1
|
Charles AL, Giannini M, Meyer A, Charloux A, Talha S, Vogel T, Raul JS, Wolff V, Geny B. Cannabis (THC) Aggravates the Deleterious Effects of Alcohol (EtOH) on Skeletal Muscles' Mitochondrial Respiration: Modulation by Age and Metabolic Phenotypes. BIOLOGY 2024; 13:1080. [PMID: 39765747 PMCID: PMC11673998 DOI: 10.3390/biology13121080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/10/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025]
Abstract
The anti-inflammatory and analgesic properties of cannabis might be useful to treat muscle diseases, including those linked or not to alcohol. Nevertheless, delta 9 tetrahydrocannabinol (THC) and ethanol (EtOH), often used concomitantly, can have deleterious effects on cardiac mitochondria. We therefore determined whether EtOH, alone and associated with THC, impairs skeletal muscle mitochondrial respiration. Further, we investigated potential modulation by metabolic phenotype and age by analyzing predominantly glycolytic gastrocnemius and oxidative soleus muscles in young and middle-aged rats (12 and 49 weeks). Considering the gastrocnemius, EtOH impaired mitochondrial respiration in a similar manner in young- and middle-aged muscles (-34.97 ± 2.97% vs. -37.50 ± 6.03% at 2.1 × 10-5 M; p < 0.05). Interestingly, concomitant THC aggravated EtOH-related mitochondrial impairment in young gastrocnemius (-49.92 ± 1.69%, vs. -34.97 ± 2.97 p < 0.05). Concerning the soleus, EtOH alone mainly decreased young muscle mitochondrial respiration (-42.39 ± 2.42% vs. -17.09 ± 7.61% at 2.1 × 10-5 M, p < 0.001, at 12 and 49 weeks). The soleus was less impaired at 12 weeks by THC and EtOH association than the gastrocnemius (-49.92 ±1.69 vs. -27.22 ± 8.96% in gastrocnemius and soleus, respectively, p < 0.05). In conclusion, EtOH, alone and associated with THC, significantly impairs skeletal muscle mitochondrial respiration and THC aggravates EtOH-induced effects on young glycolytic muscle. Age and metabolic phenotypes modulate these deleterious effects, with the glycolytic muscles of young rats being more prone to impairments than oxidative muscles.
Collapse
Affiliation(s)
- Anne-Laure Charles
- UR 3072, “Mitochondria, Oxidative Stress and Muscle Plasticity”, Biomedicine Research Center of Strasbourg (CRBS), Faculty of Medicine, University of Strasbourg, 67000 Strasbourg, France; (A.-L.C.); (M.G.); (A.M.); (A.C.); (S.T.); (T.V.); (V.W.)
| | - Margherita Giannini
- UR 3072, “Mitochondria, Oxidative Stress and Muscle Plasticity”, Biomedicine Research Center of Strasbourg (CRBS), Faculty of Medicine, University of Strasbourg, 67000 Strasbourg, France; (A.-L.C.); (M.G.); (A.M.); (A.C.); (S.T.); (T.V.); (V.W.)
- Physiology and Functional Explorations Department, University Hospital of Strasbourg, 67000 Strasbourg, France
| | - Alain Meyer
- UR 3072, “Mitochondria, Oxidative Stress and Muscle Plasticity”, Biomedicine Research Center of Strasbourg (CRBS), Faculty of Medicine, University of Strasbourg, 67000 Strasbourg, France; (A.-L.C.); (M.G.); (A.M.); (A.C.); (S.T.); (T.V.); (V.W.)
- Physiology and Functional Explorations Department, University Hospital of Strasbourg, 67000 Strasbourg, France
| | - Anne Charloux
- UR 3072, “Mitochondria, Oxidative Stress and Muscle Plasticity”, Biomedicine Research Center of Strasbourg (CRBS), Faculty of Medicine, University of Strasbourg, 67000 Strasbourg, France; (A.-L.C.); (M.G.); (A.M.); (A.C.); (S.T.); (T.V.); (V.W.)
- Physiology and Functional Explorations Department, University Hospital of Strasbourg, 67000 Strasbourg, France
| | - Samy Talha
- UR 3072, “Mitochondria, Oxidative Stress and Muscle Plasticity”, Biomedicine Research Center of Strasbourg (CRBS), Faculty of Medicine, University of Strasbourg, 67000 Strasbourg, France; (A.-L.C.); (M.G.); (A.M.); (A.C.); (S.T.); (T.V.); (V.W.)
- Physiology and Functional Explorations Department, University Hospital of Strasbourg, 67000 Strasbourg, France
| | - Thomas Vogel
- UR 3072, “Mitochondria, Oxidative Stress and Muscle Plasticity”, Biomedicine Research Center of Strasbourg (CRBS), Faculty of Medicine, University of Strasbourg, 67000 Strasbourg, France; (A.-L.C.); (M.G.); (A.M.); (A.C.); (S.T.); (T.V.); (V.W.)
- Geriatrics Department, University Hospital of Strasbourg, 67200 Strasbourg, France
| | - Jean-Sébastien Raul
- Toxicology Laboratory, Institute of Legal Medicine, Faculty of Medicine, University of Strasbourg, 67000 Strasbourg, France;
| | - Valérie Wolff
- UR 3072, “Mitochondria, Oxidative Stress and Muscle Plasticity”, Biomedicine Research Center of Strasbourg (CRBS), Faculty of Medicine, University of Strasbourg, 67000 Strasbourg, France; (A.-L.C.); (M.G.); (A.M.); (A.C.); (S.T.); (T.V.); (V.W.)
- Neuro-Vascular Department, University Hospital of Strasbourg, 67200 Strasbourg, France
| | - Bernard Geny
- UR 3072, “Mitochondria, Oxidative Stress and Muscle Plasticity”, Biomedicine Research Center of Strasbourg (CRBS), Faculty of Medicine, University of Strasbourg, 67000 Strasbourg, France; (A.-L.C.); (M.G.); (A.M.); (A.C.); (S.T.); (T.V.); (V.W.)
- Physiology and Functional Explorations Department, University Hospital of Strasbourg, 67000 Strasbourg, France
| |
Collapse
|
2
|
Rokicki M, Żurowski J, Sawicki S, Ocłoń E, Szmatoła T, Jasielczuk I, Mizera-Szpilka K, Semik-Gurgul E, Gurgul A. Impact of Long-Term Cannabidiol (CBD) Treatment on Mouse Kidney Transcriptome. Genes (Basel) 2024; 15:1640. [PMID: 39766907 PMCID: PMC11675924 DOI: 10.3390/genes15121640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/17/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Cannabidiol, which is one of the main cannabinoids present in Cannabis sativa plants, has been shown to have therapeutic properties, including anti-inflammatory and antioxidant effects that may be useful for treatment of various kidney conditions. OBJECTIVES This article investigates the effect of long-term cannabidiol (CBD) treatment on changes in the renal transcriptome in a mouse model. The main hypothesis was that systematic CBD treatment would affect gene expression associated with those processes in the kidney. METHODS The study was conducted on male C57BL/6J mice. Mice in the experimental groups received daily intraperitoneal injections of CBD at doses of 10 mg/kg or 20 mg/kg body weight (b.w.) for 28 days. After the experiment, kidney tissues were collected, RNA was isolated, and RNA-Seq sequencing was performed. RESULTS The results show CBD's effects on changes in gene expression, including the regulation of genes related to circadian rhythm (e.g., Ciart, Nr1d1, Nr1d2, Per2, and Per3), glucocorticoid receptor function (e.g., Cyp1b1, Ddit4, Foxo3, Gjb2, and Pck1), lipid metabolism (e.g., Cyp2d22, Cyp2d9, Decr2 Hacl1, and Sphk1), and inflammatory response (e.g., Cxcr4 and Ccl28). CONCLUSIONS The obtained results suggest that CBD may be beneficial for therapeutic purposes in treating kidney disease, and its effects should be further analyzed in clinical trials.
Collapse
Affiliation(s)
- Mikołaj Rokicki
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Agriculture in Kraków, Redzina 1C, 30-248 Krakow, Poland; (M.R.); (J.Ż.); (T.S.); (I.J.)
| | - Jakub Żurowski
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Agriculture in Kraków, Redzina 1C, 30-248 Krakow, Poland; (M.R.); (J.Ż.); (T.S.); (I.J.)
| | - Sebastian Sawicki
- Department of Animal Reproduction, Anatomy and Genomics, University of Agriculture in Kraków, Mickiewicza 24/28, 30-059 Krakow, Poland;
| | - Ewa Ocłoń
- Laboratory of Recombinant Proteins Production, Faculty of Veterinary Medicine, University of Agriculture in Kraków, Redzina 1C, 30-248 Krakow, Poland;
| | - Tomasz Szmatoła
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Agriculture in Kraków, Redzina 1C, 30-248 Krakow, Poland; (M.R.); (J.Ż.); (T.S.); (I.J.)
| | - Igor Jasielczuk
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Agriculture in Kraków, Redzina 1C, 30-248 Krakow, Poland; (M.R.); (J.Ż.); (T.S.); (I.J.)
| | - Karolina Mizera-Szpilka
- Department of Infectious Diseases and Public Health, Faculty of Veterinary Medicine, University of Agriculture in Kraków, Redzina 1C, 30-248 Krakow, Poland;
| | - Ewelina Semik-Gurgul
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Krakowska 1, 32-083 Balice, Poland;
| | - Artur Gurgul
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Agriculture in Kraków, Redzina 1C, 30-248 Krakow, Poland; (M.R.); (J.Ż.); (T.S.); (I.J.)
| |
Collapse
|
3
|
Kosukwatthana P, Rungsuriyawiboon O, Rattanasrisomporn J, Kimram K, Tansakul N. Cytotoxicity and Immunomodulatory Effects of Cannabidiol on Canine PBMCs: A Study in LPS-Stimulated and Epileptic Dogs. Animals (Basel) 2024; 14:3683. [PMID: 39765588 PMCID: PMC11672443 DOI: 10.3390/ani14243683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/07/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
Cannabidiol, the primary non-psychoactive phytocannabinoid found in cannabis, has generated significant research interest due to its potential for biological effects, such as anti-inflammatory, analgesic, immunomodulatory, and anticonvulsant properties. Several studies have demonstrated the potential of CBD to alter inflammatory cytokines; however, data on CBD's effects on cell viability and pro-inflammatory cytokines in target animals, such as dogs, are limited. Therefore, in this study, we investigated the effects of CBD on the cell viability and modulation of pro-inflammatory cytokines, such as interleukin (IL)-1β, IL-6, and tumor necrosis factor-α (TNF-α), in canine PBMCs stimulated with LPS. To evaluate the effect of CBD on neuroinflammation in epilepsy pathology, an independent study of five refractory epileptic dogs co-treated with CBD for 30 days was conducted. The current findings revealed that CBD concentrations of 16 µg/mL had a statistically significant effect on the viability of canine PBMCs with a calculated IC50 of 15.54 µg/mL. The effect of CBD on inflammatory cytokines in LPS-stimulated PBMCs tended to be dose-dependent, with CBD concentrations of 5-30 μg/mL resulting in decreased production of the tested pro-inflammatory cytokines. Considering the effect of CBD on cytokine production by PBMCs from epileptic dogs, CBD has the potential to modulate immune responses and provide benefits when used in combination with antiepileptic drugs. The findings provided evidence of CBD cytotoxicity and its effect on the alteration of pro-inflammatory cytokines in canine PBMCs.
Collapse
Affiliation(s)
- Phannicha Kosukwatthana
- Graduate Program in Animal Health and Biomedical Sciences, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand;
| | - Oumaporn Rungsuriyawiboon
- Department of Veterinary Technology, Faculty of Veterinary Technology, Kasetsart University, Bangkok 10900, Thailand;
| | - Jatuporn Rattanasrisomporn
- Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand;
| | - Kanogwan Kimram
- Kasetsart University Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand;
| | - Natthasit Tansakul
- Department of Pharmacology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand
| |
Collapse
|
4
|
Solano-Orrala D, Silva-Cullishpuma DA, Díaz-Cruces E, Gómez-López VM, Toro-Mendoza J, Gomez d'Ayala G, Troconis J, Narváez-Muñoz C, Alexis F, Mercader-Ros MT, Lucas-Abellán C, Zamora-Ledezma C. Exploring the Potential of Nonpsychoactive Cannabinoids in the Development of Materials for Biomedical and Sports Applications. ACS APPLIED BIO MATERIALS 2024; 7:8177-8202. [PMID: 39563525 DOI: 10.1021/acsabm.4c01402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
This Perspective explores the potential of nonpsychoactive cannabinoids (NPCs) such as CBD, CBG, CBC, and CBN in developing innovative biomaterials for biomedical and sports applications. It examines their physicochemical properties, anti-inflammatory, analgesic, and neuroprotective effects, and their integration into various biomaterials such as hydrogels, sponges, films, and scaffolds. It also discusses the current challenges in standardizing formulations, understanding long-term effects, and understanding their intrinsical regulatory landscapes. Further, it discusses the promising applications of NPC-loaded materials in bone regeneration, wound management, and drug delivery systems, emphasizing their improved biocompatibility, mechanical properties, and therapeutic efficacy demonstrated in vitro and in vivo. The review also addresses innovative approaches to enhance NPC delivery including the use of computational tools and explores their potential in both biomedical and sports science contexts. By providing a comprehensive overview of the current state of research, this review aims to outline future directions, emphasizing the potential of NPCs in biomaterial science and regenerative medicine.
