1
|
Santativongchai P, Klaeui CC, Kosonsiriluk S, Saqui-Salces M, Reed KM, Wileman BW, Studniski MM, Boukherroub KS. Protocol to establish turkey oviductal organoids as an in vitro model. STAR Protoc 2024; 5:103384. [PMID: 39388356 DOI: 10.1016/j.xpro.2024.103384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/03/2024] [Accepted: 09/20/2024] [Indexed: 10/12/2024] Open
Abstract
The study of reproductive function in turkey hens has been difficult due to the lack of a reliable, representative in vitro model for investigating profound physiological aspects. This article presents a protocol to establish turkey oviductal organoids, including steps for isolating turkey oviduct epithelial cells followed by seeding and maintaining 3D organoid cultures. We also detail procedures for organoid fixation for histological analysis. This organoid model could serve as a valuable in vitro tool for understanding the intricacies of turkey reproductive physiology.
Collapse
Affiliation(s)
| | - Caitlin C Klaeui
- Department of Animal Science, University of Minnesota, Saint Paul, MN 55108, USA
| | | | - Milena Saqui-Salces
- Department of Animal Science, University of Minnesota, Saint Paul, MN 55108, USA
| | - Kent M Reed
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, MN 55108, USA
| | | | | | - Kahina S Boukherroub
- Department of Animal Science, University of Minnesota, Saint Paul, MN 55108, USA.
| |
Collapse
|
2
|
Leemans B, Gadella BM, Marchand JHEAM, Van Soom A, Stout TAE. Induction of in vivo-like ciliation in confluent monolayers of re-differentiated equine oviduct epithelial cells†. Biol Reprod 2024; 111:580-599. [PMID: 38847468 PMCID: PMC11402525 DOI: 10.1093/biolre/ioae090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/09/2024] [Accepted: 06/05/2024] [Indexed: 09/17/2024] Open
Abstract
We recently developed re-differentiated equine oviduct epithelial cell (REOEC) monolayers demonstrating various in vivo morphological characteristics, but lacking secondary ciliation. In this study, we evaluated the effects of fetal bovine serum, reproductive steroid hormones, Wnt- and Notch ligands and inhibitors, and different EOEC seeding densities, in both conventional wells and on microporous membranes, on EOEC morphology and, in particular, secondary ciliation. REOEC monolayers were assessed by confocal microscopy after combined staining of nuclei, cilia, and the cytoskeleton. Only Wnt ligands, Notch inhibitors and oviduct explant cell concentration affected EOEC morphology. Undesirable epithelial-mesenchymal transition was observed in REOEC monolayers exposed to Wnt3a containing medium and Wnt ligand CHIR 99021. With respect to secondary ciliation, only the combined effect of oviduct explant cell concentration and Notch inhibition steered REOEC monolayers to in vivo-like ciliation patterns. De-differentiated EOECs, formed 10 days after oviduct explant cell seeding, were reseeded on inserts; only at initial oviduct explant cell concentrations of 1 and 5 × 106 cells per well was the formation of REOEC monolayers with a high rate of diffuse ciliation supported. Within 1 month after air-liquid interface introduction, >40% and >20% of the REOECs showed secondary cilia, respectively. At higher oviduct explant cell seeding densities secondary ciliation was not supported after re-differentiation. Additionally, Notch inhibition helped boost secondary ciliation rates to >60% in REOEC monolayers with diffuse ciliation only. These monolayers demonstrated higher clathrin expression under follicular phase conditions. Overall, the ciliated REOEC monolayers better resemble in vivo oviduct epithelial cells than previous models.
