1
|
Piłat E, Gnatowski P, Kurdyn A, Cieśliński H, Augustin E, Kucińska-Lipka J. Investigation of bioprintable modified agar-based hydrogels with antimicrobial properties. Int J Biol Macromol 2024; 289:138707. [PMID: 39694361 DOI: 10.1016/j.ijbiomac.2024.138707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/27/2024] [Accepted: 12/10/2024] [Indexed: 12/20/2024]
Abstract
Due to the numerous dangers arising from excessive use of antibiotics in treatments, researchers have been searching for natural alternatives to conventional antibiotics. Despite the popularity of plant extracts, essential oils, and their derivatives in herbal medicine, their applications in novel therapies are rather limited. This paper tries to open a new possibility for infection treatments by assessing the suitability of antimicrobial hydrogels as bioinks. Antimicrobial activity against S. epidermidis, P. aeruginosa, S. aureus, E. coli of selected extracts and geraniol were investigated. Suitable agent was incorporated into agar-based hydrogel. Physicochemical properties of the obtained compositions were analyzed, including determination of swelling kinetics and key polymer network parameters, contact angle measurements, FTIR spectra analysis, biocompatibility assessment, antimicrobial tests and bioprintability studies. Results confirmed geraniol's superior antimicrobial activity in pure form and in hydrogels. The obtained materials showed high swelling capacity, satisfying extrusion processability, shape fidelity, and great biocompatibility in their unmodified state. Nevertheless, modification with geraniol caused a significant decrease of cell viability, which limits their usage as bioinks in current form, due to the cytotoxic effect on cells. To improve cells interactions, studies on materials with geraniol and other agents with similar mechanism should be conducted in the future.
Collapse
Affiliation(s)
- Edyta Piłat
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza St. 11/12, 80-233 Gdańsk, Poland.
| | - Przemysław Gnatowski
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza St. 11/12, 80-233 Gdańsk, Poland; Department of Environmental Toxicology, Faculty of Health Sciences, Medical University of Gdańsk, Dębowa 23A, 80-204 Gdańsk, Poland
| | - Agnieszka Kurdyn
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza St. 11/12, 80-233 Gdańsk, Poland
| | - Hubert Cieśliński
- Department of Biotechnology and Microbiology, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza St. 11/12, 80-233 Gdańsk, Poland
| | - Ewa Augustin
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza St. 11/12, 80-233 Gdańsk, Poland
| | - Justyna Kucińska-Lipka
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza St. 11/12, 80-233 Gdańsk, Poland
| |
Collapse
|
2
|
Chen F, Liu Z, Xie C, He J, Chen J, Peng K, Chen X, He J, Liu Z, Yang H, Kang K, He B, Lin Q. The effect of Alpinia oxyphylla essential oil on growth performance, immune, antioxidant functions and gut microbiota in pigs. Front Vet Sci 2024; 11:1468520. [PMID: 39720412 PMCID: PMC11666522 DOI: 10.3389/fvets.2024.1468520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 11/19/2024] [Indexed: 12/26/2024] Open
Abstract
Alpinia oxyphylla, a perennial herb belonging to the Zingiberaceae family, has a long history of traditional medicinal use. The present study evaluated the efficacy of different concentrations of Alpinia oxyphylla essential oil (AEO) on the growth performance, serum antioxidation capacities, immune function, apparent digestibility of nutrients, and gut microbiota in fattening pigs. A total of 120 pigs were divided into five treatments, with six replicates each and four pigs per replicate. The pigs were fed a basal diet or basal diet with chlortetracycline (CTC) alone or AEO at 250, 500, and 1,000 mg/kg (referred to as groups AEO1, AEO2, and AEO3, respectively) for 35 days, preceded by a 7-day pre-feed period. The results show that there were no statistically significant differences in growth performance for any dose of AEO supplementation. AEO increased L-DLC content, total protein content and the activity of GSH in serum (p < 0.05). The AEO also exhibited a linear increase in serum IgG content (p < 0.05). Dietary supplementation with AEO improved apparent digestibility of crude ash and calcium (p < 0.05). In gut microbiota, AEO modified the diversity and abundance of bacterial communities in fattening pigs. The abundance of Dorea, Blautia, Butyricicoccus, Bulleidia, and Lactobacillus was higher in the AEO groups compared to the control group, while Clostridium and Turicibacter were lower. The Bifidobacteriales and Pseudomonas were abundant in group AEO1 and AEO3, respectively. In conclusion, dietary supplementation of 1,000 mg/kg AEO has the potential to improve growth performance, immunological, biochemical, and antioxidant statuses. Additionally, AEO can increase the efficiency of nutrient digestion and absorption through the regulation of gut microbiota.
