1
|
Xing Z, Peng F, Chen Y, Wan F, Peng C, Li D. Metabolomic profiling integrated with molecular exploring delineates the action of Ligusticum chuanxiong hort. on migraine. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 134:155977. [PMID: 39208659 DOI: 10.1016/j.phymed.2024.155977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 07/25/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
INTRODUCTION Ligusticum chuanxiong hort. (Chuanxiong, CX) is a well-known traditional edible-medicinal herb, especially in brain diseases. However, there is a lack of studies focusing on the action of CX in metabolites of migraine. HYPOTHESIS/PURPOSE To investigate the action of the aqueous extract of CX (LCH) on nitroglycerin (NTG)-induced migraine. METHODS The effects and mechanisms of LCH on migraine were evaluated in NTG-induced mice and rats. Laser speckle contrast imaging was performed to detect the cerebral blood flow. Metabolomic analysis in serum and mass spectrometry imaging in brain tissue from NTG-induced rats were conducted to explore the metabolites. The techniques including RT-qPCR, immunohistochemistry, and immunofluorescence were employed to estimate the molecular changes. RESULTS Totally, 1480 metabolites were identified, among which, 50 and 49 differential metabolites were identified by t-test, fold change, and VIP score for NTG vs. CON and LCH+NTG vs. NTG, respectively. Next, 13 common real difference metabolites were revealed by comparative analysis, and KEGG annotation and enrichment analysis showed that the glutathione (GSH) metabolism pathway played important roles in migraine, whereas the glutamate could be metabolized to γ-glu-cys and converted to GSH. Molecular exploring further confirmed that LCH treatment increased the expression of essential components of GSH synthetase, such as GCLC and GCLM, and elevated the expression levels of Nrf-2 and its downstream targets including HO1 and NQO1. Moreover, the mass spectrometry imaging results found that LCH treatment promoted the synthesis of GSH and the spatial distribution of glucose as well as ATP metabolites to normal levels. CONCLUSION To sum up, the present study firstly reveals that LCH plays a therapeutic role for migraine through glucose-glutamate-Nrf-2 axis, which might represent a promising approach in the development of advanced therapeutic strategies for migraine, and the LCH may be an effective drug or dietary supplement for relieving headache.
Collapse
Affiliation(s)
- Ziwei Xing
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fu Peng
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Yu Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Feng Wan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Dan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
2
|
Lei W, Li X, Li S, Zhou F, Guo Y, Zhang M, Jin X, Zhang H. Targeting neutrophils extracellular traps, a promising anti-thrombotic therapy for natural products from traditional Chinese herbal medicine. Biomed Pharmacother 2024; 179:117310. [PMID: 39226727 DOI: 10.1016/j.biopha.2024.117310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/04/2024] [Accepted: 08/13/2024] [Indexed: 09/05/2024] Open
Abstract
Thrombi are the main cause of vascular occlusion and contribute significantly to cardiovascular events and death. Neutrophils extracellular traps (NETs)-induced thrombosis plays a vital role in thrombotic complications and it takes the main responsibility for the resistance of fibrinolysis. However, the conventional anti-thrombotic therapies are inadequate to treat NETs-induced thrombotic complications but carry a high risk of bleeding. Consequently, increased attention has shifted towards exploring novel anti-thrombotic treatments targeting NETs. Interestingly, accumulating evidences prove that natural products from traditional Chinese herbal medicines have a great potential to mitigate thrombosis through inhibiting generous NETs formation and degrading excessive NETs. In this review, we elaborated the formation and degradation of NETs and highlighted its pivotal role in immunothrombosis through interactions with platelets and coagulation factors. Since available anti-thrombotic drugs targeting NETs are deficient, we further summarized the natural products and compounds from traditional Chinese herbal medicines which exert effective actions on regulating NETs formation and also have anti-thrombotic effects. Our findings underscore the diverse effects of natural products in targeting NETs, including relieving inflammation and oxidative stress of neutrophils, inhibiting neutrophils activation and DNA efflux, suppressing granule proteins release, reducing histones and promoting DNA degradation. This review aims to highlight the significance of natural medicines in anti-thrombotic therapies through targeting NETs and to lay a groundwork for developing novel anti-thrombotic agents from traditional Chinese herbal medicines.
