1
|
Wen J, Wang M, Zeng Y, He F, Li S, Zhang K, Weng Q. Verification of AKT and CDK5 Gene and RNA Interference Combined with Irradiation to Mediate Fertility Changes in Plutella xylostella (Linnaeus). Int J Mol Sci 2024; 25:4623. [PMID: 38731841 PMCID: PMC11082963 DOI: 10.3390/ijms25094623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/18/2024] [Accepted: 04/20/2024] [Indexed: 05/13/2024] Open
Abstract
Plutella xylostella (Linnaeus) mainly damages cruciferous crops and causes huge economic losses. Presently, chemical pesticides dominate its control, but prolonged use has led to the development of high resistance. In contrast, the sterile insect technique provides a preventive and control method to avoid the development of resistance. We discovered two genes related to the reproduction of Plutella xylostella and investigated the efficacy of combining irradiation with RNA interference for pest management. The results demonstrate that after injecting PxAKT and PxCDK5, there was a significant decrease of 28.06% and 25.64% in egg production, and a decrease of 19.09% and 15.35% in the hatching rate compared to the control. The ratio of eupyrene sperm bundles to apyrene sperm bundles also decreased. PxAKT and PxCDK5 were identified as pivotal genes influencing male reproductive processes. We established a dose-response relationship for irradiation (0-200 Gy and 200-400 Gy) and derived the irradiation dose equivalent to RNA interference targeting PxAKT and PxCDK5. Combining RNA interference with low-dose irradiation achieved a sub-sterile effect on Plutella xylostella, surpassing either irradiation or RNA interference alone. This study enhances our understanding of the genes associated with the reproduction of Plutella xylostella and proposes a novel approach for pest management by combining irradiation and RNA interference.
Collapse
Affiliation(s)
- Jiaqi Wen
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China; (J.W.); (M.W.); (Y.Z.); (F.H.); (S.L.)
| | - Mengran Wang
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China; (J.W.); (M.W.); (Y.Z.); (F.H.); (S.L.)
| | - Yuhao Zeng
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China; (J.W.); (M.W.); (Y.Z.); (F.H.); (S.L.)
| | - Fengting He
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China; (J.W.); (M.W.); (Y.Z.); (F.H.); (S.L.)
| | - Shifan Li
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China; (J.W.); (M.W.); (Y.Z.); (F.H.); (S.L.)
| | - Ke Zhang
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China; (J.W.); (M.W.); (Y.Z.); (F.H.); (S.L.)
| | - Qunfang Weng
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China; (J.W.); (M.W.); (Y.Z.); (F.H.); (S.L.)
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
2
|
Liu P, Li Z, Zhang Q, Qiao J, Zheng C, Zheng W, Zhang H. Identification of testis development-related genes by combining Iso-Seq and RNA-Seq in Zeugodacus tau. Front Cell Dev Biol 2024; 12:1356151. [PMID: 38529408 PMCID: PMC10961823 DOI: 10.3389/fcell.2024.1356151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/05/2024] [Indexed: 03/27/2024] Open
Abstract
Introduction: Zeugodacus tau (Walker) is an invasive pest. An effective method to control this pest is the sterile insect technique (SIT). To better apply this technique, it is necessary to understand testis development progression. Methods: Differentially expressed genes (DEGs) during testis development were analyzed by PacBio Iso-Seq and RNA-seq. Results: RNA-Seq library of Z. tau testes on day 1, 6, and 11 post eclosion were constructed. We identified 755 and 865 differentially expressed genes in the comparisons of T6 (testes on day 6) vs. T1 and T11 vs. T1, respectively. The KEGG pathway analysis showed that the DEGs were significantly enriched in retinol metabolism, vitamin B6 metabolism, and ascorbate and aldarate metabolism pathways. Knockdown of retinol dehydrogenase 12-like (rdh12-like), pyridoxal kinase (pdxk) and regucalcin (rgn), the representative gene in each of the above 3 pathways, reduced the hatching rate of Z. tau offspring. In addition, we identified 107 Drosophila spermatogenesis-related orthologous genes in Z. tau, of which innexin 2 (inx2) exhibited significantly up-regulated expression throughout testis development, and the knockdown of this gene reduced offspring hatching rate. Discussion: Our data indicated that rdh12-like, pdxk, rgn, and inx2 genes were related to testis development, and they were conserved in tephritid species. These results suggested that this gene might have the same function in tephritid. The findings provide an insight into testis development and spermatogenesis in tephritid species.
