1
|
Kim M, Ahn YR, Yoon S, Choi J, Kim H, Lim KS, Ha SJ, Park JA, Kim HO. Application of metal-organic frameworks for photocatalytic degradation of microplastics: Design, challenges, and scope. CHEMOSPHERE 2024; 366:143518. [PMID: 39419337 DOI: 10.1016/j.chemosphere.2024.143518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/11/2024] [Accepted: 10/08/2024] [Indexed: 10/19/2024]
Abstract
Microplastics (MPs), plastic particles smaller than 5 mm, are pervasive pollutants challenging wastewater treatment due to their size and hydrophobicity. They infiltrate freshwater, marine, and soil environments, posing ecological threats. In marine settings, MPs ingested by organisms cause cytokine release, cellular and DNA damage, and inflammation. As MPs enter the food chain and disrupt biological processes, their degradation is crucial. While biodegradation, pyrolysis, and chemical methods have been extensively studied, the use of metal-organic frameworks (MOFs) for MP pollution mitigation is underexplored. In this study, we explored the photocatalytic degradation mechanisms of MPs by MOFs in aquatic environments. We analyzed the hydrolysis, oxidation, and adsorption processes, while focusing on the environmentally friendly and cost-effective photocatalytic approach. Additionally, we analyzed the literature on MP decomposition for various types of MOFs, providing a detailed understanding of the degradation mechanisms specific to each MOF. Furthermore, we evaluated the degradation efficiencies of different MOFs and discussed the challenges and limitations in their application. Our study highlights the need for an integrated approach that involves the application of MOFs while considering environmental factors and safety concerns to develop effective MP degradation models. This review provides a framework for developing reliable photocatalytic materials with high MP removal and degradation efficiencies, thereby promoting the use of MOFs for marine plastic pollution mitigation.
Collapse
Affiliation(s)
- Minse Kim
- Department of Smart Health Science and Technology, Kangwon National University, Chuncheon, 24341, Republic of Korea; Department of Bioengineering, Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Yu-Rim Ahn
- Department of Smart Health Science and Technology, Kangwon National University, Chuncheon, 24341, Republic of Korea; Department of Bioengineering, Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Soyeong Yoon
- Department of Environmental Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Jaewon Choi
- Department of Smart Health Science and Technology, Kangwon National University, Chuncheon, 24341, Republic of Korea; Department of Bioengineering, Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Hongbin Kim
- Department of Smart Health Science and Technology, Kangwon National University, Chuncheon, 24341, Republic of Korea; Department of Bioengineering, Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Kwang Suk Lim
- Department of Smart Health Science and Technology, Kangwon National University, Chuncheon, 24341, Republic of Korea; Department of Bioengineering, Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Suk-Jin Ha
- Department of Smart Health Science and Technology, Kangwon National University, Chuncheon, 24341, Republic of Korea; Department of Bioengineering, Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Jeong-Ann Park
- Department of Environmental Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea; Department of Integrated Energy and Infra System, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| | - Hyun-Ouk Kim
- Department of Smart Health Science and Technology, Kangwon National University, Chuncheon, 24341, Republic of Korea; Department of Bioengineering, Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| |
Collapse
|
2
|
Guo L, Kong W, Che Y, Liu C, Zhang S, Liu H, Tang Y, Yang X, Zhang J, Xu C. Research progress on antibacterial applications of metal-organic frameworks and their biomacromolecule composites. Int J Biol Macromol 2024; 261:129799. [PMID: 38296133 DOI: 10.1016/j.ijbiomac.2024.129799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/03/2024]
Abstract
With the extensive use of antibiotics, resulting in increasingly serious problems of bacterial resistance, antimicrobial therapy has become a global concern. Metal-organic frameworks (MOFs) are low-density porous coordination materials composed of metal ions and organic ligands, which can form composite materials with biomacromolecules such as proteins and polysaccharides. In recent years, MOFs and their derivatives have been widely used in the antibacterial field as efficient antibacterial agents. This review offers a detailed summary of the antibacterial applications of MOFs and their composites, and the different synthesis methods and antibacterial mechanisms of MOFs and MOF-based composites are briefly introduced. Finally, the challenges and prospects of MOFs-based antibacterial materials in the rapidly developing medical field were briefly discussed. We hope this review will provide new strategies for the medical application of MOFs-based antibacterial materials.
Collapse
Affiliation(s)
- Lei Guo
- College of Basic Medical Sciences, Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, Jilin, China
| | - Wei Kong
- Radiation Medicine, School of Public Health, Jilin University, Changchun 130021, Jilin, China
| | - Yilin Che
- Radiation Medicine, School of Public Health, Jilin University, Changchun 130021, Jilin, China
| | - Chang Liu
- College of Basic Medical Sciences, Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, Jilin, China; Department of Neurology and Neuroscience Center, First Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Shichen Zhang
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun 130021, Jilin, China
| | - Heshi Liu
- Department of Gastrocolorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Yixin Tang
- College of Basic Medical Sciences, Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, Jilin, China
| | - Xi Yang
- College of Basic Medical Sciences, Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, Jilin, China
| | - Jizhou Zhang
- College of Basic Medical Sciences, Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, Jilin, China
| | - Caina Xu
- College of Basic Medical Sciences, Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, Jilin, China.
| |
Collapse
|