Collapse
Affiliation(s)
- Wei Lei
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine,10 Poyanghu Road, Jinghai District, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiao Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine,10 Poyanghu Road, Jinghai District, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Shanze Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine,10 Poyanghu Road, Jinghai District, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Fengjie Zhou
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine,10 Poyanghu Road, Jinghai District, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yadi Guo
- School of Management, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Mingyan Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine,10 Poyanghu Road, Jinghai District, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xinyao Jin
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine,10 Poyanghu Road, Jinghai District, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Han Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine,10 Poyanghu Road, Jinghai District, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
3
|
Wei Q, He F, Rao J, Xiang X, Li L, Qi H. Targeting non-classical autophagy-dependent ferroptosis and the subsequent HMGB1/TfR1 feedback loop accounts for alleviating solar dermatitis by senkyunolide I. Free Radic Biol Med 2024; 223:263-280. [PMID: 39117049 DOI: 10.1016/j.freeradbiomed.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 08/03/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Given the substantial risks associated with ultraviolet B (UVB) radiation-induced solar dermatitis, enhancing current strategies to combat UVB regarding skin diseases is imperative. The cross-talk between ferroptosis and inflammation has been proven to be an essential factor in UVB-induced solar dermatitis, whereas detailed process of how their interaction contributes to this remains unclear. Therefore, further investigation of ferroptosis-mediated processes and identification of corresponding inhibitory approaches hold promise for repairing skin damage. Senkyunolide I (Sen I), a bioactive component mainly extracted from the traditional Chinese medicinal plants, Ligusticum chuanxiong Hort. and Angelica sinensis (Oliv.) Diels, has demonstrated efficacy in combating oxidative stress and inflammation. In this study, we utilized UVB-irradiated HaCaT cells as an in vitro model and C57BL/6J mice as an in vivo model of solar dermatitis. Our findings revealed the pivotal roles of autophagy and ferroptosis in inducing skin inflammation, particularly emphasizing the activation of ferroptosis through macroautophagy. Surprisingly, this mechanism operated independently of ferritinophagy, a classical autophagy-driven ferroptosis pathway. Instead, our results highlighted Transferrin Receptor 1 (TfR1), tightly controlled by autophagy, as a crucial mediator of ferroptosis execution and amplifier of subsequent lethal signals. Furthermore, extracellular High Mobility Group Box 1 protein (HMGB1), released following UVB-induced ferroptotic cells from activated autophagic flux, initiated a feedback loop with TfR1, propagating ferroptosis to neighboring cells and exacerbating damage. Remarkably, Sen I administration showed a significant protective effect against UVB damage in both in vitro and in vivo models by interrupting this cascade. Consequently, we have illuminated a novel therapeutic pathway post-UVB exposure and identified Sen I as a potent natural molecule that safeguarded against UVB-induced solar dermatitis by suppressing the autophagy-ferroptosis-HMGB1-TfR1 axis, highlighting a new frontier in photoprotection.
Collapse
Affiliation(s)
- Qi Wei
- College of Pharmaceutical Sciences & College of Chinese Medicine, Southwest University, Chongqing, 400715, China
| | - Fuxia He
- College of Pharmaceutical Sciences & College of Chinese Medicine, Southwest University, Chongqing, 400715, China
| | - Jiangyan Rao
- College of Pharmaceutical Sciences & College of Chinese Medicine, Southwest University, Chongqing, 400715, China
| | - Xiaoxia Xiang
- College of Pharmaceutical Sciences & College of Chinese Medicine, Southwest University, Chongqing, 400715, China
| | - Li Li
- College of Pharmaceutical Sciences & College of Chinese Medicine, Southwest University, Chongqing, 400715, China
| | - Hongyi Qi
- College of Pharmaceutical Sciences & College of Chinese Medicine, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
4
|
Ugwu JC, Ubah CB, Lawrence P, Edim MM, N ME, Enyike JO, Edet HO. Investigating the antioxidant potential and mechanism of a hydrazide bioactive component of garlic: insights from density functional theory calculations, drug-likeness and molecular docking studies. Appl Biochem Biotechnol 2024:10.1007/s12010-024-05051-w. [PMID: 39292337 DOI: 10.1007/s12010-024-05051-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2024] [Indexed: 09/19/2024]
Abstract
