1
|
Yin M, Liu L, Yan Y, Wang H, Li W, Dong Y, Kong G. A targeting nanoplatform for chemo-photothermal synergistic therapy of small-cell lung cancer. Int J Cancer 2024; 155:2094-2106. [PMID: 38985144 DOI: 10.1002/ijc.35065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 05/25/2024] [Accepted: 05/27/2024] [Indexed: 07/11/2024]
Abstract
The precise delivery of drugs to tumor sites and the thermoresistance of tumors remain major challenges in photothermal therapy (PTT). Somatostatin receptor 2 (SSTR2) is proposed as an ideal target for the precise treatment of SCLC. We developed a targeting nano-drug delivery system comprising anti-SSTR2 monoclonal antibody (MAb) surface-modified nanoparticles co-encapsulating Cypate and gambogic acid (GA). The formed SGCPNs demonstrated excellent monodispersity, physiological stability, preferable biocompatibility, and resultant efficient photothermal conversion efficacy. SGCPNs were quickly internalized by SSTR2-overexpressing SCLC cells, triggering the release of GA under acidic and near-infrared (NIR) laser irradiation environments, leading to their escape from lysosomes to the cytosol and then diffusion into the nucleus. SGCPNs can not only decrease the cell survival rate but also inhibit the activity of heat shock protein 90 (HSP90). SGCPNs can be precisely delivered to xenograft tumors of SSTR2-positive SCLC in vivo. Upon NIR laser irradiation, therapy of SGCPNs showed significant tumor regression. In conclusion, SGCPNs provide a new chemo-photothermal synergistic treatment strategy for targeting SCLC.
Collapse
Affiliation(s)
- Moli Yin
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Jilin Collaborative Innovation Center for Antibody Engineering, Jilin Medical University, Jilin, China
| | - Lei Liu
- Jilin Collaborative Innovation Center for Antibody Engineering, Jilin Medical University, Jilin, China
| | - Yu Yan
- College of Laboratory Medicine, Jilin Medical University, Jilin, China
| | - Huiyan Wang
- Jilin Collaborative Innovation Center for Antibody Engineering, Jilin Medical University, Jilin, China
| | - Wenliang Li
- Jilin Collaborative Innovation Center for Antibody Engineering, Jilin Medical University, Jilin, China
| | - Yuan Dong
- College of Laboratory Medicine, Jilin Medical University, Jilin, China
| | - Guangyao Kong
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
2
|
Pancotti A, de Barros Souza MV, Santos Abreu A, Rodrigues Rezende S, Lázaro Moreli M, Uceda Otero E, Landers R, Soares R, Wang J. Evaluation of Antibacterial Activity of Bismuth Ferrites Nanoparticles in the Inhibition of E. Coli and S. Aureus Bacteria. Chem Biodivers 2024:e202402048. [PMID: 39291792 DOI: 10.1002/cbdv.202402048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/12/2024] [Accepted: 09/18/2024] [Indexed: 09/19/2024]
Abstract
In this work, bismuth ferrites (BFO) nanoparticles were produced in the form of using sol-gel technique, followed by annealing in a tube furnace in temperatures from 400 °C to 650 °C. X-ray diffraction (XRD) results showed the formation of small sizes nanoparticles (NPs) with high purity. Structural analysis displayed that annealing at 600 °C could make BFO NPs be fitted to rhombohedral space group (R3c), with small quantity of spurious phases. The sizes of the BFO nanoparticles determined by transmission electron microscopy (HRTEM) are between 50 to 100 nm. To evaluate the efficiency of BFO in antimicrobial susceptibility tests, the nanoparticles were dispersed through cand tested agar diffusion method and dilution in a 96 well plate using a Gram-positive strains (Staphylococcus aureus) and Gram negative strain (Escherichia coli). The antibacterial activity of the BFO NPs was tested at concentrations of 2 mg/mL with MIC greater than 60 μg/mL for both bacteria.