Collapse
Affiliation(s)
- Fengming Chen
- Hunan Provincial Key Laboratory of the Traditional Chinese Medicine Agricultural Biogenomics, Changsha Medical University, Changsha, Hunan, China
| | - Zhimou Liu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
- Hunan Nuoz Biological Technology Co., Ltd., Yiyang, Hunan, China
| | - Chun Xie
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Jieyi He
- Hunan Provincial Key Laboratory of the Traditional Chinese Medicine Agricultural Biogenomics, Changsha Medical University, Changsha, Hunan, China
| | - Jiayi Chen
- Hunan Provincial Key Laboratory of the Traditional Chinese Medicine Agricultural Biogenomics, Changsha Medical University, Changsha, Hunan, China
| | - Kaiqiang Peng
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Xu Chen
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Jiajia He
- Hunan Provincial Key Laboratory of the Traditional Chinese Medicine Agricultural Biogenomics, Changsha Medical University, Changsha, Hunan, China
| | - Zhenyi Liu
- Hunan Provincial Key Laboratory of the Traditional Chinese Medicine Agricultural Biogenomics, Changsha Medical University, Changsha, Hunan, China
| | - Hui Yang
- Hunan Academy of Agricultural Sciences, Changsha, China
| | - Kelang Kang
- Hunan Academy of Agricultural Sciences, Changsha, China
| | - Binsheng He
- Hunan Provincial Key Laboratory of the Traditional Chinese Medicine Agricultural Biogenomics, Changsha Medical University, Changsha, Hunan, China
| | - Qian Lin
- Hunan Provincial Key Laboratory of the Traditional Chinese Medicine Agricultural Biogenomics, Changsha Medical University, Changsha, Hunan, China
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| |
Collapse
|
3
|
Tejada-Muñoz S, Cortez D, Rascón J, Chavez SG, Caetano AC, Díaz-Manchay RJ, Sandoval-Bances J, Huyhua-Gutierrez S, Gonzales L, Chenet SM, Tapia-Limonchi R. Antimicrobial Activity of Origanum vulgare Essential Oil against Staphylococcus aureus and Escherichia coli. Pharmaceuticals (Basel) 2024; 17:1430. [PMID: 39598342 PMCID: PMC11597097 DOI: 10.3390/ph17111430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 11/29/2024] Open
Abstract
Background/Objectives: Oreganum vulgare essential oil (OEO) is safe, effective, multifunctional, and widely used. This study aimed to evaluate OEO's chemical composition and antimicrobial activity in vitro against S. aureus and E. coli. Methods: The composition of OEO was determined by gas chromatography-mass spectrometry (GC-MS). Results: Compounds included monoterpenes with known antimicrobial activity, such as 2-menthen-1-ol (36.33%), linalyl acetate (9.26%), terpinene-4-ol (9.01%), 4-thujanol (6.33%), menthen (5.81%), sabinene (5.18%), and carvacrol methyl ether (5.14%). Conclusions: OEO had a strong antimicrobial activity with a minimum inhibitory concentration (MIC) of 1.90 mg/mL for S. aureus and 0.49 mg/mL for E. coli after 18 h incubation. The minimum bactericidal concentration (MBC) was 7.9 mg/mL against S. aureus and 0.99 mg/mL against E. coli. Thus, OEO could be used as a natural antimicrobial against S. aureus and E. coli infections.
Collapse
Affiliation(s)
- Sonia Tejada-Muñoz
- Instituto de Investigación de Enfermedades Tropicales, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru; (D.C.); (J.R.); (J.S.-B.); (S.H.-G.); (S.M.C.)
- Instituto de Salud Integral Intercultural, Facultad de Ciencias de la Salud, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru
| | - Denny Cortez
- Instituto de Investigación de Enfermedades Tropicales, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru; (D.C.); (J.R.); (J.S.-B.); (S.H.-G.); (S.M.C.)
| | - Jesús Rascón
- Instituto de Investigación de Enfermedades Tropicales, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru; (D.C.); (J.R.); (J.S.-B.); (S.H.-G.); (S.M.C.)
- Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva (INDES-CES), Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru; (S.G.C.); (A.C.C.)
| | - Segundo G. Chavez
- Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva (INDES-CES), Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru; (S.G.C.); (A.C.C.)
| | - Aline C. Caetano
- Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva (INDES-CES), Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru; (S.G.C.); (A.C.C.)
| | - Rosa J. Díaz-Manchay
- Departamento de Ciencias de la Salud, Escuela de Enfermería, Universidad Católica Santo Toribio de Mogrovejo, Chiclayo 14012, Peru;
| | - Julio Sandoval-Bances
- Instituto de Investigación de Enfermedades Tropicales, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru; (D.C.); (J.R.); (J.S.-B.); (S.H.-G.); (S.M.C.)
| | - Sonia Huyhua-Gutierrez
- Instituto de Investigación de Enfermedades Tropicales, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru; (D.C.); (J.R.); (J.S.-B.); (S.H.-G.); (S.M.C.)
- Instituto de Salud Integral Intercultural, Facultad de Ciencias de la Salud, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru
| | - Lizandro Gonzales
- Dirección Regional de Salud de Amazonas, Laboratorio de Referencia Regional, Chachapoyas 01001, Peru;
| | - Stella M. Chenet
- Instituto de Investigación de Enfermedades Tropicales, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru; (D.C.); (J.R.); (J.S.-B.); (S.H.-G.); (S.M.C.)
- Facultad de Medicina, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru
| | - Rafael Tapia-Limonchi
- Instituto de Investigación de Enfermedades Tropicales, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru; (D.C.); (J.R.); (J.S.-B.); (S.H.-G.); (S.M.C.)
- Facultad de Medicina, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru
| |
Collapse
|
4
|
Schepetkin IA, Özek G, Özek T, Kirpotina LN, Khlebnikov AI, Ayçiçek K, Lavin M, Quinn MT. Phytochemical Composition and Biological Activity of the Essential Oil from Ericameria nauseosa Collected in Southwestern Montana, United States. PLANTS (BASEL, SWITZERLAND) 2024; 13:2063. [PMID: 39124181 PMCID: PMC11314070 DOI: 10.3390/plants13152063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024]
Abstract
Ericameria nauseosa (Pall. ex Pursh) G.L. Nesom & G.I. Baird) is used in traditional medicine to treat various diseases; however, little is known about the immunomodulatory activity of essential oil from this plant. Thus, we isolated essential oil from the aerial parts of E. nauseosa and evaluated their chemical composition and biological activity. Compositional analysis of E. nauseosa essential oil revealed that the main (>2%) components were γ-decalactone (13.3%), cryptone (9.4%), terpinen-4-ol (9.3%), (E)-methyl cinnamate (6.0%), T-cadinol (4.7%), spathulenol (3.6%), 8Z-2,3-dihydromatricaria ester (3.1%), β-phellandrene (3.0%), p-cymen-8-ol (2.2%), 3-ethoxy-2-cycloocten-1-one (2.2%), and trans-p-menth-2-en-1-ol (2.1%). Distinctive features were the lactones (up to 15%) and polyacetylenes (up to 3.1%), including (2Z,8Z)-matricaria ester and 8Z-2,3-dihydromatricaria ester. A comparison with other reported E. nauseosa essential oil samples showed that our samples were distinct from those collected in other areas of the country; however, they did have the most similarity to one sample collected in North Central Utah. Pharmacological studies showed that E. nauseosa essential oil activated human neutrophil Ca2+ influx, which desensitized these cells to subsequent agonist-induced functional responses. Based on our previously reported data that nerolidol, β-pinene, spathulenol, sabinene, and γ-terpinene were active in human neutrophils, these compounds are the most likely constituents contributing to this immunomodulatory activity. However, the relatively high amount of polyacetylenes may also contribute, as these compounds have been characterized as potent immunomodulators.