Collapse
Affiliation(s)
- Bart Leemans
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- Department of Internal Medicine, Reproduction, Population Health, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Bart M Gadella
- Department of Internal Medicine, Reproduction, Population Health, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
- Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht,The Netherlands
- Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Josephine H E A M Marchand
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Ann Van Soom
- Department of Internal Medicine, Reproduction, Population Health, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Tom A E Stout
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
3
|
Gabriel V, Zdyrski C, Sahoo DK, Ralston A, Wickham H, Bourgois-Mochel A, Ahmed B, Merodio MM, Paukner K, Piñeyro P, Kopper J, Rowe EW, Smith JD, Meyerholz D, Kol A, Viall A, Elbadawy M, Mochel JP, Allenspach K. Adult Animal Stem Cell-Derived Organoids in Biomedical Research and the One Health Paradigm. Int J Mol Sci 2024; 25:701. [PMID: 38255775 PMCID: PMC10815683 DOI: 10.3390/ijms25020701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/14/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024] Open
Abstract
Preclinical biomedical research is limited by the predictiveness of in vivo and in vitro models. While in vivo models offer the most complex system for experimentation, they are also limited by ethical, financial, and experimental constraints. In vitro models are simplified models that do not offer the same complexity as living animals but do offer financial affordability and more experimental freedom; therefore, they are commonly used. Traditional 2D cell lines cannot fully simulate the complexity of the epithelium of healthy organs and limit scientific progress. The One Health Initiative was established to consolidate human, animal, and environmental health while also tackling complex and multifactorial medical problems. Reverse translational research allows for the sharing of knowledge between clinical research in veterinary and human medicine. Recently, organoid technology has been developed to mimic the original organ's epithelial microstructure and function more reliably. While human and murine organoids are available, numerous other organoids have been derived from traditional veterinary animals and exotic species in the last decade. With these additional organoid models, species previously excluded from in vitro research are becoming accessible, therefore unlocking potential translational and reverse translational applications of animals with unique adaptations that overcome common problems in veterinary and human medicine.
Collapse
Affiliation(s)
- Vojtech Gabriel
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (H.W.); (B.A.); (J.P.M.)
| | | | - Dipak K. Sahoo
- Department of Veterinary Clinical Sciences, Iowa State University, Ames, IA 50011, USA; (D.K.S.); (A.B.-M.); (J.K.)
| | - Abigail Ralston
- 3D Health Solutions Inc., Ames, IA 50010, USA; (C.Z.); (A.R.); (M.M.M.)
| | - Hannah Wickham
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (H.W.); (B.A.); (J.P.M.)
| | - Agnes Bourgois-Mochel
- Department of Veterinary Clinical Sciences, Iowa State University, Ames, IA 50011, USA; (D.K.S.); (A.B.-M.); (J.K.)
| | - Basant Ahmed
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (H.W.); (B.A.); (J.P.M.)
| | - Maria M. Merodio
- 3D Health Solutions Inc., Ames, IA 50010, USA; (C.Z.); (A.R.); (M.M.M.)
| | - Karel Paukner
- Atherosclerosis Research Laboratory, Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, 14021 Prague, Czech Republic;
| | - Pablo Piñeyro
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (P.P.); (J.D.S.)
| | - Jamie Kopper
- Department of Veterinary Clinical Sciences, Iowa State University, Ames, IA 50011, USA; (D.K.S.); (A.B.-M.); (J.K.)
| | - Eric W. Rowe
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (H.W.); (B.A.); (J.P.M.)
| | - Jodi D. Smith
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (P.P.); (J.D.S.)
| | - David Meyerholz
- Department of Pathology, University of Iowa, Iowa City, IA 52242, USA;
| | - Amir Kol
- Department of Pathology, University of California, Davis, CA 94143, USA; (A.K.); (A.V.)
| | - Austin Viall
- Department of Pathology, University of California, Davis, CA 94143, USA; (A.K.); (A.V.)
| | - Mohamed Elbadawy
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA 30530, USA;
- Department of Pharmacology, Faculty of Veterinary Medicine, Benha University, Toukh 13736, Egypt
| | - Jonathan P. Mochel
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (H.W.); (B.A.); (J.P.M.)