Collapse
Affiliation(s)
- Alexandre Pancotti
- Universidade Federal de Jataí, Unidade Acadêmica Especial de Ciências Exatas e Tecnológicas, PPGCAS, Laboratório de Materiais, Rod. Br 364, km 168, CEP 75801-615, Jataí-GO, Brazil
| | - Mauro Vinícius de Barros Souza
- Universidade Federal de Jataí, Unidade Acadêmica Especial de Ciências Exatas e Tecnológicas, PPGCAS, Laboratório de Materiais, Rod. Br 364, km 168, CEP 75801-615, Jataí-GO, Brazil
| | - Amanda Santos Abreu
- Universidade Federal de Jataí, Unidade Acadêmica Especial de Ciências Exatas e Tecnológicas, PPGCAS, Laboratório de Materiais, Rod. Br 364, km 168, CEP 75801-615, Jataí-GO, Brazil
| | - Stefane Rodrigues Rezende
- Universidade Federal de Jataí, Instituto de Ciências da Saúde - ICS, PPGCAS, Rod. Br 364, km 168, CEP 75801-615, Jataí-GO, Brazil
| | - Marcos Lázaro Moreli
- Universidade Federal de Jataí, Instituto de Ciências da Saúde - ICS, PPGCAS, Rod. Br 364, km 168, CEP 75801-615, Jataí-GO, Brazil
| | - Enrique Uceda Otero
- Universidade Federal de Jataí, Unidade Acadêmica Especial de Ciências Exatas e Tecnológicas, PPGCAS, Laboratório de Materiais, Rod. Br 364, km 168, CEP 75801-615, Jataí-GO, Brazil
| | - Richard Landers
- Universidade Estadual de Campinas, Instituto de Física Gleb Wataghin, Surface Science Group, CEP 13083-859, Campinas-SP, Brazil
| | - Roniere Soares
- Universidade Federal de Campina Grande, Unidade Acadêmica de Engenharia de Produção, R. Aprígio Veloso, 882 - Universitário, 58429-900, Campina Grande - PB, Brazil
| | - Jiale Wang
- College of Science, Donghua University, 201620, Shanghai, China
- Donghua University, Shanghai Institute of Intelligent Electronics and Systems, Shanghai, China
| |
Collapse
|
3
|
Lansangan C, Khoobchandani M, Jain R, Rudensky S, Perry CC, Patil R. Designing Gold Nanoparticles for Precise Glioma Treatment: Challenges and Alternatives. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1153. [PMID: 38473623 DOI: 10.3390/ma17051153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/24/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024]
Abstract
Glioblastoma multiforme (GBM) is a glioma and the most aggressive type of brain tumor with a dismal average survival time, despite the standard of care. One promising alternative therapy is boron neutron capture therapy (BNCT), which is a noninvasive therapy for treating locally invasive malignant tumors, such as glioma. BNCT involves boron-10 isotope capturing neutrons to form boron-11, which then releases radiation directly into tumor cells with minimal damage to healthy tissues. This therapy lacks clinically approved targeted blood-brain-barrier-permeating delivery vehicles for the central nervous system (CNS) entry of therapeutic boron-10. Gold nanoparticles (GNPs) are selective and effective drug-delivery vehicles because of their desirable properties, facile synthesis, and biocompatibility. This review discusses biomedical/therapeutic applications of GNPs as a drug delivery vehicle, with an emphasis on their potential for carrying therapeutic drugs, imaging agents, and GBM-targeting antibodies/peptides for treating glioma. The constraints of GNP therapeutic efficacy and biosafety are discussed.