Collapse
Affiliation(s)
- Dulexy Solano-Orrala
- Higher Polytechnic School, UAX-Universidad Alfonso X el Sabio, Avda. Universidad, 1, Villanueva de la Canada, 28691 Madrid, Spain
| | - Dennis A Silva-Cullishpuma
- Nutrition, Food and Health (NAS), Faculty of Pharmacy and Nutrition, UCAM-Universidad Católica de Murcia, Avda, Los Jerónimos 135, Guadalupe de Maciascoque, 30107 Murcia, Spain
| | - Eliana Díaz-Cruces
- Law Ecotechnology and Innovation Keys for the 21 st Century Development Research Group, Faculty of Law, UCAM-Universidad Católica San Antonio de Murcia, Campus de los Jerónimos 135, Guadalupe, 30107 Murcia, Spain
| | - Vicente M Gómez-López
- Green and Innovative Technologies for Food, Environment and Bioengineering Research Group (FEnBeT), Faculty of Pharmacy and Nutrition, UCAM-Universidad Católica de Murcia, Avda, Los Jerónimos 135, Guadalupe de Maciascoque, 30107 Murcia, Spain
| | - Jhoan Toro-Mendoza
- Centro de Biomedicina Molecular, Instituto Venezolano de Investigaciones Cientificas, Maracaibo 1020A, Venezuela
| | - Giovanna Gomez d'Ayala
- Institute of Polymers, Composites and Biomaterials (IPCB), National Research Council, Via Campi Flegrei, 34, Pozzuoli, 80078 Naples, Italy
| | - Jorge Troconis
- Instituto Politécnico Nacional, ESIME-UPALM, Ciudad de Mexico 07738, México
| | - Christian Narváez-Muñoz
- Departamento de Ciencias de la Energía y Mecánica, Universidad de las Fuerzas Armadas (ESPE), Sangolqui 171103, Ecuador
| | - Frank Alexis
- Departamento de Ingeniería Química, Colegio de Ciencias e Ingenierías, Institute for Energy and Materials, Universidad San Francisco de Quito USFQ, Quito 170901, Ecuador
| | - Maria Teresa Mercader-Ros
- Nutrition, Food and Health (NAS), Faculty of Pharmacy and Nutrition, UCAM-Universidad Católica de Murcia, Avda, Los Jerónimos 135, Guadalupe de Maciascoque, 30107 Murcia, Spain
| | - Carmen Lucas-Abellán
- Nutrition, Food and Health (NAS), Faculty of Pharmacy and Nutrition, UCAM-Universidad Católica de Murcia, Avda, Los Jerónimos 135, Guadalupe de Maciascoque, 30107 Murcia, Spain
| | - Camilo Zamora-Ledezma
- Higher Polytechnic School, UAX-Universidad Alfonso X el Sabio, Avda. Universidad, 1, Villanueva de la Canada, 28691 Madrid, Spain
| |
Collapse
|
5
|
Rašić D, Zandona A, Katalinić M, Češi M, Kopjar N. Assessing the Potential Synergistic/Antagonistic Effects of Citrinin and Cannabidiol on SH-SY5Y, HepG2, HEK293 Cell Lines, and Human Lymphocytes. Toxins (Basel) 2024; 16:534. [PMID: 39728792 DOI: 10.3390/toxins16120534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/06/2024] [Accepted: 12/09/2024] [Indexed: 12/28/2024] Open
Abstract
The increasing use of Cannabis sativa products for medicinal, dietary, and recreational purposes has raised concerns about mycotoxin contamination in cannabis and hemp. Mycotoxins persist in these products' post-processing, posing health risks via multiple exposure routes. This study investigated cytotoxic and genotoxic interactions between cannabidiol (CBD) and the mycotoxin citrinin (CIT) using human cell models: SH-SY5Y, HepG2, HEK293, and peripheral blood lymphocytes. IC50 values and membrane disruption were initially assessed, followed by an evaluation of genotoxicity in lymphocytes using the Comet Assay and Cytokinesis Blocked Micronucleus Cytome Assay. Obtained findings demonstrate that cell-type sensitivity varied across treatments, with combined CBD and CIT exposure exhibiting distinct interactions. Lactate dehydrogenase (LDH) release remained minimal, suggesting cytotoxicity did not stem from membrane disruption but likely involved intracellular pathways. In lymphocytes, CBD alone produced negligible cyto/genotoxic effects and weak antiproliferative responses, whereas CIT displayed clear toxic impacts. DNA damage indicates that CIT may induce genome instability through indirect mechanisms rather than direct DNA interaction, with evidence of potential aneuploidic effects from the CBMN Cyt Assay. Combined exposure led to a reduction in CIT-induced DNA and cytogenetic damage, suggesting CIT's potential interference with the beneficial properties of CBD. These results provide a foundation for further toxicological assessments and highlight the necessity of standardized mycotoxin monitoring in cannabis-derived products.
Collapse
Affiliation(s)
- Dubravka Rašić
- Division of Toxicology, Institute for Medical Research and Occupational Health, HR-10 000 Zagreb, Croatia
| | - Antonio Zandona
- Division of Toxicology, Institute for Medical Research and Occupational Health, HR-10 000 Zagreb, Croatia
| | - Maja Katalinić
- Division of Toxicology, Institute for Medical Research and Occupational Health, HR-10 000 Zagreb, Croatia
| | - Martin Češi
- Independent Researcher, Kauzlarićev Prilaz 9, HR-10 000 Zagreb, Croatia
| | - Nevenka Kopjar
- Division of Toxicology, Institute for Medical Research and Occupational Health, HR-10 000 Zagreb, Croatia
| |
Collapse
|
6
|
Potere N, Bonaventura A, Abbate A. Novel Therapeutics and Upcoming Clinical Trials Targeting Inflammation in Cardiovascular Diseases. Arterioscler Thromb Vasc Biol 2024; 44:2371-2395. [PMID: 39387118 PMCID: PMC11602387 DOI: 10.1161/atvbaha.124.319980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Cardiovascular disease (CVD) remains a major health burden despite significant therapeutic advances accomplished over the last decades. It is widely and increasingly recognized that systemic inflammation not only represents a major cardiovascular risk and prognostic factor but also plays key pathogenic roles in CVD development and progression. Despite compelling preclinical evidence suggesting large potential of anti-inflammatory pharmacological interventions across numerous CVDs, clinical translation remains incomplete, mainly due to (1) yet undefined molecular signaling; (2) challenges of safety and efficacy profile of anti-inflammatory drugs; and (3) difficulties in identifying optimal patient candidates and responders to anti-inflammatory therapeutics, as well as optimal therapeutic windows. Randomized controlled trials demonstrated the safety/efficacy of canakinumab and colchicine in secondary cardiovascular prevention, providing confirmation for the involvement of a specific inflammatory pathway (NLRP3 [NACHT, LRR, and PYD domain-containing protein 3] inflammasome/IL [interleukin]-1β) in atherosclerotic CVD. Colchicine was recently approved by the US Food and Drug Administration for this indication. Diverse anti-inflammatory drugs targeting distinct inflammatory pathways are widely used for the management of other CVDs including myocarditis and pericarditis. Ongoing research efforts are directed to implementing anti-inflammatory therapeutic strategies across a growing number of CVDs, through repurposing of available anti-inflammatory drugs and development of novel anti-inflammatory compounds, which are herein concisely discussed. This review also summarizes the main characteristics and findings of completed and upcoming randomized controlled trials directly targeting inflammation in CVDs, and discusses major challenges and future perspectives in the exciting and constantly expanding landscape of cardioimmunology.
Collapse
Affiliation(s)
- Nicola Potere
- Department of Medicine and Ageing Sciences, “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Aldo Bonaventura
- Medical Center, S.C. Medicina Generale 1, Ospedale di Circolo and Fondazione Macchi, Department of Internal Medicine, ASST Sette Laghi Varese, Italy
| | - Antonio Abbate
- Berne Cardiovascular Research Center and Division of Cardiology, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
7
|
Whitaker LHR, Page C, Morgan C, Horne AW, Saunders PTK. Endometriosis: cannabidiol therapy for symptom relief. Trends Pharmacol Sci 2024; 45:1150-1161. [PMID: 39547915 DOI: 10.1016/j.tips.2024.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/18/2024] [Accepted: 10/18/2024] [Indexed: 11/17/2024]
Abstract
Endometriosis is a common, chronic, incurable condition the hallmark of which is the presence of lesions (tissue resembling endometrium) in sites outside the womb, with symptoms including chronic debilitating pain and fatigue. However, current therapeutic options are limited. Recent advances in our understanding of the mechanisms that contribute to the development of lesions and pain experience in endometriosis as well as surveys of patients have increased interest in testing recently approved formulations containing cannabidiol (CBD) in this patient group. In this review, we summarise data from patient samples and animals models focussed on the pathophysiology of endometriosis, including pathways where CBD has activity. We consider the available formulations of CBD-containing products, their pharmacokinetics (PK), and their use in ongoing clinical trials in endometriosis and other pain conditions.
Collapse
Affiliation(s)
- Lucy H R Whitaker
- EXPPECT, Centre for Reproductive Health, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, EH16 4UU, UK
| | - Clive Page
- Institute of Pharmaceutical Science, King's College, London, SE1 9NH, UK
| | - Charles Morgan
- MRX Medical Ltd, C/o Ananda Developments plc, 42 Upper Berkeley Street, London, W1H 5QL, UK
| | - Andrew W Horne
- EXPPECT, Centre for Reproductive Health, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, EH16 4UU, UK
| | - Philippa T K Saunders
- EXPPECT, Centre for Reproductive Health, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, EH16 4UU, UK.
| |
Collapse
|
8
|
Garro AG, Ravetti S, Brignone SG, Luna A, Villegas NA, Gaitán A, Palma SD. Microencapsulation techniques for developing cannabidiol formulations: a review. Ther Deliv 2024:1-15. [PMID: 39529600 DOI: 10.1080/20415990.2024.2421155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
Cannabidiol (CBD), extracted from Cannabis sativa L., holds therapeutic promise without inducing psychoactive effects seen with Δ9-tetrahydrocannabinol. Its interaction with the endocannabinoid system plays a pivotal role in regulating mood, pain perception and immune function. Nevertheless, CBD encounters hurdles in clinical application due to its poor bioavailability and water solubility. To overcome these limitations, researchers are exploring microencapsulation techniques, which involve encapsulating CBD within protective matrices. This comprehensive review offers insights into various microencapsulation methods for CBD, scrutinizing their advantages, limitations and implications for formulation optimization. By elucidating the potential of microencapsulation, this review underscores its promise in refining CBD therapy and addressing challenges associated with administration.
Collapse
Affiliation(s)
- Ariel Gustavo Garro
- Ministerio de Producción, Ciencia e Innovación Tecnológica de la Provincia de Córdoba, Córdoba, CP 5004, Argentina
- Instituto Académico Pedagógico de Ciencias Humanas, Universidad Nacional de Villa María, Villa María, CP 5900, Argentina
| | - Soledad Ravetti
- Instituto Académico Pedagógico de Ciencias Humanas, Universidad Nacional de Villa María, Villa María, CP 5900, Argentina
- Centro de Investigaciones y Transferencia de Villa María (CIT VM), Villa María, CP 5900, Argentina
| | - Sofía Gisella Brignone
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Ciencias Farmacéuticas, CONICET, UNITEFA, Haya de la Torre y Medina Allende, Córdoba, CP X5000HUA, Argentina
| | - Agustín Luna
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, CONICET, IIBYT, Av. Vélez Sarsfield 1611, Córdoba, CP X5000HUA, Argentina
- Vegen Córdoba SAS, Córdoba, CP 5000, Argentina
| | - Natalia Angel Villegas
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Ciencias Farmacéuticas, CONICET, UNITEFA, Haya de la Torre y Medina Allende, Córdoba, CP X5000HUA, Argentina
| | - Agustina Gaitán
- Instituto Académico Pedagógico de Ciencias Humanas, Universidad Nacional de Villa María, Villa María, CP 5900, Argentina
| | - Santiago Daniel Palma
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Ciencias Farmacéuticas, CONICET, UNITEFA, Haya de la Torre y Medina Allende, Córdoba, CP X5000HUA, Argentina
| |
Collapse
|
9
|
Joslyn KE, Truver NF, Comi AM. A Review of Sturge-Weber Syndrome Brain Involvement, Cannabidiol Treatment and Molecular Pathways. Molecules 2024; 29:5279. [PMID: 39598668 PMCID: PMC11596899 DOI: 10.3390/molecules29225279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/30/2024] [Accepted: 11/03/2024] [Indexed: 11/29/2024] Open
Abstract
Sturge-Weber syndrome (SWS) is a rare congenital neurocutaneous disorder typically caused by a somatic mosaic mutation in R183Q GNAQ. At-risk children present at birth with a capillary malformation port-wine birthmark. The primary diagnostic characteristic of the disorder includes leptomeningeal enhancement of the brain, which demonstrates abnormal blood vessels and results in impaired venous drainage and impaired local cerebral perfusion. Impaired cerebral blood flow is complicated by seizures resulting in strokes, hemiparesis and visual field deficits, hormonal deficiencies, behavioral impairments, and intellectual disability. Therefore, anti-seizure medication in combination with low-dose aspirin is a common therapeutic treatment strategy. Recently published data indicate that the underlying mutation in endothelial cells results in the hyperactivation of downstream pathways and impairment of the blood-brain barrier. Cannabidiol (CBD) has been used to treat medically refractory seizures in SWS due to its anti-seizure, anti-inflammatory, and neuroprotective properties. Pilot research suggests that CBD improves cognitive impairment, emotional regulation, and quality of life in patients with SWS. Recent preclinical studies also suggest overlapping molecular pathways in SWS and in CBD, suggesting that CBD may be uniquely effective for SWS brain involvement. This review aims to summarize early data on CBD's efficacy for preventing and treating epilepsy and neuro-cognitive impairments in patients with SWS, likely molecular pathways impacted, and provide insights for future translational research to improve clinical treatment for patients with SWS.
