1
|
Iranzadeh S, Dalil D, Kohansal S, Isakhani M. Shikonin in breast cancer treatment: a comprehensive review of molecular pathways and innovative strategies. J Pharm Pharmacol 2024; 76:967-982. [PMID: 38652046 DOI: 10.1093/jpp/rgae041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/22/2024] [Indexed: 04/25/2024]
Abstract
OBJECTIVES Breast cancer is a prevalent disease that has a substantial impact on women's mortality rates. Shikonin, a naphthoquinone derived from Lithospermum erythrorhizon, has demonstrated substantial anticancer effects. This study aims to conduct a comprehensive review of the latest research findings regarding the therapeutic efficacy of shikonin in the context of breast cancer treatment, with a specific emphasis on elucidating the underlying molecular mechanisms. METHODS A comprehensive literature review was conducted on shikonin and breast cancer by searching PubMed, Scopus, Web of Science, and Google Scholar databases. KEY FINDINGS Shikonin significantly reduces tumor cell viability, proliferation, migration, invasion, and metastasis in both in vivo and in vitro across all breast cancer subtypes. Additionally, when combined with other pharmaceutical agents, it exhibits synergistic effects. Shikonin stimulates immunogenic cell death, resulting in apoptosis and necroptosis. The induction of immunogenic cell death by shikonin enhances the immunogenicity of breast cancer cells, leading to its involvement in the development of dendritic cell-based tumor vaccines against breast cancer. CONCLUSION Shikonin exhibits potent anti-breast cancer properties and shows significant potential for the advancement of immunotherapeutic approaches against breast cancer, as well as enhancing the efficacy of conventional treatment strategies.
Collapse
Affiliation(s)
- Saeid Iranzadeh
- Student Research Committee, Faculty of Medicine, Shahed University, Tehran, Iran
| | - Davood Dalil
- Student Research Committee, Faculty of Medicine, Shahed University, Tehran, Iran
| | - Soroush Kohansal
- Student Research Committee, Faculty of Medicine, Shahed University, Tehran, Iran
| | - Mahdi Isakhani
- Student Research Committee, Faculty of Medicine, Shahed University, Tehran, Iran
| |
Collapse
|
2
|
Jiang A, Li J, He Z, Liu Y, Qiao K, Fang Y, Qu L, Luo P, Lin A, Wang L. Renal cancer: signaling pathways and advances in targeted therapies. MedComm (Beijing) 2024; 5:e676. [PMID: 39092291 PMCID: PMC11292401 DOI: 10.1002/mco2.676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/09/2024] [Accepted: 07/15/2024] [Indexed: 08/04/2024] Open
Abstract
Renal cancer is a highlyheterogeneous malignancy characterized by rising global incidence and mortalityrates. The complex interplay and dysregulation of multiple signaling pathways,including von Hippel-Lindau (VHL)/hypoxia-inducible factor (HIF), phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR), Hippo-yes-associated protein (YAP), Wnt/ß-catenin, cyclic adenosine monophosphate (cAMP), and hepatocyte growth factor (HGF)/c-Met, contribute to theinitiation and progression of renal cancer. Although surgical resection is thestandard treatment for localized renal cancer, recurrence and metastasiscontinue to pose significant challenges. Advanced renal cancer is associatedwith a poor prognosis, and current therapies, such as targeted agents andimmunotherapies, have limitations. This review presents a comprehensiveoverview of the molecular mechanisms underlying aberrant signaling pathways inrenal cancer, emphasizing their intricate crosstalk and synergisticinteractions. We discuss recent advancements in targeted therapies, includingtyrosine kinase inhibitors, and immunotherapies, such as checkpoint inhibitors.Moreover, we underscore the importance of multiomics approaches and networkanalysis in elucidating the complex regulatory networks governing renal cancerpathogenesis. By integrating cutting-edge research and clinical insights, this review contributesto the development of innovative diagnostic and therapeutic strategies, whichhave the potential to improve risk stratification, precision medicine, andultimately, patient outcomes in renal cancer.