Collapse
Affiliation(s)
- Igor A. Schepetkin
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA; (I.A.S.); (L.N.K.)
| | - Gulmira Özek
- Department of Pharmacognosy, Faculty of Pharmacy, Anadolu University, Eskisehir 26470, Türkiye; (G.Ö.); (T.Ö.); (K.A.)
| | - Temel Özek
- Department of Pharmacognosy, Faculty of Pharmacy, Anadolu University, Eskisehir 26470, Türkiye; (G.Ö.); (T.Ö.); (K.A.)
| | - Liliya N. Kirpotina
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA; (I.A.S.); (L.N.K.)
| | - Andrei I. Khlebnikov
- Kizhner Research Center, National Research Tomsk Polytechnic University, Tomsk 634050, Russia;
| | - Kevser Ayçiçek
- Department of Pharmacognosy, Faculty of Pharmacy, Anadolu University, Eskisehir 26470, Türkiye; (G.Ö.); (T.Ö.); (K.A.)
| | - Matthew Lavin
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717, USA;
| | - Mark T. Quinn
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA; (I.A.S.); (L.N.K.)
| |
Collapse
|
5
|
Sindhusha VB, Rajasekar A. Formulation of Neem and Echinacea Gel for Oral Health Along With the Evaluation of Antimicrobial, Cytotoxic, Anti-inflammatory, and Free Radical Scavenging Activity: An In Vitro Study. Cureus 2024; 16:e63631. [PMID: 39092399 PMCID: PMC11291991 DOI: 10.7759/cureus.63631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/01/2024] [Indexed: 08/04/2024] Open
Abstract
Background Herbs have been used in medical practice for centuries and continue to play a significant role in modern complementary and alternative medicine. Phytochemicals in these herbs possess strong antioxidant and anti-inflammatory properties, which are beneficial in targeting oral health issues, such as dental plaque, gingivitis, and oral microbial infections. As research progresses, the challenge remains to translate these natural compounds into safe, effective, and accessible treatments for a wide range of diseases. Aim The aim of this research was to formulate the neem and echinacea gel along with the evaluation of antimicrobial, anti-inflammatory, free-radical scavenging activity, and cytotoxic potential. Materials and methods The neem and echinacea gel was prepared using a concentrated powdered mixture of neem and echinacea (5 grams each) to which 100 ml of distilled water was added, and the mixture was boiled for 30 minutes at 60°C. The 10 ml concentrate was mixed with 20 ml of a carbopol and carboxymethyl cellulose (CMC) mixture and mixed thoroughly, which resulted in neem and echinacea gel. Then, the antimicrobial, anti-inflammatory, cytotoxic potential, and free-radical scavenging activity of the gel were evaluated. The data obtained were statistically analyzed with the help of a paired t-test, where a p-value of less than 0.05 was considered statistically significant. Results The antimicrobial assay showed that neem and echinacea gel at the concentration of 100 micrograms showed a greater zone of inhibition against Staphylococcus aureus (3.15 ± 0.26), Streptococcus mutans (2.48 ± 0.45), Enterococcus faecalis (2.89 ± 0.15), and Candida albicans (4.28 ± 0.87). The cytotoxic test revealed that even at an 80 µg concentration of the extract, more than 70% of the nauplii were vital, which indicated that the gel was not cytotoxic. The highest anti-inflammatory activity (78.39 ± 1.82) of the gel was seen at 50 micrograms when compared with diclofenac sodium (73.16 ± 1.80). The free radical scavenging activity showed that the 2,2-diphenyl-1-picrylhydrazyl (DPPH) absorbance of the neem and echinacea extract was highest at 50 micrograms. Conclusion The combination of neem and echinacea extract-based gel possessed high antimicrobial and anti-inflammatory activity when compared with standard drugs, such as amoxicillin and diclofenac sodium. The antioxidant activity of the gel was equal to butylated hydroxytoluene (BHT), and also the gel has a low cytotoxic potential even at its higher concentrations. Hence, the gel can be used as a natural remedy with minimal side effects, making it a valuable alternative to chemical agents.