Collapse
Affiliation(s)
- Peipei Liu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
- China-Australia Joint Research Centre for Horticultural and Urban Pests, Huazhong Agricultural University, Wuhan, Hubei, China
- Institute of Urban and Horticultural Entomology, Huazhong Agricultural University, Wuhan, Hubei, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Ziniu Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
- China-Australia Joint Research Centre for Horticultural and Urban Pests, Huazhong Agricultural University, Wuhan, Hubei, China
- Institute of Urban and Horticultural Entomology, Huazhong Agricultural University, Wuhan, Hubei, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Qiuyuan Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
- China-Australia Joint Research Centre for Horticultural and Urban Pests, Huazhong Agricultural University, Wuhan, Hubei, China
- Institute of Urban and Horticultural Entomology, Huazhong Agricultural University, Wuhan, Hubei, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Jiao Qiao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
- China-Australia Joint Research Centre for Horticultural and Urban Pests, Huazhong Agricultural University, Wuhan, Hubei, China
- Institute of Urban and Horticultural Entomology, Huazhong Agricultural University, Wuhan, Hubei, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Chenjun Zheng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
- China-Australia Joint Research Centre for Horticultural and Urban Pests, Huazhong Agricultural University, Wuhan, Hubei, China
- Institute of Urban and Horticultural Entomology, Huazhong Agricultural University, Wuhan, Hubei, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Wenping Zheng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
- China-Australia Joint Research Centre for Horticultural and Urban Pests, Huazhong Agricultural University, Wuhan, Hubei, China
- Institute of Urban and Horticultural Entomology, Huazhong Agricultural University, Wuhan, Hubei, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Hongyu Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
- China-Australia Joint Research Centre for Horticultural and Urban Pests, Huazhong Agricultural University, Wuhan, Hubei, China
- Institute of Urban and Horticultural Entomology, Huazhong Agricultural University, Wuhan, Hubei, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
3
|
Li S, Yang Y, Wen J, He M, Hu Q, Zhang K, Weng Q. Comparative transcriptome analysis reveals the molecular mechanism of sterility induced by irradiation of Plutella xylostella (Linnaeus). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 270:115890. [PMID: 38150750 DOI: 10.1016/j.ecoenv.2023.115890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/21/2023] [Accepted: 12/23/2023] [Indexed: 12/29/2023]
Abstract
Plutella xylostella (Linnaeus) is an important pest of cruciferous plants, which is harmful all over the world, causing serious economic losses, and its drug resistance is increasing rapidly. The sterile insect technique (SIT) is a green control method and does not cause resistance. In this study, transcriptomics and bioinformatics were used to explore the effects of irradiation on the reproductive function of Plutella xylostella, and the response mechanism of sterility under irradiation was initially revealed. We identified 3342 (1682 up-regulated, 1660 down-regulated), 1963 (1042 up-regulated, 921 down-regulated) and 1531 (721 up-regulated, 810 down-regulated) differentially expressed genes (DEGs) in the 200 Gy vs CK (Control Check), 400 Gy vs CK and 400 Gy vs 200 Gy groups, respectively. GO and KEGG analyses were performed for DEGs in each group. The results showed that 200 Gy activated the downstream phosphorylation pathway and inhibited the cytochrome p450 immune response mechanism. 400 Gy promoted protein decomposition and absorption pathways, autophagy pathways, etc. Down-regulated genes were concentrated in the transformation process of energy metabolizing substances such as ATP, phosphorylation signaling pathway, and insulin, while up-regulated genes were concentrated in biological regulation and metabolic processes. Eight genes in the phosphorylation pathway were selected for qRT-PCR verification, and the results showed that the phosphorylation of different dose groups was regulated in different ways. 400 Gy used positive feedback regulation, while the phosphorylation of F1 used negative feedback regulation.
Collapse
Affiliation(s)
- Shifan Li
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Yuhang Yang
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China; Dazhou Vocational and Technical College, Sichuan Province, China
| | - Jiaqi Wen
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Min He
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Qiongbo Hu
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, China
| | - Ke Zhang
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Qunfang Weng
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, China.
| |
Collapse
|