1
|
Kostecki J, Greinert A. Possibility of brewery wastes application to soil as an organic improver of biological and chemical properties. Sci Rep 2024; 14:17198. [PMID: 39060354 PMCID: PMC11282282 DOI: 10.1038/s41598-024-67668-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Soil degradation, marked by declining organic matter, threatens global food security. The impact of brewer's spent yeast (BSY) on clay and sand was analysed at varying application rates to assess its effectiveness in improving soil quality. A randomized complete block design with three replicates was employed. One kilogram of soil were mixed with BSY at application rates of 2 t/ha and 5 t/ha. The samples were incubated at 26 °C for 5 months with daily watering. We analysed pH, total nitrogen, organic carbon, total phosphorus, and electrical conductivity (EC); microbial activity (total heterotrophic bacteria, actinobacteria, and fungi) and soil enzyme activity (dehydrogenase, catalase, protease). BSY application improved soil quality, particularly in clay. Clay showed increased in pH, EC, N and C. BSY significantly boosted microbial populations (bacteria, fungi) in clay with a lesser effect in sand. Enzyme activity and a fertility index also improved in BSY-treated clay, while sand displayed increased activity of a different enzyme. Results suggest BSY holds promise as an organic fertilizer, especially for clay soils. Further research is needed to optimize application, understand long-term effects, and evaluate economic feasibility and social acceptance. This study contributes to the search for sustainable, local solutions to improve soil health and agricultural practices.
Collapse
Grants
- UMO2018/29/Z/ST10/02986 NCN, Poland, 71961137011 NSFC, China, 870234 FFG, Austria JPI Urban Europe/China collaboration
- UMO2018/29/Z/ST10/02986 NCN, Poland, 71961137011 NSFC, China, 870234 FFG, Austria JPI Urban Europe/China collaboration
Collapse
Affiliation(s)
- Jakub Kostecki
- University of Zielona Gora, Institute of Environmental Engineering, Zielona Góra, Zielona Góra, Poland.
| | - Andrzej Greinert
- University of Zielona Gora, Institute of Environmental Engineering, Zielona Góra, Zielona Góra, Poland
| |
Collapse
|
2
|
Dumitrașcu L, Brumă (Călin) M, Turturică M, Enachi E, Cantaragiu Ceoromila AM, Aprodu I. Ultrasound-Assisted Maillard Conjugation of Yeast Protein Hydrolysate with Polysaccharides for Encapsulating the Anthocyanins from Aronia. Antioxidants (Basel) 2024; 13:570. [PMID: 38790675 PMCID: PMC11117535 DOI: 10.3390/antiox13050570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/29/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
Valorisation of food by-products, like spent brewer's yeast and fruit pomaces, represents an important strategy for contributing to sustainable food production. The aims of this study were to obtain Maillard conjugates based on spent yeast protein hydrolysate (SYH) with dextran (D) or maltodextrin (MD) by means of ultrasound treatment and to use them for developing encapsulation systems for the anthocyanins from aronia pomace. The ultrasound-assisted Maillard conjugation promoted the increase of antioxidant activity by about 50% compared to conventional heating and SYH, and was not dependent on the polysaccharide type. The ability of the conjugates to act as wall material for encapsulating various biologically active compounds was tested via a freeze-drying method. The retention efficiency ranged between 58.25 ± 0.38%-65.25 ± 2.21%, while encapsulation efficiency varied from 67.09 ± 2.26% to 88.72 ± 0.33%, indicating the strong effect of the carrier material used for encapsulation. The addition of the hydrolysed yeast cell wall played a positive effect on the encapsulation efficiency of anthocyanins when used in combination with the SYH:MD conjugates. On the other hand, the stability of anthocyanins during storage, as well as their bioavailability during gastrointestinal digestion, were higher when using the SYH:D conjugate. The study showed that hydrolysis combined with the ultrasound-assisted Maillard reaction has a great potential for the valorisation of spent brewer's yeast as delivery material for the encapsulation of bioactive compounds.
Collapse
Affiliation(s)
- Loredana Dumitrașcu
- Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, Domnească Street 111, 800201 Galați, Romania; (L.D.); (M.B.); (M.T.); (E.E.)
| | - Mihaela Brumă (Călin)
- Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, Domnească Street 111, 800201 Galați, Romania; (L.D.); (M.B.); (M.T.); (E.E.)
| | - Mihaela Turturică
- Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, Domnească Street 111, 800201 Galați, Romania; (L.D.); (M.B.); (M.T.); (E.E.)
| | - Elena Enachi
- Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, Domnească Street 111, 800201 Galați, Romania; (L.D.); (M.B.); (M.T.); (E.E.)
