1
|
Sun P, Zheng P, Chen P, Wu D, Xu S. Engineering of 4-hydroxyphenylacetate 3-hydroxylase derived from Pseudomonas aeruginosa for the ortho-hydroxylation of ferulic acid. Int J Biol Macromol 2024; 264:130545. [PMID: 38431000 DOI: 10.1016/j.ijbiomac.2024.130545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 02/21/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
Polyphenolic compounds have natural antioxidant properties, and their antioxidant activity is usually related to the number and position of hydroxyls. Here, we successfully applied the engineered 4-hydroxyphenylacetate 3-hydroxylases (4HPA3Hs) derived from Pseudomonas aeruginosa to catalyze ferulic acid (FA) synthesis of ortho-hydroxyferulic acid (5-hydroxyferulic acid, 5-OHFA). Through optimization of co-expression, the oxygenase component (PaHpaB) and the reductase component (PaHpaC) in E. coli, and optimization of whole-cell catalytic conditions, the engineered strain BC catalyzed ortho-hydroxylation of 2 g/L of FA with a yield of 75 % from 39 %. Through tunnel engineering of PaHpaB, the obtained mutants F301A and Q376A almost completely transformed 2 g/L of FA. Further, a multiple mutant L214A/F301A/Q376A converted 4 g/L FA into 5-OHFA within 12 h, and the yield reached 99.9 %, which was approximately 2.39-fold of the wild type. The kcat/Km value of L214A/F301A/Q376A was about 307 times greater than that of the wide type. Analysis of three-dimensional structural models showed that L214, F301, and Q376 mutated into Ala, which greatly shortened the side chain and broadened the tunnel size, thereby significantly improving the catalytic efficiency of L214A/F301A/Q376A. This biosynthesis of 5-OHFA is simple, efficient, and green, suggesting that it is useful for efficient biosynthesis of polyphenolic compounds.
Collapse
Affiliation(s)
- Ping Sun
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Pu Zheng
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China..
| | - Pengcheng Chen
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Dan Wu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Shuping Xu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
| |
Collapse
|
2
|
Ohashi H, Koma D, Yamanaka H, Ohmoto T. Enzymatic properties of UDP-glycosyltransferase 89B1 from radish and modulation of enzyme catalytic activity via loop region mutation. PLoS One 2024; 19:e0299755. [PMID: 38416725 PMCID: PMC10901349 DOI: 10.1371/journal.pone.0299755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/14/2024] [Indexed: 03/01/2024] Open
Abstract
Glycosyltransferases (GTs), crucial enzymes in plants, alter natural substances through glycosylation, a process with extensive applications in pharmaceuticals, food, and cosmetics. This study narrows its focus to GT family 1, specifically UDP-glycosyltransferases (UGTs), which are known for glycosylating small phenolic compounds, especially hydroxybenzoates. We delve into the workings of Raphanus sativus glucosyltransferase (Rs89B1), a homolog of Arabidopsis thaliana UGT89B1, and its mutant to explore their glycosyltransferase activities toward hydroxybenzoates. Our findings reveal that Rs89B1 glycosylates primarily the para-position of mono-, di-, trihydroxy benzoic acids, and its substrate affinity is swayed by the presence and position of the hydroxyl group on the benzene ring of hydroxybenzoate. Moreover, mutations in the loop region of Rs89B1 impact both substrate affinity and catalytic activity. The study demonstrates that insertional/deletional mutations in non-conserved regions, which are distant from the UGT's recognition site, can have an effect on the UGT's substrate recognition site, which in turn affects acceptor substrate selectivity and glycosyltransferase activity. This research uncovers new insights suggesting that mutations in the loop region could potentially fine-tune enzyme properties and enhance its catalytic activity. These findings not only have significant implications for enzyme engineering in biotechnological applications but also contribute to a more profound understanding of this field.
Collapse
Affiliation(s)
- Hiroyuki Ohashi
- Osaka Research Institute of Industrial Science and Technology, Osaka-City, Osaka, Japan
| | - Daisuke Koma
- Osaka Research Institute of Industrial Science and Technology, Osaka-City, Osaka, Japan
| | - Hayato Yamanaka
- Osaka Research Institute of Industrial Science and Technology, Osaka-City, Osaka, Japan
| | - Takashi Ohmoto
- Osaka Research Institute of Industrial Science and Technology, Osaka-City, Osaka, Japan
| |
Collapse
|
3
|
Hu XB, Fu QQ, Huang XY, Chu XQ, Shen ZL, Miao C, Chen W. Hydroxylation of Aryl Sulfonium Salts for Phenol Synthesis under Mild Reaction Conditions. Molecules 2024; 29:831. [PMID: 38398583 PMCID: PMC10891898 DOI: 10.3390/molecules29040831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/04/2024] [Accepted: 02/10/2024] [Indexed: 02/25/2024] Open
Abstract
Hydroxylation of aryl sulfonium salts could be realized by utilizing acetohydroxamic acid and oxime as hydroxylative agents in the presence of cesium carbonate as a base, leading to a variety of structurally diverse hydroxylated arenes in 47-95% yields. In addition, the reaction exhibited broad functionality tolerance, and a range of important functional groups (e.g., cyano, nitro, sulfonyl, formyl, keto, and ester) could be well amenable to the mild reaction conditions.