- 3D Health Solutions Inc., Ames, IA 50010, USA; (C.Z.); (A.R.); (M.M.M.)
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA 30530, USA;
| | - Karin Allenspach
- 3D Health Solutions Inc., Ames, IA 50010, USA; (C.Z.); (A.R.); (M.M.M.)
- Department of Veterinary Clinical Sciences, Iowa State University, Ames, IA 50011, USA; (D.K.S.); (A.B.-M.); (J.K.)
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA 30530, USA;
| |
Collapse
|
4
|
Menjivar NG, Gad A, Thompson RE, Meyers MA, Hollinshead FK, Tesfaye D. Bovine oviductal organoids: a multi-omics approach to capture the cellular and extracellular molecular response of the oviduct to heat stress. BMC Genomics 2023; 24:646. [PMID: 37891479 PMCID: PMC10605953 DOI: 10.1186/s12864-023-09746-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND The mammalian oviduct is a complex, fibromuscular organ known for its role in orchestrating a series of timely and dynamic changes to suitably support early embryogenesis. Climate change-induced heat stress (HS) is one of the largest single stressors compromising reproductive function in humans and farm animals via systemic changes in the redox status of the maternal environment, adversely affecting fertilization and early embryonic development. Oviductal organoids represent a unique 3-dimensional, biomimetic model to study the physiology of the oviduct and its subsequent impact on embryo development under various environmental conditions. RESULTS Our study is the first to demonstrate an innovative approach to understanding the cascade of molecular changes sustained by bovine oviductal organoids under HS and the subsequent maternal signals harnessed within their secreted extracellular vesicles (EVs). Transcriptomic analysis of oviductal organoids exposed to HS revealed 2,570 differentially expressed genes (1,222 up- and 1,348 downregulated), while EV-coupled miRNome analysis disclosed 18 miRNAs with significant differential expression (12 up- and 6 downregulated) in EVs from thermally stressed organoids compared to EVs released from organoids cultured under thermoneutral conditions. Genes activated in oviductal organoids in response to thermal stress, include: COX1, ACTB, CST6, TPT1, and HSPB1, while miR-1246, miR-148a, miR21-5p, miR-451, and miR-92a represent the top highly abundant EV-coupled miRNAs released in response to HS. Pathway analysis of genes enriched in organoids exposed to thermal stress showed the enrichment of endocrine resistance, cellular senescence, and notch signaling pathways. Similarly, EV-coupled miRNAs released from thermally stressed organoids showed their potential regulation of genes involved in cellular senescence, p53 signaling, and TGF-beta signaling pathways. CONCLUSIONS In conclusion, the cellular and extracellular response of bovine oviductal organoids to in vitro HS conditions reveal the prospective impact of environmental HS on the physiology of the oviduct and the probable subsequent impacts on oocyte fertilization and early embryo development. Future studies elucidating the potential impact of HS-associated EVs from oviductal organoids on oocyte fertilization and preimplantation embryo development, would justify the use of an organoid model to optimally understand the oviduct-embryo communication under suboptimal environments.
Collapse
Affiliation(s)
- Nico G Menjivar
- Animal Reproduction and Biotechnology Laboratory (ARBL), Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, 3107 Rampart Rd, Fort Collins, CO, 80521, USA
| | - Ahmed Gad
- Animal Reproduction and Biotechnology Laboratory (ARBL), Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, 3107 Rampart Rd, Fort Collins, CO, 80521, USA
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, 12613, Egypt
| | - Riley E Thompson
- Animal Reproduction and Biotechnology Laboratory (ARBL), Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - Mindy A Meyers
- Animal Reproduction and Biotechnology Laboratory (ARBL), Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - Fiona K Hollinshead
- Animal Reproduction and Biotechnology Laboratory (ARBL), Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - Dawit Tesfaye
- Animal Reproduction and Biotechnology Laboratory (ARBL), Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, 3107 Rampart Rd, Fort Collins, CO, 80521, USA.