Glutathione remains one of the most efficient antioxidant compounds in living systems, and the biological abilities of hydrazides have been well documented in literature. This study highlights the phytochemical constituents of garlic and the separation of the bioactive benzoic acid, 4-chloro- 1-(4-methoxyphenyl) hydrazide (BA4C) using gas chromatography-mass spectroscopy (GC-MS) technique. Preliminary phytochemical screening reveals the presence of alkaloids, saponins, flavonoids, tannins, terpenoids, steroids and phenols. Computationally, compound BA4C was optimized using the B3LYP/aug-cc-PVDZ DFT method. Spectroscopic studies of the compound involved analysis of the vibrational FT-IR frequencies and the modes of vibrations. Frontier molecular orbitals analysis records an energy gap of 4.3391 eV; NBO studies reveal that the compound has strong perturbation energies of 246 kcal/mol and 269 kcal/mol among its intramolecular interactions such as π *C12 - C13 to π *C14 - C15 and π *C11 - C16 to π *C14 - C15, respectively. According to the visualization of non-covalent interactions, steric repulsions were observed at the core of the phenyl and benzene rings. However, other regions of the compound depict a significant balance of forces between steric repulsions and van der Waals forces. To significantly deduce the reducing power of compound BA4C, electrons were found to be highly localized at the methoxy and hydrazide moieties significantly implying their propensity to donate electrons to oxidized systems. Furthermore, ADMET analysis reveals that the compound has two hydrogen donors. Most significantly, the compound binds to NADPH dehydrogenase (5V4P) and glutathione reductase (1XAN) with binding energies of - 6.0 kcal/mol and - 8.0 kcal/mol showing considerable favourable binding feasibility as well as forming plural hydrogen bonds with the amino acid residues. Notably, BA4C was bonded at the active site of 1XAN, which implies the ability of the compound for the reduction of oxidized glutathione.
Collapse
Affiliation(s)
- Joy C Ugwu
- Department of Microbiology, University of Calabar, Calabar, Nigeria
| | - Chioma B Ubah
- Department of Microbiology, University of Calabar, Calabar, Nigeria.
| | - Peculiar Lawrence
- Department of Pure and Applied Chemistry, University of Calabar, Calabar, Nigeria
| | - Moses M Edim
- Department of Chemistry, Cross River University of Technology, Calabar, Nigeria
| | - Mbim Elizabeth N
- Department of Microbiology, Cross River University of Technology, Calabar, Nigeria
| | - Jonathan O Enyike
- Department of Biochemistry, Cross River University of Technology, Calabar, Nigeria
| | - Henry O Edet
- Department of Biochemistry, Cross River University of Technology, Calabar, Nigeria
| |
Collapse
|
5
|
Hassan S, Bilal N, Khan TJ, Ali MN, Ghafoor B, Saif KU. Bioinspired chitosan based functionalization of biomedical implant surfaces for enhanced hemocompatibility, antioxidation and anticoagulation potential: an in silico and in vitro study. RSC Adv 2024; 14:20691-20713. [PMID: 38952927 PMCID: PMC11215499 DOI: 10.1039/d4ra00796d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 06/17/2024] [Indexed: 07/03/2024] Open
Abstract
Endowing implanted biomaterials with better hemocompatibility, anticoagulation, antioxidant and antiplatelet adhesion is necessary because of their potential to trigger activation of multiple reactive mechanisms including coagulation cascade and potentially causing serious adverse clinical events like late thrombosis. Active ingredients from natural sources including Foeniculum vulgare, Angelica sinensis, and Cinnamomum verum have the ability to inhibit the coagulation cascade and thrombus formation around biomedical implants. These properties are of interest for the development of a novel drug for biomedical implants to potentially solve the current blood clotting and coagulation problems which lead to stent thrombosis. The objective of this study was to incorporate different anticoagulants from natural sources into a degradable matrix of chitosan with varying concentrations ranging from 5% to 15% and a composite containing all three drugs. The presence of anticoagulant constituents was identified using GC-MS. Subsequently, all the compositions were characterized principally by using Fourier transform infrared spectroscopy and scanning electron microscopy while the drug release profile was determined using UV-spectrometry for a 30 days immersion period. The results indicated an initial burst release which was subsequently followed by the sustained release pattern. Compared to heparin loaded chitosan, DPPH and hemolysis tests revealed better blood compatibility of natural drug loaded films. Moreover, the anticoagulation activity of natural drugs was equivalent to the heparin loaded film; however, through docking, the mechanism of inhibition of the coagulation cascade of the novel drug was found to be through blocking the extrinsic pathway. The study suggested that the proposed drug composite expresses an optimum composition which may be a practicable and appropriate candidate for biomedical implant coatings.