Collapse
Affiliation(s)
- Katharine Elizabeth Joslyn
- Department of Neurology and Developmental Medicine, Hugo Moser Kennedy Krieger Research Institute, Baltimore, MD 21205, USA; (K.E.J.); (N.F.T.)
| | - Nicholas Flinn Truver
- Department of Neurology and Developmental Medicine, Hugo Moser Kennedy Krieger Research Institute, Baltimore, MD 21205, USA; (K.E.J.); (N.F.T.)
| | - Anne Marie Comi
- Department of Neurology and Developmental Medicine, Hugo Moser Kennedy Krieger Research Institute, Baltimore, MD 21205, USA; (K.E.J.); (N.F.T.)
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
10
|
Perry RN, Ethier-Gagnon MA, Helmick C, Spinella TC, Tibbo PG, Stewart SH, Barrett SP. The impact of cannabidiol placebo on amygdala-based neural responses to an acute stressor. J Psychopharmacol 2024; 38:935-948. [PMID: 39400103 PMCID: PMC11528970 DOI: 10.1177/02698811241287557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
BACKGROUND Cannabidiol (CBD) impacts brain regions implicated in anxiety reactivity and stress reactivity (e.g., amygdala, anterior cingulate cortex (ACC), anterior insula (AI)); however, placebo-controlled studies are mixed regarding CBD's anxiolytic effects. We previously reported that CBD expectancy alone can alter subjective, physiological, and endocrine markers of stress/anxiety; however, it is unclear whether these findings reflect altered brain reactivity. This study evaluated whether CBD expectancy independently alters amygdala resting-state functional connectivity (rsFC) with the ACC and AI following acute stress. METHOD Thirty-eight (20 females) healthy adults were randomly assigned to receive accurate or inaccurate information regarding the CBD content of a CBD-free oil administered during a single experimental session. Following a baseline resting state MRI scan, participants administered their assigned oil sublingually, engaged in a stress task (serial subtraction with negative feedback) inside the scanner, and underwent another resting state MRI scan. Amygdala rsFC with the ACC and AI was measured during each scan, and the subjective state was assessed at six time points. Outcomes were analyzed using ANCOVA. RESULTS CBD expectancy (vs CBD-free expectancy) was associated with significantly weaker rsFC between the left amygdala and right ACC (p = 0.042), but did not systematically alter amygdala-AI rsFC (p-values > 0.05). We also replicated our previously reported CBD expectancy effects on subjective stress/anxiety in the scanner context. CONCLUSION CBD placebo effects may be sufficient to alter neural responses relevant to its purported anxiolytic and stress-relieving properties. Future work is needed to replicate these results and determine whether CBD expectancy and pharmacology interact to alter neural anxiety reactivity and stress reactivity.
Collapse
Affiliation(s)
- Robin N Perry
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, Canada
| | | | - Carl Helmick
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| | - Toni C Spinella
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, Canada
| | - Philip G Tibbo
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, Canada
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| | - Sherry H Stewart
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, Canada
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| | - Sean P Barrett
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, Canada
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
11
|
Capolupo I, Miranda MR, Musella S, Di Sarno V, Manfra M, Ostacolo C, Bertamino A, Campiglia P, Ciaglia T. Exploring Endocannabinoid System: Unveiling New Roles in Modulating ER Stress. Antioxidants (Basel) 2024; 13:1284. [PMID: 39594426 PMCID: PMC11591047 DOI: 10.3390/antiox13111284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 11/28/2024] Open
Abstract
The endoplasmic reticulum (ER) is the organelle mainly involved in maintaining cellular homeostasis and driving correct protein folding. ER-dependent defects or dysfunctions are associated with the genesis/progression of several pathological conditions, including cancer, inflammation, and neurodegenerative disorders, that are directly or indirectly correlated to a wide set of events collectively named under the term "ER stress". Despite the recent increase in interest concerning ER activity, further research studies are needed to highlight all the mechanisms responsible for ER failure. In this field, recent discoveries paved the way for the comprehension of the strong interaction between ER stress development and the endocannabinoid system. The activity of the endocannabinoid system is mediated by the activation of cannabinoid receptors (CB), G protein-coupled receptors that induce a decrease in cAMP levels, with downstream anti-inflammatory effects. CB activation drives, in most cases, the recovery of ER homeostasis through the regulation of ER stress hallmarks PERK, ATF6, and IRE1. In this review, we focus on the CB role in modulating ER stress, with particular attention to the cellular processes leading to UPR activation and oxidative stress response extinguishment, and to the mechanisms underlying natural cannabinoids' modulation of this complex cellular machine.
Collapse
Affiliation(s)
- Ilaria Capolupo
- Department of Pharmacy, University of Salerno, Via G. Paolo II, Fisciano, 84084 Salerno, Italy; (I.C.); (M.R.M.); (S.M.); (V.D.S.); (C.O.); (A.B.); (P.C.)
- PhD Program in Drug Discovery and Development, University of Salerno, Fisciano, 84084 Salerno, Italy
| | - Maria Rosaria Miranda
- Department of Pharmacy, University of Salerno, Via G. Paolo II, Fisciano, 84084 Salerno, Italy; (I.C.); (M.R.M.); (S.M.); (V.D.S.); (C.O.); (A.B.); (P.C.)
- PhD Program in Drug Discovery and Development, University of Salerno, Fisciano, 84084 Salerno, Italy
- NBFC—National Biodiversity Future Center, 90133 Palermo, Italy
| | - Simona Musella
- Department of Pharmacy, University of Salerno, Via G. Paolo II, Fisciano, 84084 Salerno, Italy; (I.C.); (M.R.M.); (S.M.); (V.D.S.); (C.O.); (A.B.); (P.C.)
| | - Veronica Di Sarno
- Department of Pharmacy, University of Salerno, Via G. Paolo II, Fisciano, 84084 Salerno, Italy; (I.C.); (M.R.M.); (S.M.); (V.D.S.); (C.O.); (A.B.); (P.C.)
| | - Michele Manfra
- Department of Health Science, University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy;
| | - Carmine Ostacolo
- Department of Pharmacy, University of Salerno, Via G. Paolo II, Fisciano, 84084 Salerno, Italy; (I.C.); (M.R.M.); (S.M.); (V.D.S.); (C.O.); (A.B.); (P.C.)
| | - Alessia Bertamino
- Department of Pharmacy, University of Salerno, Via G. Paolo II, Fisciano, 84084 Salerno, Italy; (I.C.); (M.R.M.); (S.M.); (V.D.S.); (C.O.); (A.B.); (P.C.)
| | - Pietro Campiglia
- Department of Pharmacy, University of Salerno, Via G. Paolo II, Fisciano, 84084 Salerno, Italy; (I.C.); (M.R.M.); (S.M.); (V.D.S.); (C.O.); (A.B.); (P.C.)
| | - Tania Ciaglia
- Department of Pharmacy, University of Salerno, Via G. Paolo II, Fisciano, 84084 Salerno, Italy; (I.C.); (M.R.M.); (S.M.); (V.D.S.); (C.O.); (A.B.); (P.C.)
| |
Collapse
|
12
|
Luba R, Madera G, Schusterman R, Kolodziej A, Hodgson I, Comer SD. Evaluating the Abuse Potential of Lenabasum, a Selective Cannabinoid Receptor 2 Agonist. J Pharmacol Exp Ther 2024; 391:272-278. [PMID: 38936978 PMCID: PMC11493446 DOI: 10.1124/jpet.124.002129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/21/2024] [Accepted: 06/17/2024] [Indexed: 06/29/2024] Open
Abstract
Endocannabinoids, which are present throughout the central nervous system (CNS), can activate cannabinoid receptors 1 and 2 (CB1 and CB2). CB1 and CB2 agonists exhibit broad anti-inflammatory properties, suggesting their potential to treat inflammatory diseases. However, careful evaluation of abuse potential is necessary. This study evaluated the abuse potential of lenabasum, a selective CB2 receptor agonist in participants (n = 56) endorsing recreational cannabis use. Three doses of lenabasum (20, 60, and 120 mg) were compared with placebo and nabilone (3 and 6 mg). The primary endpoint was the peak effect (Emax) on a bipolar Drug Liking visual analog scale (VAS). Secondary VAS and pharmacokinetic (PK) endpoints and adverse events were assessed. Lenabasum was safe and well tolerated. Compared with placebo, a 20-mg dose of lenabasum did not increase ratings of Drug Liking and had no distinguishable effect on other VAS endpoints. Dose-dependent increases in ratings of Drug Liking were observed with 60 and 120 mg lenabasum. Drug Liking and all other VAS outcomes were greatest for nabilone 3 mg and 6 mg, a medication currently approved by the US Food and Drug Administration (FDA). At a target therapeutic dose (20 mg), lenabasum did not elicit subjective ratings of Drug Liking. However, supratherapeutic doses of lenabasum (60 and 120 mg) did elicit subjective ratings of Drug Liking compared with placebo. Although both doses of lenabasum were associated with lower ratings of Drug Liking compared with 3 mg and 6 mg nabilone, lenabasum does have abuse potential and should be used cautiously in clinical settings. SIGNIFICANCE STATEMENT: This work provides evidence that in people with a history of recreational cannabis use, lenabasum was safe and well tolerated, although it did demonstrate abuse potential. This work supports further development of lenabasum for potential therapeutic indications.
Collapse
Affiliation(s)
- Rachel Luba
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York (R.L., S.D.C.); Division on Substance Use Disorders, New York State Psychiatric Institute and Columbia University, New York, New York (R.L., G.M., R.S., S.D.C.); and Corbus Pharmaceuticals, Norwood, Massachusetts (A.K., I.H.)
| | - Gabriela Madera
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York (R.L., S.D.C.); Division on Substance Use Disorders, New York State Psychiatric Institute and Columbia University, New York, New York (R.L., G.M., R.S., S.D.C.); and Corbus Pharmaceuticals, Norwood, Massachusetts (A.K., I.H.)
| | - Rebecca Schusterman
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York (R.L., S.D.C.); Division on Substance Use Disorders, New York State Psychiatric Institute and Columbia University, New York, New York (R.L., G.M., R.S., S.D.C.); and Corbus Pharmaceuticals, Norwood, Massachusetts (A.K., I.H.)
| | - Andrew Kolodziej
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York (R.L., S.D.C.); Division on Substance Use Disorders, New York State Psychiatric Institute and Columbia University, New York, New York (R.L., G.M., R.S., S.D.C.); and Corbus Pharmaceuticals, Norwood, Massachusetts (A.K., I.H.)
| | - Ian Hodgson
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York (R.L., S.D.C.); Division on Substance Use Disorders, New York State Psychiatric Institute and Columbia University, New York, New York (R.L., G.M., R.S., S.D.C.); and Corbus Pharmaceuticals, Norwood, Massachusetts (A.K., I.H.)
| | - Sandra D Comer
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York (R.L., S.D.C.); Division on Substance Use Disorders, New York State Psychiatric Institute and Columbia University, New York, New York (R.L., G.M., R.S., S.D.C.); and Corbus Pharmaceuticals, Norwood, Massachusetts (A.K., I.H.)
| |
Collapse
|
13
|
Massey S, Quigley A, Rochfort S, Christodoulou J, Van Bergen NJ. Cannabinoids and Genetic Epilepsy Models: A Review with Focus on CDKL5 Deficiency Disorder. Int J Mol Sci 2024; 25:10768. [PMID: 39409097 PMCID: PMC11476665 DOI: 10.3390/ijms251910768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/30/2024] [Accepted: 10/03/2024] [Indexed: 10/20/2024] Open
Abstract
Pediatric genetic epilepsies, such as CDKL5 Deficiency Disorder (CDD), are severely debilitating, with early-onset seizures occurring more than ten times daily in extreme cases. Existing antiseizure drugs frequently prove ineffective, which significantly impacts child development and diminishes the quality of life for patients and caregivers. The relaxation of cannabis legislation has increased research into potential therapeutic properties of phytocannabinoids such as cannabidiol (CBD) and Δ9-tetrahydrocannabinol (THC). CBD's antiseizure properties have shown promise, particularly in treating drug-resistant genetic epilepsies associated with Lennox-Gastaut syndrome (LGS), Dravet syndrome (DS), and Tuberous Sclerosis Complex (TSC). However, specific research on CDD remains limited. Much of the current evidence relies on anecdotal reports of artisanal products lacking accurate data on cannabinoid composition. Utilizing model systems like patient-derived iPSC neurons and brain organoids allows precise dosing and comprehensive exploration of cannabinoids' pharmacodynamics. This review explores the potential of CBD, THC, and other trace cannabinoids in treating CDD and focusing on clinical trials and preclinical models to elucidate the cannabinoid's potential mechanisms of action in disrupted CDD pathways and strengthen the case for further research into their potential as anti-epileptic drugs for CDD. This review offers an updated perspective on cannabinoid's therapeutic potential for CDD.