Collapse
Affiliation(s)
- Cedric Lansangan
- Division of Cancer Science, Departments of Basic Sciences and Neurosurgery, School of Medicine, Loma Linda University (LLU), 11175 Campus St., Loma Linda, CA 92350, USA
| | - Menka Khoobchandani
- Division of Cancer Science, Departments of Basic Sciences and Neurosurgery, School of Medicine, Loma Linda University (LLU), 11175 Campus St., Loma Linda, CA 92350, USA
| | - Ruchit Jain
- Department of Surgery, Government Medical College, Miraj 416410, India
| | - Serge Rudensky
- Division of Cancer Science, Departments of Basic Sciences and Neurosurgery, School of Medicine, Loma Linda University (LLU), 11175 Campus St., Loma Linda, CA 92350, USA
| | - Christopher C Perry
- Division of Biochemistry, Department of Basic Sciences, School of Medicine, Loma Linda University (LLU), 11175 Campus St., Loma Linda, CA 92350, USA
| | - Rameshwar Patil
- Division of Cancer Science, Departments of Basic Sciences and Neurosurgery, School of Medicine, Loma Linda University (LLU), 11175 Campus St., Loma Linda, CA 92350, USA
| |
Collapse
|
4
|
Aly Khalil AM, Saied E, Mekky AE, Saleh AM, Al Zoubi OM, Hashem AH. Green biosynthesis of bimetallic selenium-gold nanoparticles using Pluchea indica leaves and their biological applications. Front Bioeng Biotechnol 2024; 11:1294170. [PMID: 38274007 PMCID: PMC10809157 DOI: 10.3389/fbioe.2023.1294170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
Increasing bacterial resistance and the negative impact of currently used antibacterial agents have produced the need for novel antibacterial agents and anticancer drugs. In this regard, nanotechnology could provide safer and more efficient therapeutic agents. The main methods for nanoparticle production are chemical and physical approaches that are often costly and environmentally unsafe. In the current study, Pluchea indica leaf extract was used for the biosynthesis of bimetallic selenium-gold nanoparticles (Se-Au BNPs) for the first time. Phytochemical examinations revealed that P. indica leaf extract includes 90.25 mg/g dry weight (DW) phenolics, 275.53 mg/g DW flavonoids, and 26.45 mg/g DW tannins. X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier-transform infrared (FTIR) spectroscopy, dynamic light scattering (DLS), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDX) techniques were employed to characterize Se-Au BNPs. Based on UV-vis spectra, the absorbance of Se-Au BNPs peaked at 238 and 374 nm. In SEM imaging, Se-Au BNPs emerged as bright particles, and both Au and Se were uniformly distributed throughout the P. indica leaf extract. XRD analysis revealed that the average size of Se-Au BNPs was 45.97 nm. The Se-Au BNPs showed antibacterial properties against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Bacillus subtilis, with minimum inhibitory concentrations (MICs) of 31.25, 15.62, 31.25, and 3.9 μg/mL, respectively. Surprisingly, a cytotoxicity assay revealed that the IC50 value toward the Wi 38 normal cell line was 116.8 μg/mL, implying that all of the MICs described above could be used safely. More importantly, Se-Au BNPs have shown higher anticancer efficacy against human breast cancer cells (MCF7), with an IC50 value of 13.77 μg/mL. In conclusion, this paper is the first to provide data on the effective utilization of P. indica leaf extract in the biosynthesis of biologically active Se-Au BNPs.
Collapse
Affiliation(s)
| | - Ebrahim Saied
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Alsayed E. Mekky
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Ahmed M. Saleh
- Biology Department, Faculty of Science Yanbu, Taibah University, Medina, Saudi Arabia
| | - Omar Mahmoud Al Zoubi
- Biology Department, Faculty of Science Yanbu, Taibah University, Medina, Saudi Arabia
| | - Amr H. Hashem
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
5
|
Holubnycha V, Husak Y, Korniienko V, Bolshanina S, Tveresovska O, Myronov P, Holubnycha M, Butsyk A, Borén T, Banasiuk R, Ramanavicius A, Pogorielov M. Antimicrobial Activity of Two Different Types of Silver Nanoparticles against Wide Range of Pathogenic Bacteria. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:137. [PMID: 38251102 PMCID: PMC10818322 DOI: 10.3390/nano14020137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/22/2023] [Accepted: 01/04/2024] [Indexed: 01/23/2024]
Abstract
The emergence of antibiotic-resistant bacteria, particularly the most hazardous pathogens, namely Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp. (ESKAPE)-pathogens pose a significant threat to global health. Current antimicrobial therapies, including those targeting biofilms, have shown limited effectiveness against these superbugs. Nanoparticles, specifically silver nanoparticles (AgNPs), have emerged as a promising alternative for combating bacterial infections. In this study, two types of AgNPs with different physic-chemical properties were evaluated for their antimicrobial and antibiofilm activities against clinical ESKAPE strains. Two types of silver nanoparticles were assessed: spherical silver nanoparticles (AgNPs-1) and cubic-shaped silver nanoparticles (AgNPs-2). AgNPs-2, characterized by a cubic shape and higher surface-area-to-volume ratio, exhibited superior antimicrobial activity compared to spherical AgNPs-1. Both types of AgNPs demonstrated the ability to inhibit biofilm formation and disrupt established biofilms, leading to membrane damage and reduced viability of the bacteria. These findings highlight the potential of AgNPs as effective antibacterial agents against ESKAPE pathogens, emphasizing the importance of nanoparticle characteristics in determining their antimicrobial properties. Further research is warranted to explore the underlying mechanisms and optimize nanoparticle-based therapies for the management of infections caused by antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Viktoriia Holubnycha
- Medical Institute, Sumy State University, 2, Rymskogo-Korsakova St., 40007 Sumy, Ukraine; (Y.H.); (V.K.); (S.B.); (O.T.); (P.M.); (M.H.); (M.P.)