Collapse
Affiliation(s)
- Sadia Hassan
- School of Mechanical and Manufacturing Engineering (SMME), National University of Sciences and Technology Islamabad Pakistan
| | - Namra Bilal
- Nencki Institute of Experimental Biology Poland
| | - Tooba Javaid Khan
- School of Mechanical and Manufacturing Engineering (SMME), National University of Sciences and Technology Islamabad Pakistan
| | - Murtaza Najabat Ali
- School of Mechanical and Manufacturing Engineering (SMME), National University of Sciences and Technology Islamabad Pakistan
| | - Bakhtawar Ghafoor
- School of Mechanical and Manufacturing Engineering (SMME), National University of Sciences and Technology Islamabad Pakistan
| | | |
Collapse
|
6
|
Wu Y, Liu M, He X, Zhou H, Wei J, Li H, Yuan Q, Zuo Y, Zhao L, Xie Y. A breakthrough in periodontitis treatment: Revealing the pharmacodynamic substances and mechanisms of Kouqiangjie formula. JOURNAL OF ETHNOPHARMACOLOGY 2024; 323:117738. [PMID: 38199336 DOI: 10.1016/j.jep.2024.117738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/29/2023] [Accepted: 01/07/2024] [Indexed: 01/12/2024]
Abstract
ETHNOPHARMACOLOGY RELEVANCE Periodontitis, a complex inflammatory disease, significantly affects people's lives. Traditional Chinese multi-herbal formulas, composed of various herbs, exhibit their therapeutic efficacy holistically. Kouqiangjie Formula (KQJF), comprising 12 herbs including Rhizoma smilacis glabrae, Polygonatum sibiricum Delar. ex Redoute, Taraxacum mongolicum Hand.-Mazz, etc., has been clinically proven to effectively treat periodontitis. However, the potential active substances conferring these effects and their mechanisms of action remain unclear. AIM OF THE STUDY The current investigation endeavours to utilize Ultra Performance Liquid Chromatography Quadrupole Time of Flight Mass Spectrometry (UPLC-Q-TOF-MS), network pharmacology, and in vivo animal experiment confirmation to explore the plausible bioactive compounds and operational mechanisms underpinning KQJF's therapeutic impact on periodontitis. MATERIALS AND METHODS Using the UPLC-Q-TOF-MS technique, we deciphered the chemical constituents of KQJF. Network pharmacology was employed to earmark key bioactive elements, forecast principal targets, and operational pathways which were later substantiated through molecular docking. Experimental validations were carried out in a periodontitis animal model using a range of techniques, including micro-CT, H&E staining, qRT-PCR, and protein blotting procedures, providing comprehensive verification of our initial assumptions. RESULTS Utilizing UPLC-Q-TOF-MS, we characterized 87 individual chemical constituents in KQJF. Network pharmacology revealed that 14 components, including senkyunolide A, glycycoumarin, licoflavonol, glycyrin, senkyunolide I, and senkyunolide H, form the key therapeutic basis of KQJF in targeting periodontitis. Significant targets and pathways were discerned as AKT1, MMP9, JUN, PTGS2, CASP3, TLR4, IL1β, BCL2, PPARG, and pathways such as the TNF signaling pathway, NF-κB signaling pathway, osteoclast differentiation, and Wnt signaling pathway. Molecular docking demonstrated robust binding activity between these crucial targets and the key active ingredients. In vivo experimentation corroborated that, compared with the model group, KQJF significantly ameliorated symptoms and micro-CT imaging parameters of periodontitis in the rat model, down-regulating the expression of AKT1, MMP9, JUN, PTGS2, CASP3, TLR4, and IL1β, while up-regulating the expression of BCL2 and PPARG. CONCLUSION In summary, this study has pioneered a comprehensive exploration of the potential therapeutic constituents, targets, and mechanisms of KQJF for periodontitis treatment, adopting a synergistic strategy of "chemical component analysis-network pharmacology screening-in vivo animal experiment validation". This provides experimental evidence for the clinical application of KQJF and further in-depth research. Additionally, it presents an effective strategy for the research of other Chinese herbal formulations.