Collapse
Affiliation(s)
- Vyshnavi B Sindhusha
- Periodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Arvina Rajasekar
- Periodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| |
Collapse
|
6
|
Vieira SF, Reis RL, Ferreira H, Neves NM. Plant-derived bioactive compounds as key players in the modulation of immune-related conditions. PHYTOCHEMISTRY REVIEWS 2024. [DOI: 10.1007/s11101-024-09955-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 03/07/2024] [Indexed: 01/03/2025]
Abstract
AbstractThe immune system is a complex and fundamental network for organism protection. A minimal unbalance in the host defense system homeostasis can originate severe repercussions in human health. Fundamentally, immune-related diseases can arise from its compromise (immunodeficiency diseases), overactivation against itself (autoimmune diseases) or harmless substances (allergies), and failure of eliminating the harmful agent (chronic inflammation). The notable advances and achievements in the immune system diseases pathophysiology have been allowing for a dramatic improvement of the available treatments. Nevertheless, they present some drawbacks, including the inappropriate benefit/risk ratio. Therefore, there is a strong and urgent need to develop effective therapeutic strategies. Nature is a valuable source of bioactive compounds that can be explored for the development of new drugs. Particularly, plants produce a broad spectrum of secondary metabolites that can be potential prototypes for innovative therapeutic agents. This review describes the immune system and the inflammatory response and examines the current knowledge of eight plants traditionally used as immunomodulatory medicines (Boswellia serrata, Echinacea purpurea, Laurus nobilis, Lavandula angustifolia, Olea europaea, Salvia officinalis, Salvia rosmarinus, and Taraxacum officinale). Moreover, the issues responsible for possible biologic readout inconsistencies (plant species, age, selected organ, developmental stage, growth conditions, geographical location, drying methods, storage conditions, solvent of extraction, and extraction method) will also be discussed. Furthermore, a detailed list of the chemical composition and the immunomodulatory mechanism of action of the bioactive compounds of the selected plant extracts are presented. This review also includes future perspectives and proposes potential new avenues for further investigation.
Collapse
|
7
|
Yang B, Gao Y, Xi K, Wang H, Yan M, Sun H, Lin Y, Zheng X, Li Y, Guo S, Liu C. Effects of Ban Lian Zi Jin San on intestinal inflammation and barrier function of heat-stressed broilers. Poult Sci 2024; 103:103425. [PMID: 38228062 PMCID: PMC10823130 DOI: 10.1016/j.psj.2024.103425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/02/2024] [Accepted: 01/02/2024] [Indexed: 01/18/2024] Open
Abstract
Heat stress (HS) in broilers can be an environmental stressor that leads to intestinal inflammation and intestinal barrier damage. In order to examine the effect of Ban Lian Zi Jin San (BLZJS) on intestinal inflammation and barrier function in heat-stressed broilers, a model of chronic cyclic HS in broilers was established. A total of 300 twenty-one-day-old broilers were divided into 5 treatments at random. Broilers in 3 BLZJS dosage groups were kept in an ecologically controlled room at 37℃ ± 2℃ for 6 wk, and fed basal diets supplemented with 0.5, 1, and 2% BLZJS. Broilers in HS group were housed in the same room, but fed the basal diets. The findings indicated that supplementation of BLZJS significantly declined serum HS indexes levels (HSP70, HSP90), and increased serum antioxidant capacity (SOD and T-AOC) in broilers (P < 0.05). Besides, supplementation of BLZJS significantly inhibited the expression of HS indexes (HSP70 and HSP90), genes related to TLR4 inflammatory signal pathway (TLR4, MyD88, TRIF, IRAK-4, and NF-κB), inflammatory factors (IL-6 and TNF-α), and upregulated anti-inflammatory cytokines (IL-10) and intestinal tight junction-related genes (Occludin, Claudin-1, and ZO-1) in broiler jejunum (P < 0.05). On the other hand, supplementation of BLZJS could significantly reduce the protein expression of NF-κB and HSP70 in chick jejunum (P < 0.05). In conclusion, BLZJS inhibited the activation of TLR4 signal pathway and reduced the production of inflammatory factors, restoring the level of intestinal tight junction protein and protecting jejunal intestinal barrier function in heat-stressed broilers.
Collapse
Affiliation(s)
- Bowen Yang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Yun Gao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Kailun Xi
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Huiting Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Mingen Yan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Han Sun
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Yongshi Lin
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoman Zheng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Yaoxing Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Shining Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Technology Research Center for Traditional Chinese Veterinary Medicine and Nature Medicine, Guangzhou 510642, China; International Institute of Traditional Chinese Veterinary Medicine, Guangzhou 510642, China
| | - Cui Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
8
|
Adebimpe Ojo C, Dziadek K, Sadowska U, Skoczylas J, Kopeć A. Analytical Assessment of the Antioxidant Properties of the Coneflower ( Echinacea purpurea L. Moench) Grown with Various Mulch Materials. Molecules 2024; 29:971. [PMID: 38474483 DOI: 10.3390/molecules29050971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
Antioxidants are added to foods to decrease the adverse effect of reactive species that create undesirable compounds that destroy essential nutrients and, therefore, lower the nutritional, chemical and physical properties of foods. This study was carried out to determine the antioxidant properties of flowers and plant stems with leaves of Echinacea purpurea grown with mulches of different colours and thicknesses. Coneflowers were grown in the Experimental Station of the Agricultural University in Kraków, Poland. The mulching materials used were black, green and brown colours of 100 g/m2 and 80 g/m2 density. In plant material, e.g., flowers or plant stems plus leaves the proximate analysis, the total polyphenol content and the ability to scavenge free radicals (ABTS, DPPH and FRAP) were determined. The results show that flower samples had a higher content of compound proteins, ash and phenolic compounds. The mulching colour and density did not affect the proximate analysis of the E. purpurea plant. Based on the result of this study, E. purpurea is a potential source of natural antioxidants and can be used to improve the antioxidant activity of various food products as well as in cosmetics within the pharmaceutical industry.
