1
|
Oloruntola OD, Ayodele SO, Oloruntola DA, Olarotimi OJ, Falowo AB, Akinduro VO, Gbore FA, Adu OA, Agbede JO. Dietary supplementation of Capsicum powder affects the growth, immunoglobulins, pro-inflammatory cytokines, adipokines, meat, and liver histology of aflatoxin B1 exposed broiler chickens. Toxicon 2024; 240:107640. [PMID: 38325757 DOI: 10.1016/j.toxicon.2024.107640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/02/2024] [Accepted: 02/03/2024] [Indexed: 02/09/2024]
Abstract
The effects of dietary supplementation with Capsicum annuum fruit pericarp powder (CPP) and Capsicum annuum fruit seed powder (CSP) on the health and performance of broiler chickens exposed to aflatoxin B1 (AFB1) was investigated. Four dietary groups were established: CON (control), AFT (0.5 mg/kg AFB1), CPAF (0.5 g/kg CPP and 0.5 mg/kg AFB1), and CSAF (0.5 g/kg CSP and 0.5 mg/kg AFB1). The AFT group shows a significant (P < 0.05) reduction in the relative growth rate compared to CON, CPAF, and CSAF. In contrast, the latter two groups exhibit growth rates similar (P > 0.05) to CON. Additionally, immunoglobulin levels (IgG, IgM, and IgA) in the AFT group are significantly (P < 0.05) lower compared to the other treatment groups. Serum interleukin-6 levels in the CPAF and CSAF groups were similar (P > 0.05) to CON but higher (P < 0.05) than in AFT. Tumor necrosis factor-alpha levels were elevated (P < 0.05) in AFT compared to the other treatment groups. Interferon-gamma concentrations in AFT were significantly (P < 0.05) lower than in the other treatment groups. The liver histology reveals that the AFT treatment group has periportal hepatic inflammation. In contrast, the CPAF and CSAF treatment groups exhibit normal hepatic microanatomy. In conclusion, 0.5 g/kg CPAF dietary supplementation may help to ameliorate the adverse effects of AFB1 exposure on broiler chicken health, specifically the growth, immune parameters and liver histology.
Collapse
Affiliation(s)
| | - Simeon O Ayodele
- Department of Agricultural Technology, The Federal Polytechnic, Ado Ekiti, Nigeria
| | - Deborah A Oloruntola
- Department of Medical Laboratory Science, University of Medical Sciences, Ondo City, Nigeria
| | | | - Andrew B Falowo
- Department of Animal Science, Adekunle Ajasin University, Akungba Akoko, Nigeria
| | - Victor O Akinduro
- Department of Animal Science, Osun State University, Osogbo, Nigeria
| | - Francis A Gbore
- Department of Animal Science, Adekunle Ajasin University, Akungba Akoko, Nigeria
| | - Olufemi A Adu
- Department of Animal Production and Health, The Federal University of Technology, Akure. Nigeria
| | - Johnson O Agbede
- Department of Animal Production and Health, The Federal University of Technology, Akure. Nigeria
| |
Collapse
|
2
|
Ivan IM, Popovici V, Chițescu CL, Popescu L, Luță EA, Ilie EI, Brașoveanu LI, Hotnog CM, Olaru OT, Nițulescu GM, Boscencu R, Gîrd CE. Phytochemical Profile, Antioxidant and Cytotoxic Potential of Capsicum annuum (L.) Dry Hydro-Ethanolic Extract. Pharmaceutics 2024; 16:245. [PMID: 38399299 PMCID: PMC10892411 DOI: 10.3390/pharmaceutics16020245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/11/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Capsicum annuum (L.) is one of the essential spices most frequently used in our daily routine and has remarkable ethnobotanical and pharmacological properties. Its fruits are rich in vitamins, minerals, carotenoids, and numerous other phenolic metabolites with a well-known antioxidant activity. Regular consumption of chili fruits may have a positive influence on human health. Therefore, we investigated a commercially available chili fruit powder in the present study, extracting it with 50% ethanol. The dried hydro-ethanolic extract (CAE) was thoroughly analyzed using ultra-high-performance liquid chromatography coupled with high-resolution mass spectrometry (UHPLC-HRMS/MS), and 79 bioactive phenolic constituents were identified. Then, we quantified the main phenolic compounds and found a polyphenol content of 4.725 ± 1.361 mg Eq tannic acid/100 g extract and a flavonoid amount of 1.154 ± 0.044 mg Eq rutin/100 g extract. Phenolic secondary metabolites are known for their dual redox behavior as antioxidants/pro-oxidants, underlying their numerous benefits in health and disease. Thus, the antioxidant potential of CAE was evaluated using three methods; our results could explain the protective effects of chili fruits: IC50DPPH = 1.669 mg/mL, IC50ABTS = 0.200 mg/mL, and EC50FRAP = 0.561 mg/mL. The pro-oxidant potential of phenolic compounds could be a basis for CAE cytotoxicity, investigated in vitro on tumor cell lines and in vivo on Daphnia sp. Results demonstrated the dose- and time-dependent CAE's cytotoxic activity; the highest antiproliferative activity was recorded on colon (LoVo) and breast (MDA-MB-231) cancer cell lines after 48 h of exposure (IC50 values < 200 µg/mL). In vivo testing on Daphnia sp. reported a potent CAE cytotoxicity after 48 h and embryonic developmental delays. Extensive data analyses support our results, showing a significant correlation between the CAE's concentration, phenolic compound content, antioxidant activity, exposure time, and the viability rate of different tested cell lines.