| | - Yevheniia Husak
- Medical Institute, Sumy State University, 2, Rymskogo-Korsakova St., 40007 Sumy, Ukraine; (Y.H.); (V.K.); (S.B.); (O.T.); (P.M.); (M.H.); (M.P.)
- Faculty of Chemistry, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Viktoriia Korniienko
- Medical Institute, Sumy State University, 2, Rymskogo-Korsakova St., 40007 Sumy, Ukraine; (Y.H.); (V.K.); (S.B.); (O.T.); (P.M.); (M.H.); (M.P.)
- Institute of Atomic Physics and Spectroscopy, University of Latvia, 3 Jelgavas St., LV-1004 Riga, Latvia
| | - Svetlana Bolshanina
- Medical Institute, Sumy State University, 2, Rymskogo-Korsakova St., 40007 Sumy, Ukraine; (Y.H.); (V.K.); (S.B.); (O.T.); (P.M.); (M.H.); (M.P.)
| | - Olesia Tveresovska
- Medical Institute, Sumy State University, 2, Rymskogo-Korsakova St., 40007 Sumy, Ukraine; (Y.H.); (V.K.); (S.B.); (O.T.); (P.M.); (M.H.); (M.P.)
| | - Petro Myronov
- Medical Institute, Sumy State University, 2, Rymskogo-Korsakova St., 40007 Sumy, Ukraine; (Y.H.); (V.K.); (S.B.); (O.T.); (P.M.); (M.H.); (M.P.)
| | - Marharyta Holubnycha
- Medical Institute, Sumy State University, 2, Rymskogo-Korsakova St., 40007 Sumy, Ukraine; (Y.H.); (V.K.); (S.B.); (O.T.); (P.M.); (M.H.); (M.P.)
| | - Anna Butsyk
- Department Medical Biochemistry and Biophysics, Umeå University, SE-901 87 Umeå, Sweden; (A.B.); (T.B.)
| | - Thomas Borén
- Department Medical Biochemistry and Biophysics, Umeå University, SE-901 87 Umeå, Sweden; (A.B.); (T.B.)
| | - Rafal Banasiuk
- NanoWave, 02-676 Warsaw, Poland;
- Mechanical Faculty, Gdańsk University of Technology, G. Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Arunas Ramanavicius
- Department of Physical Chemistry, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania
| | - Maksym Pogorielov
- Medical Institute, Sumy State University, 2, Rymskogo-Korsakova St., 40007 Sumy, Ukraine; (Y.H.); (V.K.); (S.B.); (O.T.); (P.M.); (M.H.); (M.P.)
- Institute of Atomic Physics and Spectroscopy, University of Latvia, 3 Jelgavas St., LV-1004 Riga, Latvia
| |
Collapse
|
6
|
Hosseini SA, Kardani A, Yaghoobi H. A comprehensive review of cancer therapies mediated by conjugated gold nanoparticles with nucleic acid. Int J Biol Macromol 2023; 253:127184. [PMID: 37797860 DOI: 10.1016/j.ijbiomac.2023.127184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/16/2023] [Accepted: 09/24/2023] [Indexed: 10/07/2023]
Abstract
Nucleic acids provide a promising therapeutic platform by targeting various cell signaling pathways involved in cancer and genetic disorders. However, maintaining optimal stability during delivery limits their utility. Nucleic acid delivery vehicles are generally categorized into biological and synthetic carriers. Regardless of the efficiency of biological vectors, such as viral vectors, issues related to their immunogenicity and carcinogenesis are very important and vital for clinical applications. On the other hand, synthetic vectors such as lipids or polymers, have been widely used for nucleic acid delivery. Despite their transfection efficiency, low storage stability, targeting inefficiency, and tracking limitations are among the limitations of the clinical application of these vectors. In the past decades, gold nanoparticles with unique properties have been shown to be highly efficient mineral vectors for overcoming these obstacles. In this review, we focus on gold nanoparticle-nucleic acid combinations and highlight their use in the treatment of various types of cancers. Furthermore, by stating the biological applications of these structures, we will discuss their clinical applications.
