1
|
Liu W, Nie F, Jiang H, Zhao Y, Zhang Y, Zhang Z, Zhang J, Xu J, Guo Y. Preparation of pH-Sensitive Polysaccharide-Small Molecule Nanoparticles and Their Applications for Tumor Chemo- and Immunotherapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:68437-68452. [PMID: 39586061 DOI: 10.1021/acsami.4c16504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Hydrophobic chemotherapy drugs face significant challenges in cancer treatment, including low bioavailability, unavoidable toxic side effects, and the development of drug resistance. To address these issues, a multifunctional nanoplatform was developed for cancer therapy, aimed at achieving effective drug delivery and enhancing antitumor efficacy. Poria cocos polysaccharide (PCP), a natural polymer known for its immunomodulatory properties, was utilized as an immunoreactive vector for drug delivery after being cross-linked with 1,4-phenylenebisboronic acid (BDBA). Subsequently, a small-molecule chemotherapy drug, esculetin (EL), was confirmed through density functional theory (DFT) simulations to be encapsulated within the PCP-BDBA nanoparticles via weak interactions. The results demonstrated that the synthesized nanoparticles were spherical, with an average particle size of 162.0 nm. In addition to exhibiting excellent stability, the nanoparticles also displayed pH-responsive drug release properties. In vivo experiments indicated that EL@PCP-BDBA NPs exhibited antitumor effects. Furthermore, EL@PCP-BDBA NPs showed superior in vitro antitumor activity compared to EL at the cellular level. Additionally, EL@PCP-BDBA NPs were found to increase intracellular reactive oxygen species (ROS) levels, induce cell apoptosis, and suppress cell migration to combat cancer. Meanwhile, EL@PCP-BDBA NPs enhanced immune function in vivo. In summary, this study developed a nano-pharmaceutical that combined chemotherapy and immunotherapy functions, which was considered a promising tool for cancer therapy.
Collapse
Affiliation(s)
- Wenhui Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Fan Nie
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Haojing Jiang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Yinan Zhao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Yan Zhang
- Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin 300071, People's Republic of China
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin 300041, People's Republic of China
| | - Zheng Zhang
- Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin 300071, People's Republic of China
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin 300041, People's Republic of China
| | - Jie Zhang
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, Xinjiang 832003, People's Republic of China
| | - Jing Xu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Yuanqiang Guo
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| |
Collapse
|
2
|
周 智, 柳 硕, 李 洁, 陈 明, 林 辉, 陈 宇, 陈 伟, 林 军, 周 航, 郑 庆. [Modification with IL-21 and CCL19 enhances killing efficiency and tumor infiltration of NKP30 CAR-T cells in lung cancer]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2024; 44:1926-1936. [PMID: 39523093 PMCID: PMC11526451 DOI: 10.12122/j.issn.1673-4254.2024.10.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Indexed: 11/16/2024]
Abstract
OBJECTIVE To investigate whether modification with IL-21 and CCL19 enhances killing and tumor-infiltrating efficiency of NKP30 CAR-T cells in lung cancer. METHODS The modified IL-21-CCL19 NKP30 CAR-T cells expressing IL-21 and CCL19 fusion gene was constructed based on NKP30 CAR-T cells and stimulated with CD3CD28 antibodies and IL-2. The immunophenotype and migration of the cells in the presence of IL-21 were investigated using flow cytometry and migration experiments. Lactate dehydrogenase (LDH) release and sphere formation assays were used to assess the killing and infiltration capabilities of CAR-T cells, and the secretion levels of IFN-γ, IL-21 and CCL19 were determined with enzyme-linked immunospot assay (ELISPOT) and ELISA. A zebrafish model bearing HCG-27 cell xenograft was established by microinjection of the tumor cells into the yolk sac