Collapse
Affiliation(s)
- Sean Massey
- Brain and Mitochondrial Research Group, Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, VIC 3052, Australia; (S.M.); (J.C.)
| | - Anita Quigley
- Electrical and Biomedical Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia;
- Aikenhead Centre for Medical Discovery, St. Vincent’s Hospital, Melbourne, VIC 3065, Australia
- Centre for Clinical Neuroscience and Neurological Research, St. Vincent’s Hospital, Melbourne, VIC 3065, Australia
- Department of Medicine, University of Melbourne, Melbourne, VIC 3065, Australia
| | - Simone Rochfort
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3083, Australia;
- Agriculture Victoria Research, AgriBio Centre, AgriBio, Melbourne, VIC 3083, Australia
| | - John Christodoulou
- Brain and Mitochondrial Research Group, Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, VIC 3052, Australia; (S.M.); (J.C.)
- Department of Paediatrics, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Nicole J. Van Bergen
- Brain and Mitochondrial Research Group, Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, VIC 3052, Australia; (S.M.); (J.C.)
- Department of Paediatrics, University of Melbourne, Melbourne, VIC 3052, Australia
| |
Collapse
|
14
|
Martin-Willett R, Skrzynski CJ, Taylor EM, Sempio C, Klawitter J, Bidwell LC. The Interplay of Exogenous Cannabinoid Use on Anandamide and 2-Arachidonoylglycerol in Anxiety: Results from a Quasi-Experimental Ad Libitum Study. Pharmaceuticals (Basel) 2024; 17:1335. [PMID: 39458976 PMCID: PMC11509978 DOI: 10.3390/ph17101335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/17/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
The public is increasingly reporting using cannabis for anxiety relief. Both cannabis use and the endocannabinoid system have been connected with anxiety relief/anxiolytic properties, but these relationships are complex, and the underlying mechanisms for them are unclear. Background/Objectives: Work is needed to understand how the endocannabinoid system, including the endocannabinoids anandamide (AEA) and 2-arachidonoylglycerol (2-AG), may be impacted by the main constituents of cannabis, Δ9-tetrahydrocannabinol (THC), and cannabidiol (CBD). Methods: The current study examined how the ab libitum use of products differing in THC and CBD affected AEA and 2-AG among 292 individuals randomly assigned to THC-dominant use (N = 92), CBD-dominant use (N = 97), THC + CBD use (N = 74), or non-use (N = 29). Results: The findings suggest that AEA levels do not change differently based on 4 weeks of cannabis use or by cannabinoid content, as AEA similarly increased across all conditions from study weeks 2 to 4. In contrast, AEA decreased at an acute administration session with product conditions containing any THC having greater AEA levels on average than the non-use condition. With regard to 2-AG, its levels appeared to primarily be affected by THC-dominant use, both acutely and over 4 weeks, when controlling for baseline cannabis use and examining study product use frequency among use conditions. Conclusions: Overall, the results continue to shed light on the complicated relationship between cannabinoid content and endocannabinoid production, and highlight the need for continued research on their interplay in human subjects.
Collapse
Affiliation(s)
- Renée Martin-Willett
- Department of Psychology & Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA; (R.M.-W.); (C.J.S.); (E.M.T.)
| | - Carillon J. Skrzynski
- Department of Psychology & Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA; (R.M.-W.); (C.J.S.); (E.M.T.)
| | - Ethan M. Taylor
- Department of Psychology & Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA; (R.M.-W.); (C.J.S.); (E.M.T.)
| | - Cristina Sempio
- Department of Anesthesiology, iC42 Clinical Research and Development, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (C.S.); (J.K.)
| | - Jost Klawitter
- Department of Anesthesiology, iC42 Clinical Research and Development, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (C.S.); (J.K.)
| | - L. Cinnamon Bidwell
- Department of Psychology & Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA; (R.M.-W.); (C.J.S.); (E.M.T.)
- Institute of Cognitive Science, University of Colorado Boulder, Boulder, CO 80309, USA
| |
Collapse
|
15
|
McNamara DM, Cooper LT, Arbel Y, Bhimaraj A, Bocchi E, Friedrich MG, Kerneis M, Liu P, Parker AB, Smith ER, Tang WHW, Torre‐Amione G, Tschöpe C. Impact of cannabidiol on myocardial recovery in patients with acute myocarditis: Rationale & design of the ARCHER trial. ESC Heart Fail 2024; 11:3416-3424. [PMID: 38937900 PMCID: PMC11424368 DOI: 10.1002/ehf2.14889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/10/2024] [Accepted: 05/11/2024] [Indexed: 06/29/2024] Open
Abstract
AIMS Acute myocarditis, although a rare disease, can be associated with sudden cardiac death or the need for transplantation in both children and young adults. To date, there is no definitive evidence to support the routine use of immunosuppressive therapy or treatment targeting inflammation in patients with myocarditis. Animal models of cardiovascular (CV), as well as neurological diseases, have demonstrated that cannabidiol has significant anti-inflammatory properties and may represent a promising therapy in acute myocarditis. This efficacy has been shown in a murine model of autoimmune myocarditis as well as in in vitro and in vivo models of heart failure (HF). METHODS AND RESULTS We present the rationale and design of the ARCHER Trial, an international multicentre, double-blind, randomized, placebo-controlled, phase II study examining the safety and efficacy of a pharmaceutically produced cannabidiol formulation, in patients with mild to moderate acute myocarditis. Eligible patients are those with acute myocarditis, randomized within 10 days of the diagnostic cardiac MRI (CMR), which has met defined diagnostic criteria for myocarditis. Oral treatment (cannabidiol or placebo) is titrated from 2.5 mg/kg of body weight up to 10 mg/kg of body weight b.i.d. (or highest tolerated dose) and taken for 12 weeks in addition to standard of care therapy for HF. The primary endpoints are defined as changes in global longitudinal strain (GLS) and extra cellular volume (ECV), measured by CMR at 12 weeks. Assuming 80% power, a 5% alpha risk and 25% missing CMR follow-up data at Week 12, 100 patients are required to demonstrate the desired treatment effect of 18%. The change in left ventricular ejection fraction (LVEF) from baseline to Week 12 was selected as the secondary endpoint. Additional exploratory endpoints include changes in hs-troponin, NT-proBNP, markers of inflammation and endothelial function during the 12-week treatment period. The trial is ongoing but is now more than 50% recruited. As enrolment in the trial continues, no interim data are available for inclusion in this Design paper. CONCLUSIONS The ongoing ARCHER Trial is an international, multicentre, double-blind, randomized, placebo-controlled phase II study, designed to determine the effect of a pharmaceutically produced cannabidiol formulation on CMR parameters in patients presenting with acute myocarditis. Enrolment of 100 patients is expected to conclude in Q3 2024. Study results will be available in early 2025.
Collapse
Affiliation(s)
- Dennis M. McNamara
- Center for Heart FailureUniversity of Pittsburgh Medical CenterPittsburghPennsylvaniaUSA
| | - Leslie T. Cooper
- Department of Cardiovascular MedicineMayo Clinic College of Medicine and ScienceJacksonvilleFloridaUSA
| | - Yaron Arbel
- Sourasky Medical CenterTel Aviv UniversityTel AvivIsrael
| | - Arvind Bhimaraj
- Houston Methodist HospitalHoustonTexasUSA
- Weill Cornell Medical CollegeNew YorkNew YorkUSA
| | - Edimar Bocchi
- Instituto do Coração Hospital das Clinicas HCFMUSP, Faculdade de MedicinaUniversidade de São PauloSão PauloBrazil
| | - Matthias G. Friedrich
- Departments of Medicine and Diagnostic Radiology, Research Institute of the McGill University Health CentreMcGill UniversityMontrealCanada
- Department of CardiologyUniversitätsklinikum HeidelbergHeidelbergGermany
- Department of Cardiac Sciences and RadiologyUniversity of CalgaryCalgaryCanada
| | - Matthieu Kerneis
- Pitié Salpêtrière HospitalParisFrance
- Sorbonne UniversityParisFrance
- ACTION Study GroupParisFrance
| | - Peter Liu
- University of Ottawa Heart InstituteOttawaCanada
| | | | | | - W. H. Wilson Tang
- Heart Vascular and Thoracic InstituteCleveland ClinicClevelandOhioUSA
| | - Guillermo Torre‐Amione
- Instituto de Cardiologia, Hospital Zambrano‐HellionEscuela de Medicina y Ciencias de la Salud, Tecnologico de MonterreyMonterreyMexico
| | - Carsten Tschöpe
- Department of Cardiology, Angiology and Intensive Medicine, Deutsches Herzzentrum der Charité (DHZC)Campus Virchow (CVK)BerlinGermany
- Berlin Institute of Health (BIH) at Charité – Center for Regenerative Therapies (BCRT)BerlinGermany
- German Center for Cardiovascular Research (DZHK); Partner Site BerlinCharité UniversityBerlinGermany
| | | |
Collapse
|
16
|
Di Salvo A, Chiaradia E, Sforna M, Della Rocca G. Endocannabinoid system and phytocannabinoids in the main species of veterinary interest: a comparative review. Vet Res Commun 2024; 48:2915-2941. [PMID: 39162768 PMCID: PMC11442603 DOI: 10.1007/s11259-024-10509-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/14/2024] [Indexed: 08/21/2024]
Abstract
Since the discovery of the endocannabinoid system and due to the empirical evidence of the therapeutic effects on several illnesses both in humans and animals that follow the administration of exogenous cannabinoids (i.e., phytocannabinoids), numerous studies have been conducted. These investigations aimed to identify the expression and distribution of cannabinoid receptors in healthy and pathologic organs and tissues of different animal species and to define the interactions of phytocannabinoids with these receptors. In the last decade, pharmacokinetics, efficacy and tolerability of many Cannabis derivatives formulations, mainly containing cannabidiol, in the main species of veterinary interest, have been also investigated. This manuscript summarizes the findings reported by the scientific studies published so far on the molecular mode of action of the main phytocannabinoids, the localization of cannabinoid receptors in organs and tissues, as well as the pharmacokinetics, efficacy and tolerability of Cannabis derivatives in dogs, cats, horses and other species of veterinary interest. A deep knowledge of these issues is crucial for the use of phytocannabinoids for therapeutic purposes in animal species.
Collapse
Affiliation(s)
- Alessandra Di Salvo
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
- Research Center on Animal Pain (CeRiDA), University of Perugia, Perugia, Italy
| | | | - Monica Sforna
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
| | - Giorgia Della Rocca
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
- Research Center on Animal Pain (CeRiDA), University of Perugia, Perugia, Italy
| |
Collapse
|
17
|
Poudel B, Bany BM, Hales DB, Cheatwood JL. Effects of Cannabidiol (CBD) on Doxorubicin-Induced Anxiety and Depression-like Behaviors and mRNA Expression of Inflammatory Markers in Rats. Brain Sci 2024; 14:999. [PMID: 39452013 PMCID: PMC11505750 DOI: 10.3390/brainsci14100999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 10/26/2024] Open
Abstract
Background: Post-treatment side effects of chemotherapy can include cognitive deficits commonly known as Chemo-brain. The treatment of patients with Doxorubicin (DOX), one of the most widely used chemotherapeutic drugs in the treatment of cancer, can induce depression, anxiety, and impaired cognitive function. Cannabidiol (CBD) is a non-psychoactive component of Cannabis sativa that has been identified as a possible therapeutic agent against many neurodegenerative disorders, including traumatic brain injury, spinal cord injury, Tau-protein-induced neurodegeneration, and neuropathic pain. Therefore, this study aimed to assess whether oral CBD administration could reduce DOX-induced anxiety and depression-like behaviors and alter the expression of mRNA associated with neuroinflammation. Methods: Female Long Evans Hooded rats received intraperitoneal injections of DOX (6 mg/kg) or the vehicle (0.9% saline) once a week for four weeks, followed by oral administration of CBD (10 mg/kg) three times a week for the same period. Results: CBD was significantly protective against DOX-induced anxiety and depression-like behaviors, as measured by several behavioral tests. Furthermore, CBD improved DOX-induced alterations in the gene expression of biomarkers of neuroinflammation in the hippocampus and prefrontal cortex. Conclusions: This provides insights into future studies on possible mechanisms by which DOX-induced cognitive dysfunction could be alleviated by CBD.