Collapse
Affiliation(s)
- Yeke Wu
- Department of Stomatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Min Liu
- Department of Gynaecology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Xiang He
- Department of Stomatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Hongling Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Jing Wei
- Department of Stomatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Huijing Li
- Department of Stomatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Qianghua Yuan
- Department of Pharmacy, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Yuling Zuo
- Department of Stomatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Lixing Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Yunfei Xie
- Department of Nuclear Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| |
Collapse
|
7
|
Ubah CB, Mujafarkani N, Sundaravadivelu A, Narendran N, Godfrey OC, Ogbodo SE, Odey MO, Benjamin I, Ahamed AJ, Owen AE, Agbo BE, Louis H. Derivative of aminoresin as potent anti-virulence agent: Synthesis, spectral (FT-IR, UV, NMR) analysis, molecular docking, effect of polar solvation dynamics, and quantum chemical investigation. J Mol Struct 2024; 1295:136744. [DOI: 10.1016/j.molstruc.2023.136744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
|
8
|
Li X, Chen S, Zeng J, Cai R, Liang Y, Chen C, Chen B, Li C. Database-aided UHPLC-Q-orbitrap MS/MS strategy putatively identifies 52 compounds from Wushicha Granule to propose anti-counterfeiting quality-markers for pharmacopoeia. Chin Med 2023; 18:116. [PMID: 37689743 PMCID: PMC10492348 DOI: 10.1186/s13020-023-00829-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 08/31/2023] [Indexed: 09/11/2023] Open
Abstract
Wushicha Granule, an over-the-counter-drug (OTC) prescription, consists of 19 traditional Chinese herbals medicines (CHMs), such as Chaihu, Hongcha, Chuanxiong, Houpo, and Gancao. The five however have not been effectively characterized by the quality-markers (Q-markers) system in current Pharmacopoeia. The study therefore established a novel database-aided ultra-high performance liquid chromatography-quadrupole-orbitrap mass spectrometry (UHPLC-Q-orbitrap MS/MS) strategy. The strategy has putatively identified 52 compounds from Wushicha Granule, mainly including flavonoids, saponins, alkaloid, lignins, and lactones. Especially, saponin "glycyrrhetinic acid" in the Granule was specifically identified as 18β-configuration (rather than 18α-configuration). Meanwhile, two pairs of isomers were fully discriminated, including vitexin vs isovitexin and daidzein vs 7,4'-dihydroxyflavone. 8β-Glycyrrhetinic acid, together with saponin saikosaponin A, alkaloid caffeine, lactone S-senkyunolide A, and lignin magnolol, were further studied using quantum chemical calculation, UV-vis spectra, and anti-counterfeiting validation experiment. In the validation experiment, they have successfully recognized 6 counterfeit Wushicha Granules, by means of a LC-MS equipped extraction software. Based on these results, 8β-glycyrrhetinic acid is recommended to replace the old Q-marker "glycyrrhetinic acid"; while saikosaponin A, caffeine, S-senkyunolide A, and magnolol are recommended as new Q-markers. These recommendations can not only recognize the counterfeits regarding Chaihu, Hongcha, Chuanxiong, Houpo, and Gancao, but also prevent the possible safety-incident. All these will greatly improve the efficiency and specificity of current Pharmacopoeia.
Collapse
Affiliation(s)
- Xican Li
- School of Chinese Herbal Medicines, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Shaoman Chen
- School of Chinese Herbal Medicines, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Jingyuan Zeng
- School of Chinese Herbal Medicines, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Rongxin Cai
- School of Chinese Herbal Medicines, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yilan Liang
- School of Chinese Herbal Medicines, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Chuanbin Chen
- School of Chinese Herbal Medicines, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Ban Chen
- Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education and Hubei Province), Hubei University of Technology, Wuhan, 430068, China
| | - Chunhou Li
- School of Chinese Herbal Medicines, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| |
Collapse
|