Collapse
Affiliation(s)
- Aimin Jiang
- Department of UrologyChanghai HospitalNaval Medical UniversityShanghaiChina
| | - Jinxin Li
- Department of UrologyChanghai HospitalNaval Medical UniversityShanghaiChina
| | - Ziwei He
- Department of UrologyChanghai HospitalNaval Medical UniversityShanghaiChina
| | - Ying Liu
- Department of UrologyChanghai HospitalNaval Medical UniversityShanghaiChina
| | - Kun Qiao
- Department of UrologyChanghai HospitalNaval Medical UniversityShanghaiChina
| | - Yu Fang
- Department of UrologyChanghai HospitalNaval Medical UniversityShanghaiChina
| | - Le Qu
- Department of UrologyJinling HospitalAffiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| | - Peng Luo
- Department of OncologyZhujiang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Anqi Lin
- Department of OncologyZhujiang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Linhui Wang
- Department of UrologyChanghai HospitalNaval Medical UniversityShanghaiChina
| |
Collapse
|
3
|
Qi K, Li J, Hu Y, Qiao Y, Mu Y. Research progress in mechanism of anticancer action of shikonin targeting reactive oxygen species. Front Pharmacol 2024; 15:1416781. [PMID: 39076592 PMCID: PMC11284502 DOI: 10.3389/fphar.2024.1416781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 06/13/2024] [Indexed: 07/31/2024] Open
Abstract
Excessive buildup of highly reactive molecules can occur due to the generation and dysregulation of reactive oxygen species (ROS) and their associated signaling pathways. ROS have a dual function in cancer development, either leading to DNA mutations that promote the growth and dissemination of cancer cells, or triggering the death of cancer cells. Cancer cells strategically balance their fate by modulating ROS levels, activating pro-cancer signaling pathways, and suppressing antioxidant defenses. Consequently, targeting ROS has emerged as a promising strategy in cancer therapy. Shikonin and its derivatives, along with related drug carriers, can impact several signaling pathways by targeting components involved with oxidative stress to induce processes such as apoptosis, necroptosis, cell cycle arrest, autophagy, as well as modulation of ferroptosis. Moreover, they can increase the responsiveness of drug-resistant cells to chemotherapy drugs, based on the specific characteristics of ROS, as well as the kind and stage of cancer. This research explores the pro-cancer and anti-cancer impacts of ROS, summarize the mechanisms and research achievements of shikonin-targeted ROS in anti-cancer effects and provide suggestions for designing further anti-tumor experiments and undertaking further experimental and practical research.
Collapse
Affiliation(s)
- Ke Qi
- Department of Diagnostic Clinical Laboratory Science, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Jiayi Li
- Department of Clinical Test Center, Medical Laboratory, Peking University Cancer Hospital (Inner Mongolia Campus), Affiliated Cancer Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Yang Hu
- Department of Diagnostic Clinical Laboratory Science, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Yiyun Qiao
- Department of Clinical Test Center, Peking University Cancer Hospital (Inner Mongolia Campus), Affiliated Cancer Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Yongping Mu
- Department of Clinical Test Center, Peking University Cancer Hospital (Inner Mongolia Campus), Affiliated Cancer Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| |
Collapse
|
4
|
Zhu J, Ye Y, Zhao X, Wu M, Wang X, Shu P, Liu J, Zhang X. Comprehensive prognostic assessment in kidney cancer: A multidimensional approach analyzing Fufang Sanling granules, genetic variants, and immune infiltration. ENVIRONMENTAL TOXICOLOGY 2024; 39:3694-3709. [PMID: 38511791 DOI: 10.1002/tox.24225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/22/2024] [Accepted: 03/04/2024] [Indexed: 03/22/2024]
Abstract
This study delves into the potential therapeutic benefits of Fufang Sanling Granules for kidney cancer, focusing on their active components and the underlying mechanisms of their interaction with cancer-related targets. By constructing a drug-active component-target network based on eight herbs, key active compounds such as kaempferol, quercetin, and linolenic acid were identified, suggesting their pivotal roles in modulating immune responses and cellular signaling pathways relevant to cancer progression. The research further identified 51 central drug-disease genes through comprehensive bioinformatics analyses, implicating their involvement in crucial biological processes and pathways. A novel risk score model, encompassing six genes with significant prognostic value for renal cancer, was established and validated, showcasing its effectiveness in predicting patient outcomes through mutation analysis and survival studies. The model's predictive power was further confirmed by its ability to stratify patients into distinct risk groups with significant survival differences, highlighting its potential as a prognostic tool. Additionally, the study explored the relationship between gene expression within the identified black module and the risk score, uncovering significant associations with the extracellular matrix and immune infiltration patterns. This reveals the complex interplay between the tumor microenvironment and cancer progression. The integration of the risk score with clinical parameters through a nomogram significantly improved the model's predictive accuracy, offering a more comprehensive tool for predicting kidney cancer prognosis. In summary, by combining detailed molecular analyses with clinical insights, this study presents a robust framework for understanding the therapeutic potential of Fufang Sanling Granules in kidney cancer. It not only sheds light on the active components and their interactions with cancer-related genes but also introduces a reliable risk score model, paving the way for personalized treatment strategies and improved patient management in the future.