Collapse
Affiliation(s)
- Xuan-Bo Hu
- Technical Institute of Fluorochemistry (TIF), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China; (X.-B.H.); (Q.-Q.F.); (X.-Y.H.); (X.-Q.C.)
| | - Qian-Qian Fu
- Technical Institute of Fluorochemistry (TIF), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China; (X.-B.H.); (Q.-Q.F.); (X.-Y.H.); (X.-Q.C.)
| | - Xue-Ying Huang
- Technical Institute of Fluorochemistry (TIF), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China; (X.-B.H.); (Q.-Q.F.); (X.-Y.H.); (X.-Q.C.)
| | - Xue-Qiang Chu
- Technical Institute of Fluorochemistry (TIF), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China; (X.-B.H.); (Q.-Q.F.); (X.-Y.H.); (X.-Q.C.)
| | - Zhi-Liang Shen
- Technical Institute of Fluorochemistry (TIF), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China; (X.-B.H.); (Q.-Q.F.); (X.-Y.H.); (X.-Q.C.)
| | - Chengping Miao
- College of Biological, Chemical Science and Engineering, Jiaxing University, 118 Jiahang Road, Jiaxing 314001, China
| | - Weiyi Chen
- Soochow College, Soochow University, Suzhou 215006, China
| |
Collapse
|
4
|
Sun P, Xu S, Tian Y, Chen P, Wu D, Zheng P. 4-Hydroxyphenylacetate 3-Hydroxylase (4HPA3H): A Vigorous Monooxygenase for Versatile O-Hydroxylation Applications in the Biosynthesis of Phenolic Derivatives. Int J Mol Sci 2024; 25:1222. [PMID: 38279222 PMCID: PMC10816480 DOI: 10.3390/ijms25021222] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 01/28/2024] Open
Abstract
4-Hydroxyphenylacetate 3-hydroxylase (4HPA3H) is a long-known class of two-component flavin-dependent monooxygenases from bacteria, including an oxygenase component (EC 1.14.14.9) and a reductase component (EC 1.5.1.36), with the latter being accountable for delivering the cofactor (reduced flavin) essential for o-hydroxylation. 4HPA3H has a broad substrate spectrum involved in key biological processes, including cellular catabolism, detoxification, and the biosynthesis of bioactive molecules. Additionally, it specifically hydroxylates the o-position of the C4 position of the benzene ring in phenolic compounds, generating high-value polyhydroxyphenols. As a non-P450 o-hydroxylase, 4HPA3H offers a viable alternative for the de novo synthesis of valuable natural products. The enzyme holds the potential to replace plant-derived P450s in the o-hydroxylation of plant polyphenols, addressing the current significant challenge in engineering specific microbial strains with P450s. This review summarizes the source distribution, structural properties, and mechanism of 4HPA3Hs and their application in the biosynthesis of natural products in recent years. The potential industrial applications and prospects of 4HPA3H biocatalysts are also presented.
Collapse
Affiliation(s)
| | | | | | | | | | - Pu Zheng
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (P.S.); (Y.T.); (P.C.); (D.W.)
| |
Collapse
|
5
|
Yang K, Zhang Q, Zhao W, Hu S, Lv C, Huang J, Mei J, Mei L. Advances in 4-Hydroxyphenylacetate-3-hydroxylase Monooxygenase. Molecules 2023; 28:6699. [PMID: 37764475 PMCID: PMC10537072 DOI: 10.3390/molecules28186699] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/16/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Catechols have important applications in the pharmaceutical, food, cosmetic, and functional material industries. 4-hydroxyphenylacetate-3-hydroxylase (4HPA3H), a two-component enzyme system comprising HpaB (monooxygenase) and HpaC (FAD oxidoreductase), demonstrates significant potential for catechol production because it can be easily expressed, is highly active, and exhibits ortho-hydroxylation activity toward a broad spectrum of phenol substrates. HpaB determines the ortho-hydroxylation efficiency and substrate spectrum of the enzyme; therefore, studying its structure-activity relationship, improving its properties, and developing a robust HpaB-conducting system are of significance and value; indeed, considerable efforts have been made in these areas in recent decades. Here, we review the classification, molecular structure, catalytic mechanism, primary efforts in protein engineering, and industrial applications of HpaB in catechol synthesis. Current trends in the further investigation of HpaB are also discussed.
Collapse
Affiliation(s)
- Kai Yang
- Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- School of Biological and Chemical Engineering, Ningbo Tech University, Ningbo 315100, China
| | - Qianchao Zhang
- School of Biological and Chemical Engineering, Ningbo Tech University, Ningbo 315100, China
| | - Weirui Zhao
- School of Biological and Chemical Engineering, Ningbo Tech University, Ningbo 315100, China
| | - Sheng Hu
- School of Biological and Chemical Engineering, Ningbo Tech University, Ningbo 315100, China
| | - Changjiang Lv
- Department of Chemical and Biological Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Jun Huang
- Department of Chemical and Biological Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Jiaqi Mei
- Hangzhou Huadong Medicine Group Co., Ltd., Hangzhou 310011, China
| | - Lehe Mei
- Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- School of Biological and Chemical Engineering, Ningbo Tech University, Ningbo 315100, China
- Jinhua Advanced Research Institute, Jinhua 321019, China
| |
Collapse
|