Collapse
Affiliation(s)
| | | | | | - Joseph L. Cheatwood
- Department of Biomedical Sciences, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA; (B.P.)
| |
Collapse
|
18
|
Avalos B, Kulbe JR, Ford MK, Laird AE, Walter K, Mante M, Florio JB, Boustani A, Chaillon A, Schlachetzki JCM, Sundermann EE, Volsky DJ, Rissman RA, Ellis RJ, Letendre SL, Iudicello J, Fields JA. Cannabis Use and Cannabidiol Modulate HIV-Induced Alterations in TREM2 Expression: Implications for Age-Related Neuropathogenesis. Viruses 2024; 16:1509. [PMID: 39459844 PMCID: PMC11512329 DOI: 10.3390/v16101509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/04/2024] [Accepted: 09/18/2024] [Indexed: 10/28/2024] Open
Abstract
Triggering receptor expressed on myeloid cells 2 (TREM2) is involved in neuroinflammation and HIV-associated neurocognitive impairment (NCI). People with HIV (PWH) using cannabis exhibit lower inflammation and neurological disorders. We hypothesized that TREM2 dysfunction mediates HIV neuropathogenesis and can be reversed by cannabinoids. EcoHIV-infected wildtype (WT) and TREM2R47H mutant mice were used to study HIV's impact on TREM2 and behavior. TREM2 and related gene expressions were examined in monocyte-derived macrophages (MDMs) from PWH (n = 42) and people without HIV (PWoH; n = 19) with varying cannabis use via RNA sequencing and qPCR. Differences in membrane-bound and soluble TREM2 (sTREM2) were evaluated using immunocytochemistry (ICC) and ELISA. EcoHIV increased immature and C-terminal fragment forms of TREM2 in WT mice but not in TREM2R47H mice, with increased IBA1 protein in TREM2R47H hippocampi, correlating with worse memory test performance. TREM2 mRNA levels increased with age in PWoH but not in PWH. Cannabidiol (CBD) treatment increased TREM2 mRNA alone and with IL1β. RNA-seq showed the upregulation of TREM2-related transcripts in cannabis-using PWH compared to naïve controls. IL1β increased sTREM2 and reduced membrane-bound TREM2, effects partially reversed by CBD. These findings suggest HIV affects TREM2 expression modulated by cannabis and CBD, offering insights for therapeutic strategies.
Collapse
Affiliation(s)
- Bryant Avalos
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA; (B.A.); (J.R.K.); (M.K.F.); (A.E.L.); (K.W.); (A.B.); (E.E.S.); (R.J.E.); (S.L.L.); (J.I.)
| | - Jacqueline R. Kulbe
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA; (B.A.); (J.R.K.); (M.K.F.); (A.E.L.); (K.W.); (A.B.); (E.E.S.); (R.J.E.); (S.L.L.); (J.I.)
| | - Mary K. Ford
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA; (B.A.); (J.R.K.); (M.K.F.); (A.E.L.); (K.W.); (A.B.); (E.E.S.); (R.J.E.); (S.L.L.); (J.I.)
| | - Anna Elizabeth Laird
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA; (B.A.); (J.R.K.); (M.K.F.); (A.E.L.); (K.W.); (A.B.); (E.E.S.); (R.J.E.); (S.L.L.); (J.I.)
| | - Kyle Walter
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA; (B.A.); (J.R.K.); (M.K.F.); (A.E.L.); (K.W.); (A.B.); (E.E.S.); (R.J.E.); (S.L.L.); (J.I.)
| | - Michael Mante
- Alzheimer’s Therapeutic Research Institute, Keck School of Medicine, University of Southern California, 9880 Mesa Rim Road, San Diego, CA 92121, USA; (M.M.); (J.B.F.); (R.A.R.)
| | - Jazmin B. Florio
- Alzheimer’s Therapeutic Research Institute, Keck School of Medicine, University of Southern California, 9880 Mesa Rim Road, San Diego, CA 92121, USA; (M.M.); (J.B.F.); (R.A.R.)
| | - Ali Boustani
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA; (B.A.); (J.R.K.); (M.K.F.); (A.E.L.); (K.W.); (A.B.); (E.E.S.); (R.J.E.); (S.L.L.); (J.I.)
| | - Antoine Chaillon
- Department of Medicine, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA;
| | | | - Erin E. Sundermann
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA; (B.A.); (J.R.K.); (M.K.F.); (A.E.L.); (K.W.); (A.B.); (E.E.S.); (R.J.E.); (S.L.L.); (J.I.)
| | - David J. Volsky
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Robert A. Rissman
- Alzheimer’s Therapeutic Research Institute, Keck School of Medicine, University of Southern California, 9880 Mesa Rim Road, San Diego, CA 92121, USA; (M.M.); (J.B.F.); (R.A.R.)
| | - Ronald J. Ellis
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA; (B.A.); (J.R.K.); (M.K.F.); (A.E.L.); (K.W.); (A.B.); (E.E.S.); (R.J.E.); (S.L.L.); (J.I.)
- Department of Neurosciences, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA;
| | - Scott L. Letendre
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA; (B.A.); (J.R.K.); (M.K.F.); (A.E.L.); (K.W.); (A.B.); (E.E.S.); (R.J.E.); (S.L.L.); (J.I.)
- Department of Medicine, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA;
| | - Jennifer Iudicello
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA; (B.A.); (J.R.K.); (M.K.F.); (A.E.L.); (K.W.); (A.B.); (E.E.S.); (R.J.E.); (S.L.L.); (J.I.)
| | - Jerel Adam Fields
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA; (B.A.); (J.R.K.); (M.K.F.); (A.E.L.); (K.W.); (A.B.); (E.E.S.); (R.J.E.); (S.L.L.); (J.I.)
| |
Collapse
|
19
|
Yndart Arias A, Vadell K, Vashist A, Kolishetti N, Lakshmana MK, Nair M, Liuzzi JP. Cannabidiol, a plant-derived compound, is an emerging strategy for treating cognitive impairments: comprehensive review of randomized trials. Front Pharmacol 2024; 15:1403147. [PMID: 39323633 PMCID: PMC11422111 DOI: 10.3389/fphar.2024.1403147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 08/19/2024] [Indexed: 09/27/2024] Open
Abstract
Background Finding new strategies to treat cognitive disorders is a challenging task. Medication must defeat the blood-brain barrier. Cannabidiol (CBD), a non-intoxicating compound of the cannabis plant, has gained recognition as a nutraceutical for its potential effectiveness in treating anxiety, oxidative stress, convulsions, and inflammation. However, the dose, tolerable upper intake, formulation, administration routes, comorbidities, diet, and demographic factors to reverse cognitive impairments have not been completely explored. Trials using CBD as a primary intervention have been conducted to alleviate cognitive issues. This review evaluates the benefits of CBD supplementation, research design, formulations, and outcomes reported in randomized clinical trials. Methods An evidence-based systematic literature review was conducted using PUBMED and the Florida International University Research Library resources. Fourteen randomized trials were selected for review, and their designs and outcomes were compared conceptually and in the form of resume tables. Results CBD showed improvement in anxiety and cognitive impairments in 9 out of 16 analyzed trials. However, the variability could be justified due to the diversity of the trial designs, underpowered studies, assayed population, uncontrolled results for comorbidities, medications, severity of drug dependence, compliances, and adherences. Overall, oral single doses of 200 mg-1,500 mg or vaporized 13.75 mg of CBD were shown to be effective at treating anxiety and cognition with a good safety profile and no drug addiction behaviors. Conversely, results that did not have a significant effect on treating cognitive impairments can be explained by various factors such as THC or other abuse drugs masking effect, low dose, and unknown purity of CBD. Furthermore, CBD shows potential properties that can be tested in the future for Alzheimer's disease. Conclusion As medical cannabis becomes more accessible, it is essential to understand whether medication rich in CBD exerts a beneficial effect on cognitive disorders. Our study concludes that CBD is a promising candidate for treating neurocognitive disorders; however, more studies are required to define CBD as a therapeutic candidate for managing cognitive disorders.
Collapse
Affiliation(s)
- Adriana Yndart Arias
- Department of Dietetics and Nutrition, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, United States
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| | - Kamila Vadell
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| | - Arti Vashist
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| | - Nagesh Kolishetti
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| | - Madepalli K. Lakshmana
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| | - Madhavan Nair
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| | - Juan P. Liuzzi
- Department of Dietetics and Nutrition, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, United States
| |
Collapse
|
20
|
Jha SK, Nelson VK, Suryadevara PR, Panda SP, Pullaiah CP, Nuli MV, Kamal M, Imran M, Ausali S, Abomughaid MM, Srivastava R, Deka R, Pritam P, Gupta N, Shyam H, Singh IK, Pandey BW, Dewanjee S, Jha NK, Jafari SM. Cannabidiol and neurodegeneration: From molecular mechanisms to clinical benefits. Ageing Res Rev 2024; 100:102386. [PMID: 38969143 DOI: 10.1016/j.arr.2024.102386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 05/23/2024] [Accepted: 06/18/2024] [Indexed: 07/07/2024]
Abstract
Neurodegenerative disorders (NDs) such as Alzheimer's disease, Parkinson's disease, Huntington's disease, multiple sclerosis, and amyotrophic lateral sclerosis are severe and life-threatening conditions in which significant damage of functional neurons occurs to produce psycho-motor malfunctions. NDs are an important cause of death in the elderly population worldwide. These disorders are commonly associated with the progression of age, oxidative stress, and environmental pollutants, which are the major etiological factors. Abnormal aggregation of specific proteins such as α-synuclein, amyloid-β, huntingtin, and tau, and accumulation of the associated oligomers in neurons are the hallmark pathological features of NDs. Existing therapeutic options for NDs are only symptomatic relief and do not address root-causing factors, such as protein aggregation, oxidative stress, and neuroinflammation. Cannabidiol (CBD) is a non-psychotic natural cannabinoid obtained from Cannabis sativa that possesses multiple pharmacological actions, including antioxidant, anti-inflammatory, and neuroprotective effects in various NDs and other neurological disorders both in vitro and in vivo. CBD has gained attention as a promising drug candidate for the management of neurodegenerative disorders, such as Alzheimer's disease and Parkinson's disease, by inhibiting protein aggregation, free radicals, and neuroinflammation. In parallel, CBD has shown positive results in other neurological disorders, such as epilepsy, depression, schizophrenia, and anxiety, as well as adjuvant treatment with existing standard therapeutic agents. Hence, the present review focuses on exploring the possible molecular mechanisms in controlling various neurological disorders as well as the clinical applications of CBD in NDs including epilepsy, depression and anxiety. In this way, the current review will serve as a standalone reference for the researchers working in this area.
Collapse
Affiliation(s)
- Saurabh Kumar Jha
- Department of Zoology, Kalindi College, University of Delhi, 110008, India.
| | - Vinod Kumar Nelson
- Center for Global Health Research, Saveetha Medical College, Saveetha Institute Of Medical And Technical Sciences, India
| | | | - Siva Prasad Panda
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh 281406, India
| | - Chitikela P Pullaiah
- Department of Chemistry, Siddha Central Research Institute, Central Council for Research in Siddha, Ministry of AYUSH, Govt. of India, Chennai, Tamil Nadu, India
| | - Mohana Vamsi Nuli
- Raghavendra Institute of Pharmaceutical Education and Research, Anantapur, India
| | - Mehnaz Kamal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Mohd Imran
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| | - Saijyothi Ausali
- College of Pharmacy, MNR Higher Education and Research Academy Campus, MNR Nagar, Sangareddy 502294, India
| | - Mosleh Mohammad Abomughaid
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha 61922, Saudi Arabia
| | - Rashi Srivastava
- Department of Chemical & Biochemical Engineering, Indian Institute of Technology,Patna, 800013 India
| | - Rahul Deka
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Pingal Pritam
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Neha Gupta
- School of Studies in Biotechnology, Jiwaji University, Gwalior, Madhya Pradesh, India
| | - Harishankar Shyam
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Indrakant K Singh
- Molecular Biology Research Lab., Department of Zoology, Deshbandhu College & Delhi School of Public Health, Institute of Eminence, University of Delhi, New Delhi 110019, India
| | | | - Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, West Bengal 700 032, India
| | - Niraj Kumar Jha
- Centre of Research Impact and Outcome, Chitkara University, Rajpura 140401, Punjab, India; School of Bioengineering & Biosciences, Lovely Professional University, Phagwara 144411, India; Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun 248007, India.