Collapse
Affiliation(s)
- Junlan Zhu
- The Precision Medicine Laboratory, Beilun People's Hospital, Beilun Branch of the First Affiliated Hospital of Zhejiang University, Ningbo, China
| | - Yun Ye
- Department of Pharmacy, Beilun People's Hospital, Beilun Branch of the First Affiliated Hospital of Zhejiang University, Ningbo, China
| | - Xin Zhao
- Department of Pharmacy, Beilun People's Hospital, Beilun Branch of the First Affiliated Hospital of Zhejiang University, Ningbo, China
| | - Meiling Wu
- Department of Pharmacy, Beilun People's Hospital, Beilun Branch of the First Affiliated Hospital of Zhejiang University, Ningbo, China
| | - Xuyao Wang
- The Precision Medicine Laboratory, Beilun People's Hospital, Beilun Branch of the First Affiliated Hospital of Zhejiang University, Ningbo, China
| | - Peng Shu
- The Precision Medicine Laboratory, Beilun People's Hospital, Beilun Branch of the First Affiliated Hospital of Zhejiang University, Ningbo, China
| | - Jian Liu
- The Precision Medicine Laboratory, Beilun People's Hospital, Beilun Branch of the First Affiliated Hospital of Zhejiang University, Ningbo, China
| | - Xingguo Zhang
- Department of Pharmacy, Beilun People's Hospital, Beilun Branch of the First Affiliated Hospital of Zhejiang University, Ningbo, China
| |
Collapse
|
5
|
Bustin SA. Improving the quality of quantitative polymerase chain reaction experiments: 15 years of MIQE. Mol Aspects Med 2024; 96:101249. [PMID: 38290180 DOI: 10.1016/j.mam.2024.101249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/02/2024] [Accepted: 01/15/2024] [Indexed: 02/01/2024]
Abstract
The quantitative polymerase chain reaction (qPCR) is fundamental to molecular biology. It is not just a laboratory technique, qPCR is a bridge between research and clinical practice. Its theoretical foundations guide the design of experiments, while its practical implications extend to diagnostics, treatment, and research advancements in the life sciences, human and veterinary medicine, agriculture, and forensics. However, the accuracy, reliability and reproducibility of qPCR data face challenges arising from various factors associated with experimental design, execution, data analysis and inadequate reporting details. Addressing these concerns, the Minimum Information for the Publication of Quantitative Real-Time PCR Experiments (MIQE) guidelines have emerged as a cohesive framework offering a standardised set of recommendations that describe the essential information required for assessing qPCR experiments. By emphasising the importance of methodological rigour, the MIQE guidelines have made a major contribution to improving the trustworthiness, consistency, and transparency of many published qPCR results. However, major challenges related to awareness, resources, and publication pressures continue to affect their consistent application.
Collapse
Affiliation(s)
- Stephen A Bustin
- Medical Technology Research Centre, Anglia Ruskin University, Chelmsford, Essex, CM1 1SQ, UK.
| |
Collapse
|
6
|
Lohberger B, Kaltenegger H, Eck N, Glänzer D, Leithner A, Kretschmer N. The Biological Assessment of Shikonin and β,β-dimethylacrylshikonin Using a Cellular Myxofibrosarcoma Tumor Heterogeneity Model. Int J Mol Sci 2023; 24:15910. [PMID: 37958891 PMCID: PMC10650664 DOI: 10.3390/ijms242115910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/27/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Myxofibrosarcoma (MFS) is a subtype of soft tissue sarcoma of connective tissue, which is characterized by large intra-tumor heterogeneity. Therapy includes surgical resection. Additional chemotherapy is of limited effect. In this study, we demonstrated the potent anticancer activity of shikonin derivatives in our MFS cellular model of tumor heterogeneity for developing a new therapeutic approach. The impact of shikonin and β,β-dimethylacrylshikonin (DMAS) on viability, apoptotic induction, MAPK phosphorylation, and DNA damage response were analyzed by means of two human MFS cell lines, MUG-Myx2a and MUG-Myx2b, derived from a singular tumor tissue specimen. MFS cells showed a dose-dependent inhibition of cell viability and a significant induction of apoptosis. Treatment with shikonin derivatives caused an inhibition of pSTAT3 and an increase in pAKT, pERK, pJNK, and pp38. DMAS and shikonin inhibited the activation of the two master upstream regulators of the DNA damage response, ATR and ATM. MUG-Myx2b, which contains an additional PTEN mutation, was more sensitive in some targets. These data demonstrate the significant antitumorigenic effect of shikonin derivatives in MFS and highlight the importance of intra-tumor heterogeneity in treatment planning.
Collapse
Affiliation(s)
- Birgit Lohberger
- Department of Orthopedics and Trauma, Medical University of Graz, 8036 Graz, Austria; (H.K.); (N.E.); (D.G.); (A.L.)
| | - Heike Kaltenegger
- Department of Orthopedics and Trauma, Medical University of Graz, 8036 Graz, Austria; (H.K.); (N.E.); (D.G.); (A.L.)
| | - Nicole Eck
- Department of Orthopedics and Trauma, Medical University of Graz, 8036 Graz, Austria; (H.K.); (N.E.); (D.G.); (A.L.)
| | - Dietmar Glänzer
- Department of Orthopedics and Trauma, Medical University of Graz, 8036 Graz, Austria; (H.K.); (N.E.); (D.G.); (A.L.)
| | - Andreas Leithner
- Department of Orthopedics and Trauma, Medical University of Graz, 8036 Graz, Austria; (H.K.); (N.E.); (D.G.); (A.L.)
| | - Nadine Kretschmer
- Institute of Pharmaceutical Sciences, Pharmacognosy, University of Graz, 8010 Graz, Austria
| |
Collapse
|