villanueva de Gállego, 50830 Zaragoza, Spain; (L.L.); (Á.W.)
| | - Álvaro Werner
- Facultad de Ciencias de la Salud, Campus Universitario, Universidad San Jorge, Autov. A23 km 299, Villanueva de Gállego, 50830 Zaragoza, Spain; (L.L.); (Á.W.)
| | - Beatriz Giner
- Facultad de Ciencias de la Salud, Campus Universitario, Universidad San Jorge, Autov. A23 km 299, Villanueva de Gállego, 50830 Zaragoza, Spain; (L.L.); (Á.W.)
| | - Carlos Lafuente
- Departamento de Química Física, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain;
| |
Collapse
|