followed 24 h later by injection of the immune cells at the same site, and the fluorescence signals were captured using a fluorescent microscopy. RESULTS The NKP30 ligand B7H6, which was almost undetectable in normal tissues and blood cells, was highly expressed (over 90%) in lung cancer cells. Compared with NKP30 CAR-T cells and conventional T cells, IL-21-CCL19 NKP30 CAR-T cells exhibited stronger proliferative and migration capabilities with the formation of central memory T cells. The reduced expressions of CTLA4 and PD1 in the constructed cells resulted in enhanced killing efficiency against lung cancer cells accompanied by significantly increased production of IFN-γ, IL-21 and CCL19. In the zebrafish models, CAR-T cells exhibited stronger cytotoxicity and proliferative abilities than typical T cells, but these differences were not statistically significant between the two CAR-T cells. CONCLUSION Modification of NKP30 CAR-T cells with IL-21 and CCL19 facilitates their access into solid tumors for more effective tumor cell killing while producing a large number of memory T cells.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - 庆丰 郑
- 郑庆丰,博士,主任医师,硕士生导师,E-mail:
| |
Collapse
|
3
|
Hou J, Li Y, Xing H, Cao R, Jin X, Xu J, Guo Y. Effusanin B Inhibits Lung Cancer by Prompting Apoptosis and Inhibiting Angiogenesis. Molecules 2023; 28:7682. [PMID: 38067413 PMCID: PMC10707445 DOI: 10.3390/molecules28237682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/17/2023] [Accepted: 11/17/2023] [Indexed: 12/18/2023] Open
Abstract
Cancer is one of the deadliest human diseases, causing high rates of illness and death. Lung cancer has the highest mortality rate among all malignancies worldwide. Effusanin B, a diterpenoid derived from Isodon serra, showed therapeutic potential in treating non-small-cell lung cancer (NSCLC). Further research on the mechanism indicated that effusanin B inhibited the proliferation and migration of A549 cells both in vivo and in vitro. The in vitro activity assay demonstrated that effusanin B exhibited significant anticancer activity. Effusanin B induced apoptosis, promoted cell cycle arrest, increased the production of reactive oxygen species (ROS), and altered the mitochondrial membrane potential (MMP). Based on mechanistic studies, effusanin B was found to inhibit the proliferation and migration of A549 cells by affecting the signal transducer and activator of transcription 3 (STAT3) and focal adhesion kinase (FAK) pathways. Moreover, effusanin B inhibited tumor growth and spread in a zebrafish xenograft model and demonstrated anti-angiogenic effects in a transgenic zebrafish model.
Collapse
Affiliation(s)
- Jiantong Hou
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Molecular Drug Research, and College of Pharmacy, Nankai University, Tianjin 300350, China; (J.H.); (Y.L.); (H.X.); (R.C.); (X.J.)
| | - Ying Li
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Molecular Drug Research, and College of Pharmacy, Nankai University, Tianjin 300350, China; (J.H.); (Y.L.); (H.X.); (R.C.); (X.J.)
| | - Honghong Xing
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Molecular Drug Research, and College of Pharmacy, Nankai University, Tianjin 300350, China; (J.H.); (Y.L.); (H.X.); (R.C.); (X.J.)
| | - Ruyu Cao
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Molecular Drug Research, and College of Pharmacy, Nankai University, Tianjin 300350, China; (J.H.); (Y.L.); (H.X.); (R.C.); (X.J.)
| | - Xiaomeng Jin
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Molecular Drug Research, and College of Pharmacy, Nankai University, Tianjin 300350, China; (J.H.); (Y.L.); (H.X.); (R.C.); (X.J.)
| | - Jing Xu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Molecular Drug Research, and College of Pharmacy, Nankai University, Tianjin 300350, China; (J.H.); (Y.L.); (H.X.); (R.C.); (X.J.)
| | - Yuanqiang Guo
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Molecular Drug Research, and College of Pharmacy, Nankai University, Tianjin 300350, China; (J.H.); (Y.L.); (H.X.); (R.C.); (X.J.)
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, Haikou 571158, China
| |
Collapse
|