- Faculty of Medicine and Pharmacy, Dunarea de Jos University of Galati, 35 A.I. Cuza Str., 800010 Galaţi, Romania
| | | | - Iuliana Aprodu
- Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, Domnească Street 111, 800201 Galați, Romania; (L.D.); (M.B.); (M.T.); (E.E.)
| |
Collapse
|
3
|
Min JH, Lee YJ, Kang HJ, Moon NR, Park YK, Joo ST, Jung YH. Characterization of Yeast Protein Hydrolysate for Potential Application as a Feed Additive. Food Sci Anim Resour 2024; 44:723-737. [PMID: 38765283 PMCID: PMC11097015 DOI: 10.5851/kosfa.2024.e33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 05/21/2024] Open
Abstract
Yeast protein can be a nutritionally suitable auxiliary protein source in livestock food. The breakdown of proteins and thereby generating high-quality peptide, typically provides nutritional benefits. Enzyme hydrolysis has been effectively uesed to generate peptides; however, studies on the potential applications of different types of enzymes to produce yeast protein hydrolysates remain limited. This study investigated the effects of endo- (alcalase and neutrase) and exotype (flavourzyme and prozyme 2000P) enzyme treatments on yeast protein. Endotype enzymes facilitate a higher hydrolysis efficiency in yeast proteins than exotype enzymes. The highest degree of hydrolysis was observed for the protein treated with neutrase, which was followed by alcalase, prozyme 2000P, and flavourzyme. Furthermore, endotype enzyme treated proteins exhibited higher solubility than their exotype counterparts. Notably, the more uniform particle size distribution was observed in endotype treated yeast protein. Moreover, compared with the original yeast protein, the enzymatic protein hydrolysates possessed a higher content of β-sheets structures, indicating their higher structural stability. Regardless of enzyme type, enzyme treated protein possessed a higher total free amino acid content including essential amino acids. Therefore, this study provides significant insights into the production of protein hydrolysates as an alternative protein material.
Collapse
Affiliation(s)
- Ju Hyun Min
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Korea
| | - Yeon Ju Lee
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Korea
| | - Hye Jee Kang
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Korea
| | - Na Rae Moon
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Korea
| | | | - Seon-Tea Joo
- Division of Applied Life Science (BK21 Four), Institute of Agriculture & Life Science, Gyeongsang National University, Jinju 52828, Korea
| | - Young Hoon Jung
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Korea
| |
Collapse
|
4
|
Jeong S, Jung JH, Jung KW, Ryu S, Lim S. From microbes to molecules: a review of microbial-driven antioxidant peptide generation. World J Microbiol Biotechnol 2023; 40:29. [PMID: 38057638 DOI: 10.1007/s11274-023-03826-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/01/2023] [Indexed: 12/08/2023]
Abstract
Oxidative stress, arising from excess reactive oxygen species (ROS) or insufficient antioxidant defenses, can damage cellular components, such as lipids, proteins, and nucleic acids, resulting in cellular dysfunction. The relationship between oxidative stress and various health disorders has prompted investigations into potent antioxidants that counteract ROS's detrimental impacts. In this context, antioxidant peptides, composed of two to twenty amino acids, have emerged as a unique group of antioxidants and have found applications in food, nutraceuticals, and pharmaceuticals. Antioxidant peptides are sourced from natural ingredients, mainly proteins derived from foods like milk, eggs, meat, fish, and plants. These peptides can be freed from their precursor proteins through enzymatic hydrolysis, fermentation, or gastrointestinal digestion. Previously published studies focused on the origin and production methods of antioxidant peptides, describing their structure-activity relationship and the mechanisms of food-derived antioxidant peptides. Yet, the role of microorganisms hasn't been sufficiently explored, even though the production of antioxidant peptides frequently employs a variety of microorganisms, such as bacteria, fungi, and yeasts, which are recognized for producing specific proteases. This review aims to provide a comprehensive overview of microorganisms and their proteases participating in enzymatic hydrolysis and microbial fermentation to produce antioxidant peptides. This review also covers endogenous peptides originating from microorganisms. The information obtained from this review might guide the discovery of novel organisms adept at generating antioxidant peptides.
Collapse
Affiliation(s)
- Soyoung Jeong
- Radiation Biotechnology Division, Korea Atomic Energy Research Institute, Jeongeup, 56212, Republic of Korea
- Department of Food and Animal Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jong-Hyun Jung
- Radiation Biotechnology Division, Korea Atomic Energy Research Institute, Jeongeup, 56212, Republic of Korea
| | - Kwang-Woo Jung
- Radiation Biotechnology Division, Korea Atomic Energy Research Institute, Jeongeup, 56212, Republic of Korea
| | - Sangryeol Ryu
- Department of Food and Animal Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sangyong Lim
- Radiation Biotechnology Division, Korea Atomic Energy Research Institute, Jeongeup, 56212, Republic of Korea.
- Department of Radiation Science, University of Science and Technology, Daejeon, 34113, Republic of Korea.
| |
Collapse
|