Collapse
Affiliation(s)
- Sayedeh Azimeh Hosseini
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran; Department of Medical Biotechnology, School of Advanced Technology, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Arefeh Kardani
- Department of Medical Biotechnology, School of Advanced Technology, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Hajar Yaghoobi
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
7
|
Magesh V, Kothari VS, Ganapathy D, Atchudan R, Arya S, Nallaswamy D, Sundramoorthy AK. Using Sparfloxacin-Capped Gold Nanoparticles to Modify a Screen-Printed Carbon Electrode Sensor for Ethanol Determination. SENSORS (BASEL, SWITZERLAND) 2023; 23:8201. [PMID: 37837031 PMCID: PMC10575339 DOI: 10.3390/s23198201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/18/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023]
Abstract
Alcohol is a dangerous substance causing global mortality and health issues, including mental health problems. Regular alcohol consumption can lead to depression, anxiety, cognitive decline, and increased risk of alcohol-related disorders. Thus, monitoring ethanol levels in biological samples could contribute to maintaining good health. Herein, we developed an electrochemical sensor for the determination of ethanol in human salivary samples. Initially, the tetra-chloroauric acid (HAuCl4) was chemically reduced using sparfloxacin (Sp) which also served as a stabilizing agent for the gold nanoparticles (AuNPs). As-prepared Sp-AuNPs were comprehensively characterized and confirmed by UV-visible spectroscopy, X-ray diffraction, field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDS), and elemental mapping analysis. The average particle size (~25 nm) and surface charge (negative) of Sp-AuNPs were determined by using dynamic light scattering (DLS) and Zeta potential measurements. An activated screen-printed carbon electrode (A-SPE) was modified using Sp-AuNPs dispersion, which exhibited greater electrocatalytic activity and sensitivity for ethanol (EtOH) oxidation in 0.1 M sodium hydroxide (NaOH) as studied by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). DPV showed a linear response for EtOH from 25 µM to 350 µM with the lowest limit of detection (LOD) of 0.55 µM. Reproducibility and repeatability studies revealed that the Sp-AuNPs/A-SPEs were highly stable and very sensitive to EtOH detection. Additionally, the successful electrochemical determination of EtOH in a saliva sample was carried out. The recovery rate of EtOH spiked in the saliva sample was found to be 99.6%. Thus, the incorporation of Sp-AuNPs within sensors could provide new possibilities in the development of ethanol sensors with an improved level of precision and accuracy.
Collapse
Affiliation(s)
- Vasanth Magesh
- Centre for Nano-Biosensors, Department of Prosthodontics, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College and Hospitals, 162 Poonamallee High Road, Velappanchavadi, Chennai 600077, India
| | - Vishaka S. Kothari
- Centre for Nano-Biosensors, Department of Prosthodontics, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College and Hospitals, 162 Poonamallee High Road, Velappanchavadi, Chennai 600077, India
| | - Dhanraj Ganapathy
- Centre for Nano-Biosensors, Department of Prosthodontics, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College and Hospitals, 162 Poonamallee High Road, Velappanchavadi, Chennai 600077, India
| | - Raji Atchudan
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Sandeep Arya
- Department of Physics, University of Jammu, Jammu 180006, India
| | - Deepak Nallaswamy
- Centre for Nano-Biosensors, Department of Prosthodontics, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College and Hospitals, 162 Poonamallee High Road, Velappanchavadi, Chennai 600077, India
| | - Ashok K. Sundramoorthy
- Centre for Nano-Biosensors, Department of Prosthodontics, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College and Hospitals, 162 Poonamallee High Road, Velappanchavadi, Chennai 600077, India
| |
Collapse
|