Collapse
Affiliation(s)
- Celestina Adebimpe Ojo
- Department of Human Nutrition and Dietetics, Faculty of Food Technology, University of Agriculture in Krakow, Balicka 122, 30-149 Krakow, Poland
| | - Kinga Dziadek
- Department of Human Nutrition and Dietetics, Faculty of Food Technology, University of Agriculture in Krakow, Balicka 122, 30-149 Krakow, Poland
| | - Urszula Sadowska
- Faculty of Mechanisation and Energy Technologies in Agriculture, University of Agriculture in Krakow, Majora Łupaszki 6, 30-198 Krakow, Poland
| | - Joanna Skoczylas
- Department of Human Nutrition and Dietetics, Faculty of Food Technology, University of Agriculture in Krakow, Balicka 122, 30-149 Krakow, Poland
| | - Aneta Kopeć
- Department of Human Nutrition and Dietetics, Faculty of Food Technology, University of Agriculture in Krakow, Balicka 122, 30-149 Krakow, Poland
| |
Collapse
|
9
|
Palá-Paúl J, Pérez-Alonso MJ, Soria AC, Brophy JJ. Chemical Composition of the Essential Oils of the Iberian Peninsula Endemic Species Eryngium dilatatum Lam. Molecules 2024; 29:562. [PMID: 38338307 PMCID: PMC10856671 DOI: 10.3390/molecules29030562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/08/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024] Open
Abstract
Eryngium dilatatum Lam. is a thorny Iberian Peninsula endemic species belonging to the Apiaceae family that has not been previously analysed from a chemical point of view. Following our studies on this genus, we characterized the chemical composition of the essential oils from the different parts (inflorescences, stems + leaves, and roots) of this species; these parts were gathered in Cádiz (Spain). The specimens were collected in July during the flowering period and air-dried before the oil extraction by hydro-distillation. The essential oils were analysed by gas chromatography and gas chromatography coupled with mass spectrometry. The different parts of the plant yielded low amounts of pale yellow oil, with the roots being the fraction that provided the lowest amount of oil. The chemical characterization of the essential oils showed qualitative and quantitative differences between the fractions examined, but all of them showed the same principal compound, germacrene D (9.1-46.5%). Similarly, all the fractions shared most of their representative constituents, with their percentage compositions being different from one sample to the other: α-cadinol (3.8%), bicyclogermacrene (3.5%), octanal (3.1%), and spathulenol (2.5%) were found in the inflorescences; octanal (8.1%), α-cadinol (3.7%), δ-cadinene (3.6%), (E)-caryophyllene (2.6%), bicyclogermacrene (2.5%), and spathulenol (2.4%) were found in the stems and leaves; and spathulenol (4.6%), α-cadinol (4.4%), khusinol (3.2%), α-muurolol (3.1%), and δ-cadinene (2.6%) were found in the roots. As far as we know, this is the first report about the chemical composition of this endemic species of the Iberian Peninsula. It contributes to the knowledge of this species and to the genus to which it belongs. This species could be considered as a natural source of germacrene D, which is a sesquiterpene hydrocarbon with active properties.
Collapse
Affiliation(s)
- Jesús Palá-Paúl
- Departamento de Biodiversidad, Ecología y Evolución, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - María José Pérez-Alonso
- Departamento de Biodiversidad, Ecología y Evolución, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Ana C. Soria
- Instituto de Química Orgánica General (IQOG-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain;
| | - Joseph J. Brophy
- School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia;
| |
Collapse
|