Collapse
Affiliation(s)
- Ionuț Mădălin Ivan
- Faculty of Pharmacy, University of Medicine and Pharmacy “Carol Davila”, Traian Vuia 6, 020956 Bucharest, Romania; (I.M.I.); (L.P.); (E.A.L.); (E.I.I.); (G.M.N.); (R.B.); (C.E.G.)
| | - Violeta Popovici
- “Costin C. Kiriţescu” National Institute of Economic Research—Center for Mountain Economics (INCE-CEMONT), Romanian Academy, 725700 Vatra-Dornei, Romania
| | - Carmen Lidia Chițescu
- Faculty of Medicine and Pharmacy, “Dunărea de Jos” University of Galați, A.I. Cuza 35, 800010 Galați, Romania;
| | - Liliana Popescu
- Faculty of Pharmacy, University of Medicine and Pharmacy “Carol Davila”, Traian Vuia 6, 020956 Bucharest, Romania; (I.M.I.); (L.P.); (E.A.L.); (E.I.I.); (G.M.N.); (R.B.); (C.E.G.)
| | - Emanuela Alice Luță
- Faculty of Pharmacy, University of Medicine and Pharmacy “Carol Davila”, Traian Vuia 6, 020956 Bucharest, Romania; (I.M.I.); (L.P.); (E.A.L.); (E.I.I.); (G.M.N.); (R.B.); (C.E.G.)
| | - Elena Iuliana Ilie
- Faculty of Pharmacy, University of Medicine and Pharmacy “Carol Davila”, Traian Vuia 6, 020956 Bucharest, Romania; (I.M.I.); (L.P.); (E.A.L.); (E.I.I.); (G.M.N.); (R.B.); (C.E.G.)
| | - Lorelei Irina Brașoveanu
- Center of Immunology, “Stefan S. Nicolau” Institute of Virology, Romanian Academy, 285 Mihai Bravu Ave., 030304 Bucharest, Romania; (L.I.B.); (C.M.H.)
| | - Camelia Mia Hotnog
- Center of Immunology, “Stefan S. Nicolau” Institute of Virology, Romanian Academy, 285 Mihai Bravu Ave., 030304 Bucharest, Romania; (L.I.B.); (C.M.H.)
| | - Octavian Tudorel Olaru
- Faculty of Pharmacy, University of Medicine and Pharmacy “Carol Davila”, Traian Vuia 6, 020956 Bucharest, Romania; (I.M.I.); (L.P.); (E.A.L.); (E.I.I.); (G.M.N.); (R.B.); (C.E.G.)
| | - George Mihai Nițulescu
- Faculty of Pharmacy, University of Medicine and Pharmacy “Carol Davila”, Traian Vuia 6, 020956 Bucharest, Romania; (I.M.I.); (L.P.); (E.A.L.); (E.I.I.); (G.M.N.); (R.B.); (C.E.G.)
| | - Rica Boscencu
- Faculty of Pharmacy, University of Medicine and Pharmacy “Carol Davila”, Traian Vuia 6, 020956 Bucharest, Romania; (I.M.I.); (L.P.); (E.A.L.); (E.I.I.); (G.M.N.); (R.B.); (C.E.G.)
| | - Cerasela Elena Gîrd
- Faculty of Pharmacy, University of Medicine and Pharmacy “Carol Davila”, Traian Vuia 6, 020956 Bucharest, Romania; (I.M.I.); (L.P.); (E.A.L.); (E.I.I.); (G.M.N.); (R.B.); (C.E.G.)
| |
Collapse
|