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran; Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E-32004 Ourense, Spain
| |
Collapse
|
21
|
İlhan İ, Asci H, Ozmen O, Buyukbayram Hİ, Arlıoglu M, Kurtbolat O. The renoprotective effects of cannabidiol on lipopolysaccharide-induced systemic inflammation model of rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03391-2. [PMID: 39180672 DOI: 10.1007/s00210-024-03391-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 08/16/2024] [Indexed: 08/26/2024]
Abstract
Sepsis-induced renal damage poses a significant threat, necessitating effective therapeutic strategies. Cannabidiol (CBD) has beneficial effects on tissues and their functions by exhibiting antioxidant and anti-inflammatory effects. This study investigates the potential protective effects of CBD in mitigating lipopolysaccharide (LPS)-induced renal injury in Wistar Albino rats. Thirty-two Wistar Albino rats were categorized into control, LPS (5 mg/kg i.p.), LPS + CBD, and CBD (5 mg/kg i.p.) groups. After the experiment, samples were collected for biochemical, genetic, histopathological, and immunohistochemical analyses. Oxidative stress markers as total oxidant status (TOS) and total antioxidant status (TAS), oxidative stress index (OSI), superoxide dismutase (SOD), glutathione peroxidase (GPx), malondialdehyde (MDA), immune staining as tumor necrosis factor alpha (TNF-α), interleukin-10 (IL-10), caspase-3, gene expressions as nuclear factor erythroid 2-related factor 2 (NRF2), C/EBP homologous protein (CHOP), caspase-9, glucose-regulating protein 78 (GRP78), B-cell leukemia/lymphoma 2 (Bcl2), and tissue histology have been examined. The LPS-exposed group exhibited significant renal abnormalities, mitigated by CBD intervention in the LPS + CBD group. CBD reduced immunoexpression scores for TNF-α, caspase-3, and IL-10. Biochemically, CBD induced a positive shift in the oxidative balance, increasing TAS, SOD, and GPx, while decreasing TOS, OSI, and MDA levels. Genetic analyses highlighted CBD's regulatory impact on NRF2, CHOP, caspase-9, GRP78, and Bcl2, providing molecular insights into its protective role against LPS-induced renal damage. This study underscores CBD as a promising protective agent against sepsis-induced renal damage. Our findings could provide valuable insights into potential therapeutic avenues for addressing renal complications in sepsis.
Collapse
Affiliation(s)
- İlter İlhan
- Department of Biochemistry, Faculty of Medicine, Suleyman Demirel University, Isparta, 32200, Turkey.
| | - Halil Asci
- Department of Pharmacology, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - Ozlem Ozmen
- Department of Pathology, Faculty of Veterinary, Burdur Mehmet Akif Ersoy University, Burdur, Turkey
| | - Halil İbrahim Buyukbayram
- Department of Biochemistry, Faculty of Medicine, Suleyman Demirel University, Isparta, 32200, Turkey
| | - Melih Arlıoglu
- Department of Pharmacology, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - Okan Kurtbolat
- Department of Pharmacology, Institute of Medicine, Suleyman Demirel University, Isparta, Turkey
| |
Collapse
|
22
|
Kodali M, Madhu LN, Kolla VSV, Attaluri S, Huard C, Somayaji Y, Shuai B, Jordan C, Rao X, Shetty S, Shetty AK. FDA-approved cannabidiol [Epidiolex ®] alleviates Gulf War Illness-linked cognitive and mood dysfunction, hyperalgesia, neuroinflammatory signaling, and declined neurogenesis. Mil Med Res 2024; 11:61. [PMID: 39169440 PMCID: PMC11340098 DOI: 10.1186/s40779-024-00563-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 08/05/2024] [Indexed: 08/23/2024] Open
Abstract
BACKGROUND Chronic Gulf War Illness (GWI) is characterized by cognitive and mood impairments, as well as persistent neuroinflammation and oxidative stress. This study aimed to investigate the efficacy of Epidiolex®, a Food and Drug Administration (FDA)-approved cannabidiol (CBD), in improving brain function in a rat model of chronic GWI. METHODS Six months after exposure to low doses of GWI-related chemicals [pyridostigmine bromide, N,N-diethyl-meta-toluamide (DEET), and permethrin (PER)] along with moderate stress, rats with chronic GWI were administered either vehicle (VEH) or CBD (20 mg/kg, oral) for 16 weeks. Neurobehavioral tests were conducted on 11 weeks after treatment initiation to evaluate the performance of rats in tasks related to associative recognition memory, object location memory, pattern separation, and sucrose preference. The effect of CBD on hyperalgesia was also examined. The brain tissues were processed for immunohistochemical and molecular studies following behavioral tests. RESULTS GWI rats treated with VEH exhibited impairments in all cognitive tasks and anhedonia, whereas CBD-treated GWI rats showed improvements in all cognitive tasks and no anhedonia. Additionally, CBD treatment alleviated hyperalgesia in GWI rats. Analysis of hippocampal tissues from VEH-treated rats revealed astrocyte hypertrophy and increased percentages of activated microglia presenting NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) complexes as well as elevated levels of proteins involved in NLRP3 inflammasome activation and Janus kinase/signal transducers and activators of the transcription (JAK/STAT) signaling. Furthermore, there were increased concentrations of proinflammatory and oxidative stress markers along with decreased neurogenesis. In contrast, the hippocampus from CBD-treated GWI rats displayed reduced levels of proteins mediating the activation of NLRP3 inflammasomes and JAK/STAT signaling, normalized concentrations of proinflammatory cytokines and oxidative stress markers, and improved neurogenesis. Notably, CBD treatment did not alter the concentration of endogenous cannabinoid anandamide in the hippocampus. CONCLUSIONS The use of an FDA-approved CBD (Epidiolex®) has been shown to effectively alleviate cognitive and mood impairments as well as hyperalgesia associated with chronic GWI. Importantly, the improvements observed in rats with chronic GWI in this study were attributed to the ability of CBD to significantly suppress signaling pathways that perpetuate chronic neuroinflammation.
Collapse
Affiliation(s)
- Maheedhar Kodali
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, Texas A&M University Health Science Center School of Medicine, College Station, TX, 77843, USA
| | - Leelavathi N Madhu
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, Texas A&M University Health Science Center School of Medicine, College Station, TX, 77843, USA
| | - Venkata Sai Vashishta Kolla
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, Texas A&M University Health Science Center School of Medicine, College Station, TX, 77843, USA
| | - Sahithi Attaluri
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, Texas A&M University Health Science Center School of Medicine, College Station, TX, 77843, USA
| | - Charles Huard
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, Texas A&M University Health Science Center School of Medicine, College Station, TX, 77843, USA
| | - Yogish Somayaji
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, Texas A&M University Health Science Center School of Medicine, College Station, TX, 77843, USA
| | - Bing Shuai
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, Texas A&M University Health Science Center School of Medicine, College Station, TX, 77843, USA
| | - Chase Jordan
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, Texas A&M University Health Science Center School of Medicine, College Station, TX, 77843, USA
| | - Xiaolan Rao
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, Texas A&M University Health Science Center School of Medicine, College Station, TX, 77843, USA
| | - Sanath Shetty
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, Texas A&M University Health Science Center School of Medicine, College Station, TX, 77843, USA
| | - Ashok K Shetty
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, Texas A&M University Health Science Center School of Medicine, College Station, TX, 77843, USA.
| |
Collapse
|
23
|
Urrutia-Ortega IM, Valencia I, Ispanixtlahuatl-Meraz O, Benítez-Flores JC, Espinosa-González AM, Estrella-Parra EA, Flores-Ortiz CM, Chirino YI, Avila-Acevedo JG. Full-spectrum cannabidiol reduces UVB damage through the inhibition of TGF-β1 and the NLRP3 inflammasome. Photochem Photobiol 2024. [PMID: 38958000 DOI: 10.1111/php.13993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 07/04/2024]
Abstract
The thermodynamic characteristics, antioxidant potential, and photoprotective benefits of full-spectrum cannabidiol (FS-CBD) against UVB-induced cellular death were examined in this study. In silico analysis of CBD showed antioxidant capacity via proton donation and UV absorption at 209.09, 254.73, and 276.95 nm, according to the HAT and SPLET methodologies. FS-CBD protected against UVB-induced bacterial death for 30 min. FS-CBD protected against UVB-induced cell death by 42% (1.5 μg/mL) and 35% (3.5 μg/mL) in an in vitro keratinocyte cell model. An in vivo acute irradiated CD-1et/et mouse model (UVB-irradiated for 5 min) presented very low photoprotection when FS-CBD was applied cutaneously, as determined by histological analyses. In vivo skin samples showed that FS-CBD regulated inflammatory responses by inhibiting the inflammatory markers TGF-β1 and NLRP3. The docking analysis showed that the CBD molecule had a high affinity for TGF-β1 and NLRP3, indicating that protection against inflammation might be mediated by blocking these proinflammatory molecules. This result was corroborated by the docking interactions between CBD and TGF-β1 and NLRP3, which resulted in a high affinity and inhibition of both proteins The present work suggested a FS-CBD moderate photoprotective agent against UVB light-induced skin damage and that this effect is partially mediated by its anti-inflammatory activity.
Collapse
Affiliation(s)
- I M Urrutia-Ortega
- Laboratorio de Carcinogénesis y Toxicología, Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla de Baz, Estado de México, Mexico
- Laboratorio de Fitoquímica, Unidad de Biotecnología y Prototipos, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla de Baz, Estado de México, Mexico
| | - I Valencia
- Laboratorio de Fitoquímica, Unidad de Biotecnología y Prototipos, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla de Baz, Estado de México, Mexico
| | - O Ispanixtlahuatl-Meraz
- Laboratorio de Carcinogénesis y Toxicología, Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla de Baz, Estado de México, Mexico
| | - J C Benítez-Flores
- Laboratorio de Histología, Unidad de Morfología y Función, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla de Baz, Estado de México, Mexico
| | - A M Espinosa-González
- Laboratorio de Fitoquímica, Unidad de Biotecnología y Prototipos, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla de Baz, Estado de México, Mexico
| | - E A Estrella-Parra
- Laboratorio de Fitoquímica, Unidad de Biotecnología y Prototipos, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla de Baz, Estado de México, Mexico
| | - C M Flores-Ortiz
- Laboratorio de Fisiología Vegetal, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla de Baz, Estado de México, Mexico
- Laboratorio Nacional en Salud, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla de Baz, Estado de México, Mexico
| | - Y I Chirino
- Laboratorio de Carcinogénesis y Toxicología, Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla de Baz, Estado de México, Mexico
| | - J G Avila-Acevedo
- Laboratorio de Fitoquímica, Unidad de Biotecnología y Prototipos, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla de Baz, Estado de México, Mexico
| |
Collapse
|
24
|
Naya NM, Kelly J, Hogwood A, Abbate A, Toldo S. Therapeutic potential of cannabidiol (CBD) in the treatment of cardiovascular diseases. Expert Opin Investig Drugs 2024; 33:699-712. [PMID: 38703078 DOI: 10.1080/13543784.2024.2351513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/01/2024] [Indexed: 05/06/2024]
Abstract
INTRODUCTION Cannabidiol (CBD) is the primary non-psychoactive chemical derived from Cannabis Sativa, and its growing popularity is due to its potential therapeutic properties while avoiding the psychotropic effects of other phytocannabinoids, such as tetrahydrocannabinol (THC). Numerous pre-clinical studies in cellular and animal models and human clinical trials have demonstrated a positive impact of CBD on physiological and pathological processes. Recently, the FDA approved its use for the treatment of seizures, and clinical trials to test the efficacy of CBD in myocarditis and pericarditis are ongoing. AREAS COVERED We herein reviewed the current literature on the reported effects of CBD in the cardiovascular system, highlighting the physiological effects and the outcomes of using CBD as a therapeutic tool in pathological conditions to address this significant global health concern. EXPERT OPINION The comprehensive examination of the literature emphasizes the potential of CBD as a therapeutic option for treating cardiovascular diseases through its anti-inflammatory, vasodilatory, anti-fibrotic, and antioxidant properties in different conditions such as diabetic cardiomyopathy, myocarditis, doxorubicin-induced cardiotoxicity, and ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Nadia Martinez Naya
- Robert M. Berne Cardiovascular Research Center, Division of Cardiovascular Medicine, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Jazmin Kelly
- Robert M. Berne Cardiovascular Research Center, Division of Cardiovascular Medicine, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Austin Hogwood
- Robert M. Berne Cardiovascular Research Center, Division of Cardiovascular Medicine, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Antonio Abbate
- Robert M. Berne Cardiovascular Research Center, Division of Cardiovascular Medicine, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Stefano Toldo
- Robert M. Berne Cardiovascular Research Center, Division of Cardiovascular Medicine, School of Medicine, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
25
|
Guimarães FS. Historical perspective on the therapeutic potential of cannabidiol. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 177:1-9. [PMID: 39029980 DOI: 10.1016/bs.irn.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
Cannabidiol (CBD) is one of over 200 cannabinoids present in the Cannabis plant. Unlike the plant's primary cannabinoid, delta-9-tetrahydrocannabinol (THC), CBD does not produce psychotomimetic effects nor induce dependence. Initially considered an inactive cannabinoid, interest in its pharmacological properties and therapeutic potential has grown exponentially over the last 20 years. Currently employed as a medication for certain epileptic syndromes, numerous pre-clinical and clinical studies support its potential use in various other disorders. In this chapter, we provide a brief historical overview of how this compound evolved from an "inactive substance" to a multifunctional clinical agent. Additionally, we discuss the current challenges in researching its potential therapeutic effects.
