1
|
Ladikan O, Silyavka E, Mitrofanov A, Laptenkova A, Shilovskikh V, Kolonitckii P, Ivanov N, Remezov A, Fedorova A, Khripun V, Pestova O, Podolskaya EP, Sukhodolov NG, Selyutin AA. Thin Films of Lanthanide Stearates as Modifiers of the Q-Sense Device Sensor for Studying Insulin Adsorption. ACS OMEGA 2022; 7:24973-24981. [PMID: 35910105 PMCID: PMC9330115 DOI: 10.1021/acsomega.1c07300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
This article presents new possibilities of using thin films of lanthanide stearates as sorbent materials. Modification of the Q-sense device resonator with monolayers of lanthanide stearates by the Langmuir-Schaeffer method made it possible to study the process of insulin protein adsorption on the surface of new thin-film sorbents. The resulting films were also characterized by compression isotherms, chemical analysis, scanning electron microscopy, and mass spectrometry. The transition of stearic acid to salt was recorded by IR spectroscopy. Using the LDI MS method, the main component of thin films, lanthanide distearate, was established. The presence of Eu2+ in thin films was revealed. In the case of europium stearate, the maximum value of insulin adsorption was obtained, -1.67·10-10 mole/cm2. The findings suggest the possibility of using thin films of lanthanide stearates as a sorption material for the proteomics determination of the quantitative protein content in complex fluid systems by specific adsorption on modified surfaces and isolation of such proteins from complex mixtures.
Collapse
Affiliation(s)
- Olga Ladikan
- St.
Petersburg State University, Universitetskaya emb. 7-9, 199034 St. Petersburg, Russia
| | - Elena Silyavka
- St.
Petersburg State University, Universitetskaya emb. 7-9, 199034 St. Petersburg, Russia
| | - Andrei Mitrofanov
- St.
Petersburg State University, Universitetskaya emb. 7-9, 199034 St. Petersburg, Russia
- Leibniz-Institut
für Polymerforschung Dresden e.V., Hohe Str. 6, 01069 Dresden, Germany
| | - Anastasia Laptenkova
- St.
Petersburg State University, Universitetskaya emb. 7-9, 199034 St. Petersburg, Russia
| | - Vladimir Shilovskikh
- St.
Petersburg State University, Universitetskaya emb. 7-9, 199034 St. Petersburg, Russia
| | - Petr Kolonitckii
- St.
Petersburg State University, Universitetskaya emb. 7-9, 199034 St. Petersburg, Russia
| | - Nikita Ivanov
- St.
Petersburg State University, Universitetskaya emb. 7-9, 199034 St. Petersburg, Russia
| | - Andrey Remezov
- St.
Petersburg State University, Universitetskaya emb. 7-9, 199034 St. Petersburg, Russia
| | - Anna Fedorova
- St.
Petersburg State University, Universitetskaya emb. 7-9, 199034 St. Petersburg, Russia
| | - Vassily Khripun
- St.
Petersburg State University, Universitetskaya emb. 7-9, 199034 St. Petersburg, Russia
| | - Olga Pestova
- St.
Petersburg State University, Universitetskaya emb. 7-9, 199034 St. Petersburg, Russia
| | - Ekaterina P. Podolskaya
- Golikov
Research Center of Toxicology, Bekhtereva Street 1, 192019 St. Petersburg, Russia
- Institute
for Analytical Instrumentation of the Russian Academy of Science, Ivana Chernykh Street 31-33 lit.
A, 198095 St. Petersburg, Russia
| | - Nikolai G. Sukhodolov
- St.
Petersburg State University, Universitetskaya emb. 7-9, 199034 St. Petersburg, Russia
- Institute
for Analytical Instrumentation of the Russian Academy of Science, Ivana Chernykh Street 31-33 lit.
A, 198095 St. Petersburg, Russia
| | - Artem A. Selyutin
- St.
Petersburg State University, Universitetskaya emb. 7-9, 199034 St. Petersburg, Russia
| |
Collapse
|
2
|
Pathmasiri KC, Nguyen TTA, Khamidova N, Cologna SM. Mass spectrometry-based lipid analysis and imaging. CURRENT TOPICS IN MEMBRANES 2021; 88:315-357. [PMID: 34862030 DOI: 10.1016/bs.ctm.2021.10.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mass spectrometry imaging (MSI) is a powerful tool for in situ mapping of analytes across a sample. With growing interest in lipid biochemistry, the ability to perform such mapping without antibodies has opened many opportunities for MSI and lipid analysis. Herein, we discuss the basics of MSI with particular emphasis on MALDI mass spectrometry and lipid analysis. A discussion of critical advancements as well as protocol details are provided to the reader. In addition, strategies for improving the detection of lipids, as well as applications in biomedical research, are presented.
Collapse
Affiliation(s)
- Koralege C Pathmasiri
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, United States
| | - Thu T A Nguyen
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, United States
| | - Nigina Khamidova
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, United States
| | - Stephanie M Cologna
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, United States; Laboratory of Integrated Neuroscience, University of Illinois at Chicago, Chicago, IL, United States.
| |
Collapse
|