Collapse
Affiliation(s)
- Francisco Silveira Guimarães
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
26
|
Martinez Naya N, Denicolai M, Kelly J, Toldo S. Cannabinoids and Postcardiac Surgery: Preclinical Insights Pave the Way for Future Research. J Cardiovasc Pharmacol 2024; 83:531-533. [PMID: 38579326 DOI: 10.1097/fjc.0000000000001574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/07/2024]
Affiliation(s)
- Nadia Martinez Naya
- Robert M. Berne Cardiovascular Research Center, Division of Cardiovascular Medicine, School of Medicine, University of Virginia, Charlottesville, VA
| | | | | | | |
Collapse
|
27
|
Mashabela MD, Kappo AP. Anti-Cancer and Anti-Proliferative Potential of Cannabidiol: A Cellular and Molecular Perspective. Int J Mol Sci 2024; 25:5659. [PMID: 38891847 PMCID: PMC11171526 DOI: 10.3390/ijms25115659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/10/2024] [Accepted: 05/15/2024] [Indexed: 06/21/2024] Open
Abstract
Cannabinoids, the bioactive compounds found in Cannabis sativa, have been used for medicinal purposes for centuries, with early discoveries dating back to the BC era (BCE). However, the increased recreational use of cannabis has led to a negative perception of its medicinal and food applications, resulting in legal restrictions in many regions worldwide. Recently, cannabinoids, notably Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD), have gained renewed interest in the medical field due to their anti-cancer properties. These properties include the inhibition of tumour growth and cell invasion, anti-inflammatory effects, and the induction of autophagy and apoptosis. As a result, the use of cannabinoids to treat chemotherapy-associated side effects, like nausea, vomiting, and pain, has increased, and there have been suggestions to implement the large-scale use of cannabinoids in cancer therapy. However, these compounds' cellular and molecular mechanisms of action still need to be fully understood. This review explores the recent evidence of CBD's efficacy as an anti-cancer agent, which is of interest due to its non-psychoactive properties. The current review will also provide an understanding of CBD's common cellular and molecular mechanisms in different cancers. Studies have shown that CBD's anti-cancer activity can be receptor-dependent (CB1, CB2, TRPV, and PPARs) or receptor-independent and can be induced through molecular mechanisms, such as ceramide biosynthesis, the induction of ER stress, and subsequent autophagy and apoptosis. It is projected that these molecular mechanisms will form the basis for the therapeutic applications of CBD. Therefore, it is essential to understand these mechanisms for developing and optimizing pre-clinical CBD-based therapies.
Collapse
Affiliation(s)
- Manamele Dannies Mashabela
- Department of Biochemistry, Faculty of Science, University of Johannesburg, Auckland Park Kingsway, P.O. Box 524, Johannesburg 2006, South Africa;
| | | |
Collapse
|
28
|
Pagano C, Ciaglia E, Coppola L, Lopardo V, Raimondo A, Giuseppe M, Lembo S, Laezza C, Bifulco M. Cannabidiol exerts multitarget immunomodulatory effects on PBMCs from individuals with psoriasis vulgaris. Front Immunol 2024; 15:1373435. [PMID: 38601151 PMCID: PMC11004238 DOI: 10.3389/fimmu.2024.1373435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/11/2024] [Indexed: 04/12/2024] Open
Abstract
Introduction The involvement of endocannabinoid system (ECS) in the inflammatory cascade, and the ability of phytocannabinoids, endocannabinoids and their synthetic analogues to modulate it has become an interesting research area for new therapeutic approaches in inflammatory skin diseases. Cannabidiol (CBD) appears to be the most promising among phytocannabinoids, due to the lack of psychotropic effects and low toxicity profile. Its anti-inflammatory action has been highlighted in different preclinical models, ranging from experimental colitis to arthritis and neuroinflammation. Our aim was to evaluate CBD immune-modulatory effects in peripheral blood mononuclear cells (PBMC) of psoriasis individuals with particular attention to both innate and adaptative immune arms. Methods We performed in vitro immune functional experiments to analyze CBD action on various immune cells active in psoriatic lesions. Results The results showed that CBD produced a shift from Th1 to Th2 response, while boosting cytotoxic activity of Natural Killer (NK) cells. Furthermore, it also exerted a potent action on monocyte differentiation as, after CBD treatment, monocytes from psoriatic individuals were unable to migrate in response to inflammatory stimuli and to fully differentiate into mature dendritic cells. Finally, a M2 skewing of monocyte-derived macrophages by CBD also contributed to the fine tuning of the magnitude of immune responses. Conclusions These data uncover new potential immunomodulatory properties of this cannabinoid suggesting a possible therapeutic action in the treatment of multiple inflammatory skin diseases.
Collapse
Affiliation(s)
- Cristina Pagano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Elena Ciaglia
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, Italy
| | - Laura Coppola
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Valentina Lopardo
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, Italy
| | - Annunziata Raimondo
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, Italy
| | - Monfrecola Giuseppe
- Section of Dermatology - Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Serena Lembo
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, Italy
| | - Chiara Laezza
- Institute of Endocrinology and Experimental Oncology (IEOS), National Research Council (CNR), Naples, Italy
| | - Maurizio Bifulco
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| |
Collapse
|
29
|
Charles AL, Charloux A, Vogel T, Raul JS, Kindo M, Wolff V, Geny B. Cumulative Deleterious Effects of Tetrahydrocannabinoid (THC) and Ethanol on Mitochondrial Respiration and Reactive Oxygen Species Production Are Enhanced in Old Isolated Cardiac Mitochondria. Int J Mol Sci 2024; 25:1835. [PMID: 38339113 PMCID: PMC10855679 DOI: 10.3390/ijms25031835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/24/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
Delta 9 tetrahydrocannabinol (THC), the main component of cannabis, has adverse effects on the cardiovascular system, but whether concomitant ethanol (EtOH) and aging modulate its toxicity is unknown. We investigated dose responses of THC and its vehicle, EtOH, on mitochondrial respiration and reactive oxygen production in both young and old rat cardiac mitochondria (12 and 90 weeks). THC dose-dependently impaired mitochondrial respiration in both groups, and such impairment was enhanced in aged rats (-97.5 ± 1.4% vs. -75.6 ± 4.0% at 2 × 10-5 M, and IC50: 0.7 ± 0.05 vs. 1.3 ± 0.1 × 10-5 M, p < 0.01, for old and young rats, respectively). The EtOH-induced decrease in mitochondrial respiration was greater in old rats (-50.1 ± 2.4% vs. -19.8 ± 4.4% at 0.9 × 10-5 M, p < 0.0001). Further, mitochondrial hydrogen peroxide (H2O2) production was enhanced in old rats after THC injection (+46.6 ± 5.3 vs. + 17.9 ± 7.8%, p < 0.01, at 2 × 10-5 M). In conclusion, the deleterious cardiac effects of THC were enhanced with concomitant EtOH, particularly in old cardiac mitochondria, showing greater mitochondrial respiration impairment and ROS production. These data improve our knowledge of the mechanisms potentially involved in cannabis toxicity, and likely support additional caution when THC is used by elderly people who consume alcohol.
Collapse
Affiliation(s)
- Anne-Laure Charles
- Biomedicine Research Center of Strasbourg (CRBS), UR 3072, “Mitochondria, Oxidative Stress and Muscle Plasticity”, University of Strasbourg, 67000 Strasbourg, France; (A.-L.C.); (A.C.); (T.V.); (M.K.); (V.W.)
- Faculty of Medicine, University of Strasbourg, 67000 Strasbourg, France;
| | - Anne Charloux
- Biomedicine Research Center of Strasbourg (CRBS), UR 3072, “Mitochondria, Oxidative Stress and Muscle Plasticity”, University of Strasbourg, 67000 Strasbourg, France; (A.-L.C.); (A.C.); (T.V.); (M.K.); (V.W.)
- Faculty of Medicine, University of Strasbourg, 67000 Strasbourg, France;
- Department of Physiology and Functional Explorations, University Hospital of Strasbourg, 67091 Strasbourg, France
| | - Thomas Vogel
- Biomedicine Research Center of Strasbourg (CRBS), UR 3072, “Mitochondria, Oxidative Stress and Muscle Plasticity”, University of Strasbourg, 67000 Strasbourg, France; (A.-L.C.); (A.C.); (T.V.); (M.K.); (V.W.)
- Faculty of Medicine, University of Strasbourg, 67000 Strasbourg, France;
- Geriatrics Department, University Hospital of Strasbourg, 67091 Strasbourg, France
| | - Jean-Sébastien Raul
- Faculty of Medicine, University of Strasbourg, 67000 Strasbourg, France;
- Toxicology Laboratory, Institute of Legal Medicine, Faculty of Medicine, University of Strasbourg, 67000 Strasbourg, France
| | - Michel Kindo
- Biomedicine Research Center of Strasbourg (CRBS), UR 3072, “Mitochondria, Oxidative Stress and Muscle Plasticity”, University of Strasbourg, 67000 Strasbourg, France; (A.-L.C.); (A.C.); (T.V.); (M.K.); (V.W.)
- Faculty of Medicine, University of Strasbourg, 67000 Strasbourg, France;
- Cardiovascular Surgery Department, University Hospital of Strasbourg, 67091 Strasbourg, France
| | - Valérie Wolff
- Biomedicine Research Center of Strasbourg (CRBS), UR 3072, “Mitochondria, Oxidative Stress and Muscle Plasticity”, University of Strasbourg, 67000 Strasbourg, France; (A.-L.C.); (A.C.); (T.V.); (M.K.); (V.W.)
- Faculty of Medicine, University of Strasbourg, 67000 Strasbourg, France;
- Neuro-Vascular Department, University Hospital of Strasbourg, 67098 Strasbourg, France
| | - Bernard Geny
- Biomedicine Research Center of Strasbourg (CRBS), UR 3072, “Mitochondria, Oxidative Stress and Muscle Plasticity”, University of Strasbourg, 67000 Strasbourg, France; (A.-L.C.); (A.C.); (T.V.); (M.K.); (V.W.)
- Faculty of Medicine, University of Strasbourg, 67000 Strasbourg, France;
- Department of Physiology and Functional Explorations, University Hospital of Strasbourg, 67091 Strasbourg, France
| |
Collapse
|
30
|
Martinez Naya N, Kelly J, Corna G, Golino M, Polizio AH, Abbate A, Toldo S, Mezzaroma E. An Overview of Cannabidiol as a Multifunctional Drug: Pharmacokinetics and Cellular Effects. Molecules 2024; 29:473. [PMID: 38257386 PMCID: PMC10818442 DOI: 10.3390/molecules29020473] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/09/2024] [Accepted: 01/14/2024] [Indexed: 01/24/2024] Open
Abstract
Cannabidiol (CBD), a non-psychoactive compound derived from Cannabis Sativa, has garnered increasing attention for its diverse therapeutic potential. This comprehensive review delves into the complex pharmacokinetics of CBD, including factors such as bioavailability, distribution, safety profile, and dosage recommendations, which contribute to the compound's pharmacological profile. CBD's role as a pharmacological inhibitor is explored, encompassing interactions with the endocannabinoid system and ion channels. The compound's anti-inflammatory effects, influencing the Interferon-beta and NF-κB, position it as a versatile candidate for immune system regulation and interventions in inflammatory processes. The historical context of Cannabis Sativa's use for recreational and medicinal purposes adds depth to the discussion, emphasizing CBD's emergence as a pivotal phytocannabinoid. As research continues, CBD's integration into clinical practice holds promise for revolutionizing treatment approaches and enhancing patient outcomes. The evolution in CBD research encourages ongoing exploration, offering the prospect of unlocking new therapeutic utility.
Collapse
Affiliation(s)
- Nadia Martinez Naya
- Robert M. Berne Cardiovascular Research Center, Division of Cardiovascular Medicine, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA; (N.M.N.); (J.K.); (A.H.P.); (A.A.); (S.T.)
| | - Jazmin Kelly
- Robert M. Berne Cardiovascular Research Center, Division of Cardiovascular Medicine, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA; (N.M.N.); (J.K.); (A.H.P.); (A.A.); (S.T.)
| | - Giuliana Corna
- Interventional Cardiology Department, Hospital Italiano de Buenos Aires, Buenos Aires 1199, Argentina;
| | - Michele Golino
- Pauley Heart Center, Virginia Commonwealth University, Richmond, VA 23220, USA;
- Department of Medicine and Surgery, University of Insubria, 2110 Varese, Italy
| | - Ariel H. Polizio
- Robert M. Berne Cardiovascular Research Center, Division of Cardiovascular Medicine, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA; (N.M.N.); (J.K.); (A.H.P.); (A.A.); (S.T.)
| | - Antonio Abbate
- Robert M. Berne Cardiovascular Research Center, Division of Cardiovascular Medicine, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA; (N.M.N.); (J.K.); (A.H.P.); (A.A.); (S.T.)
- Pauley Heart Center, Virginia Commonwealth University, Richmond, VA 23220, USA;
| | - Stefano Toldo
- Robert M. Berne Cardiovascular Research Center, Division of Cardiovascular Medicine, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA; (N.M.N.); (J.K.); (A.H.P.); (A.A.); (S.T.)
| | - Eleonora Mezzaroma
- School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23220, USA
| |
Collapse
|
31
|
Guo Y, Wei R, Deng J, Guo W. Research progress in the management of vascular disease with cannabidiol: a review. J Cardiothorac Surg 2024; 19:6. [PMID: 38172934 PMCID: PMC10765825 DOI: 10.1186/s13019-023-02476-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 12/25/2023] [Indexed: 01/05/2024] Open
Abstract
The morbidity and mortality rates associated with vascular disease (VD) have been gradually increasing. Currently, the most common treatment for VD is surgery, with the progress in drug therapy remaining slow. Cannabidiol (CBD) is a natural extract of Cannabis sativa L. with sedative, analgesic, and nonaddictive properties. CBD binds to 56 cardiovascular-related receptors and exerts extensive regulatory effects on the cardiovascular system, making it a potential pharmacological agent for the management of VD. However, most CBD studies have focused on neurological and cardiac diseases, and research on the management of VD with CBD is still rare. In this review, we summarize the currently available data on CBD in the management of VD, addressing four aspects: the major molecular targets of CBD in VD management, pharmacokinetic properties, therapeutic effects of CBD on common VDs, and side effects. The findings indicate that CBD has anti-anxiety, anti-oxidation, and anti-inflammatory properties and can inhibit abnormal proliferation and apoptosis of vascular smooth muscle and endothelial cells; these effects suggest CBD as a therapeutic agent for atherosclerosis, stress-induced hypertension, diabetes-related vasculopathy, ischemia-reperfusion injury, and vascular damage caused by smoking and alcohol abuse. This study provides a theoretical basis for further research on CBD in the management of VD.
Collapse
Affiliation(s)
- Yilong Guo
- Medical School of Chinese PLA, Beijing, 100037, China
- Department of Vascular and Endovascular Surgery, The First Medical Centre of PLA General Hospital, 28#, Fuxing Road, Beijing, 100037, China
| | - Ren Wei
- Department of Vascular and Endovascular Surgery, The First Medical Centre of PLA General Hospital, 28#, Fuxing Road, Beijing, 100037, China
| | - Jianqing Deng
- Senior Department of Cardiology, The Six Medical Centre of PLA General Hospital, Beijing, 100037, China
| | - Wei Guo
- Medical School of Chinese PLA, Beijing, 100037, China.
- Department of Vascular and Endovascular Surgery, The First Medical Centre of PLA General Hospital, 28#, Fuxing Road, Beijing, 100037, China.
| |
Collapse
|
32
|
Bouma J, Broekhuis JD, van der Horst C, Kumar P, Ligresti A, van der Stelt M, Heitman LH. Dual allosteric and orthosteric pharmacology of synthetic analog cannabidiol-dimethylheptyl, but not cannabidiol, on the cannabinoid CB 2 receptor. Biochem Pharmacol 2023; 218:115924. [PMID: 37972874 DOI: 10.1016/j.bcp.2023.115924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023]
Abstract
Cannabinoid CB2 receptor (CB2R) is a class A G protein-coupled receptor (GPCR) involved in a broad spectrum of physiological processes and pathological conditions. For that reason, targeting CB2R might provide therapeutic opportunities in neurodegenerative disorders, neuropathic pain, inflammatory diseases, and cancer. The main components from Cannabis sativa, such as Δ9-tetrahydrocannabinol (Δ9-THC) and cannabidiol (CBD), have been therapeutically exploited and synthetically-derived analogs have been generated. One example is cannabidiol-dimethylheptyl (CBD-DMH), which exhibits anti-inflammatory effects. Nevertheless, its pharmacological mechanism of action is not yet fully understood and is hypothesized for multiple targets, including CB2R. The aim of this study was to further investigate the molecular pharmacology of CBD-DMH on CB2R while CBD was taken along as control. These compounds were screened in equilibrium and kinetic radioligand binding studies and various functional assays, including G protein activation, inhibition of cAMP production and ß-arrestin-2 recruitment. In dissociation studies, CBD-DMH allosterically modulated the radioligand binding. Furthermore, CBD-DMH negatively modulated the G protein activation of reference agonists CP55,940, AEA and 2-AG, but not the agonist-induced ß-arrestin-2 recruitment. Nevertheless, CBD-DMH also displayed competitive binding to CB2R and partial agonism on G protein activation, inhibition of cAMP production and ß-arrestin-2 recruitment. CBD did not exhibit such allosteric behavior and only very weakly bound CB2R without activation. This study shows a dual binding mode of CBD-DMH, but not CBD, to CB2R with the suggestion of two different binding sites. Altogether, it encourages further research into this dual mechanism which might provide a new class of molecules targeting CB2R.
Collapse
Affiliation(s)
- Jara Bouma
- Division of Drug Discovery and Safety, LACDR, Leiden University & Oncode Institute, the Netherlands
| | - Jeremy D Broekhuis
- Division of Drug Discovery and Safety, LACDR, Leiden University & Oncode Institute, the Netherlands
| | - Cas van der Horst
- Division of Drug Discovery and Safety, LACDR, Leiden University & Oncode Institute, the Netherlands
| | - Poulami Kumar
- National Research Council of Italy, Institute of Biomolecular Chemistry, Italy
| | - Alessia Ligresti
- National Research Council of Italy, Institute of Biomolecular Chemistry, Italy
| | - Mario van der Stelt
- Department of Molecular Physiology, LIC, Leiden University & Oncode Institute, the Netherlands
| | - Laura H Heitman
- Division of Drug Discovery and Safety, LACDR, Leiden University & Oncode Institute, the Netherlands.
| |
Collapse
|
33
|
Loonen AJ. Putative role of immune reactions in the mechanism of tardive dyskinesia. Brain Behav Immun Health 2023; 33:100687. [PMID: 37810262 PMCID: PMC10550815 DOI: 10.1016/j.bbih.2023.100687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 09/13/2023] [Indexed: 10/10/2023] Open
Abstract
The term extrapyramidal disorders is most often used for conditions such as Parkinson's disease or Huntington's disease, but also refers to a group of extrapyramidal side effects of antipsychotics (EPS), such as tardive dyskinesia (TD). After a brief description of some clinical features of TD, this article summarizes the relatively scarce results of research on a possible link between mainly cytokine levels and TD. This data was found by systematically searching Pubmed and Embase. The limitations of these types of studies are a major obstacle to interpretation. After describing relevant aspects of the neuroinflammatory response and the neuroanatomical backgrounds of EPS, a new hypothesis for the origin of TD is presented with emphasis on dysfunctions in the striosomal compartment of the striatum and the dorsal diencephalic connection system (DDCS). It is postulated that (partly immunologically-induced) increase in oxidative stress and the dopamine-dependent immune response in classic TD proceed primarily via the DDCS, which itself is activated from evolutionarily older parts of the forebrain. Neuroinflammatory responses in the choroid plexus of the third ventricle may contribute due to its proximity to the habenula. It is concluded that direct evidence for a possible role of inflammatory processes in the mechanism of TD is still lacking because research on this is still too much of a niche, but there are indications that warrant further investigation.
Collapse
Affiliation(s)
- Anton J.M. Loonen
- Unit of PharmacoTherapy, -Epidemiology & -Economics, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713AV, Groningen, the Netherlands
| |
Collapse
|
34
|
Haller J. Anxiety Modulation by Cannabinoids-The Role of Stress Responses and Coping. Int J Mol Sci 2023; 24:15777. [PMID: 37958761 PMCID: PMC10650718 DOI: 10.3390/ijms242115777] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Endocannabinoids were implicated in a variety of pathological conditions including anxiety and are considered promising new targets for anxiolytic drug development. The optimism concerning the potentials of this system for anxiolysis is probably justified. However, the complexity of the mechanisms affected by endocannabinoids, and discrepant findings obtained with various experimental approaches makes the interpretation of research results difficult. Here, we review the anxiety-related effects of the three main interventions used to study the endocannabinoid system: pharmacological agents active at endocannabinoid-binding sites present on both the cell membrane and in the cytoplasm, genetic manipulations targeting cannabinoid receptors, and function-enhancers represented by inhibitors of endocannabinoid degradation and transport. Binding-site ligands provide inconsistent findings probably because they activate a multitude of mechanisms concomitantly. More robust findings were obtained with genetic manipulations and particularly with function enhancers, which heighten ongoing endocannabinoid activation rather than affecting all mechanisms indiscriminately. The enhancement of ongoing activity appears to ameliorate stress-induced anxiety without consistent effects on anxiety in general. Limited evidence suggests that this effect is achieved by promoting active coping styles in critical situations. These findings suggest that the functional enhancement of endocannabinoid signaling is a promising drug development target for stress-related anxiety disorders.
Collapse
Affiliation(s)
- József Haller
- Drug Research Institute, 1137 Budapest, Hungary;
- Department of Criminal Psychology, University of Public Service, 1082 Budapest, Hungary
| |
Collapse
|
35
|
Stasiłowicz-Krzemień A, Sip S, Szulc P, Walkowiak J, Cielecka-Piontek J. The Antioxidant and Neuroprotective Potential of Leaves and Inflorescences Extracts of Selected Hemp Varieties Obtained with scCO 2. Antioxidants (Basel) 2023; 12:1827. [PMID: 37891906 PMCID: PMC10604441 DOI: 10.3390/antiox12101827] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/28/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023] Open
Abstract
Cannabis sativa, a versatile plant with numerous varieties, holds promising potential for a wide range of biological activity. As raw materials for research, we chose leaves and inflorescences of hemp varieties such as Białobrzeskie, Henola, and Tygra, which are cultivated mainly for their fibers or seeds. The choice of extraction is a key step in obtaining the selected compositions of active compounds from plant material. Bearing in mind the lipophilic nature of cannabinoids, we performed supercritical carbon dioxide (scCO2) extraction at 50 °C under 2000 (a) and 6000 PSI (b). The cannabinoid contents were determined with the use of the HPLC-DAD method. The antioxidant capabilities were assessed through a series of procedures, including the DPPH, ABTS, CUPRAC, and FRAP methods. The capacity to inhibit enzymes that play a role in the progression of neurodegenerative diseases, such as acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and tyrosinase was also studied. The dominant cannabinoids in the extracts were cannabidiol (CBD) and cannabidiolic acid (CBDA). The highest concentration of eight cannabinoids was detected in the Tygra inflorescences extract (b). The most notable antioxidant properties were provided by the Tygra inflorescences extract (b). Nonetheless, it was the Henola inflorescences extract (b) that demonstrated the most efficient inhibition of AChE and BChE, and tyrosinase was inhibited the most significantly by the Białobrzeskie inflorescences extract (b). Multidimensional comparative analysis enrolled all assays and revealed that the Henola inflorescences extract (b) showed the most substantial neuroprotective potential.
Collapse
Affiliation(s)
- Anna Stasiłowicz-Krzemień
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland;
| | - Szymon Sip
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland;
| | - Piotr Szulc
- Department of Agronomy, Poznań University of Life Sciences, Dojazd 11, 60-632 Poznan, Poland;
| | - Jarosław Walkowiak
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Szpitalna 27/33, 60-572 Poznan, Poland;
| | - Judyta Cielecka-Piontek
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland;
- Department of Pharmacology and Phytochemistry, Institute of Natural Fibres and Medicinal Plants, Wojska Polskiego 71b, 60-630 Poznan, Poland
| |
Collapse
|
36
|
Rojas-Valverde D, Fallas-Campos A. Cannabidiol in sports: insights on how CBD could improve performance and recovery. Front Pharmacol 2023; 14:1210202. [PMID: 37808192 PMCID: PMC10556669 DOI: 10.3389/fphar.2023.1210202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 09/13/2023] [Indexed: 10/10/2023] Open
Affiliation(s)
- Daniel Rojas-Valverde
- Sport Injury Clinic (Rehab Readapt), Escuela Ciencias del Movimiento Humano y Calidad de Vida (CIEMHCAVI), Universidad Nacional, Heredia, Costa Rica
- Núcleo de Estudios para el Alto Rendimiento y la Salud (CIDISAD-NARS), Escuela Ciencias del Movimiento Humano y Calidad de Vida (CIEMHCAVI), Universidad Nacional, Heredia, Costa Rica
| | - Andrea Fallas-Campos
- Núcleo de Estudios para el Alto Rendimiento y la Salud (ACUAUNA-NARS), Escuela Ciencias del Movimiento Humano y Calidad de Vida (CIEMHCAVI), Universidad Nacional, Heredia, Costa Rica
| |
Collapse
|