| |
Collapse
|
5
|
Thompson RE, Meyers MA, Palmer J, Veeramachaneni DNR, Magee C, de Mestre AM, Antczak DF, Hollinshead FK. Production of Mare Chorionic Girdle Organoids That Secrete Equine Chorionic Gonadotropin. Int J Mol Sci 2023; 24:ijms24119538. [PMID: 37298490 DOI: 10.3390/ijms24119538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/23/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
The equine chorionic girdle is comprised of specialized invasive trophoblast cells that begin formation approximately 25 days after ovulation (day 0) and invade the endometrium to become endometrial cups. These specialized trophoblast cells transition from uninucleate to differentiated binucleate trophoblast cells that secrete the glycoprotein hormone equine chorionic gonadotropin (eCG; formerly known as pregnant mare serum gonadotropin or PMSG). This eCG has LH-like activity in the horse but variable LH- and FSH-like activity in other species and has been utilized for these properties both in vivo and in vitro. To produce eCG commercially, large volumes of whole blood must be collected from pregnant mares, which negatively impacts equine welfare due to repeated blood collections and the birth of an unwanted foal. Attempts to produce eCG in vitro using long-term culture of chorionic girdle explants have not been successful beyond 180 days, with peak eCG production at 30 days of culture. Organoids are three-dimensional cell clusters that self-organize and can remain genetically and phenotypically stable throughout long-term culture (i.e., months). Human trophoblast organoids have been reported to successfully produce human chorionic gonadotropin (hCG) and proliferate long-term (>1 year). The objective of this study was to evaluate whether organoids derived from equine chorionic girdle maintain physiological functionality. Here we show generation of chorionic girdle organoids for the first time and demonstrate in vitro production of eCG for up to 6 weeks in culture. Therefore, equine chorionic girdle organoids provide a physiologically representative 3D in vitro model for chorionic girdle development of early equine pregnancy.
Collapse
Affiliation(s)
- Riley E Thompson
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO 80523, USA
- Animal Reproduction and Biotechnology Laboratory, Colorado State University, Fort Collins, CO 80523, USA
| | - Mindy A Meyers
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO 80523, USA
- Animal Reproduction and Biotechnology Laboratory, Colorado State University, Fort Collins, CO 80523, USA
| | - Jennifer Palmer
- Animal Reproduction and Biotechnology Laboratory, Colorado State University, Fort Collins, CO 80523, USA
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - D N Rao Veeramachaneni
- Animal Reproduction and Biotechnology Laboratory, Colorado State University, Fort Collins, CO 80523, USA
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Christianne Magee
- Animal Reproduction and Biotechnology Laboratory, Colorado State University, Fort Collins, CO 80523, USA
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Amanda M de Mestre
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Douglas F Antczak
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Fiona K Hollinshead
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO 80523, USA
- Animal Reproduction and Biotechnology Laboratory, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
6
|
Penning LC, van den Boom R. Companion animal organoid technology to advance veterinary regenerative medicine. Front Vet Sci 2023; 10:1032835. [PMID: 37008367 PMCID: PMC10063859 DOI: 10.3389/fvets.2023.1032835] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 02/28/2023] [Indexed: 03/19/2023] Open
Abstract
First year medical and veterinary students are made very aware that drugs can have very different effects in various species or even in breeds of one specific species. On the other hand, the “One Medicine” concept implies that therapeutic and technical approaches are exchangeable between man and animals. These opposing views on the (dis)similarities between human and veterinary medicine are magnified in regenerative medicine. Regenerative medicine promises to stimulate the body's own regenerative capacity via activation of stem cells and/or the application of instructive biomaterials. Although the potential is enormous, so are the hurdles that need to be overcome before large scale clinical implementation is realistic. It is in the advancement of regenerative medicine that veterinary regenerative medicine can play an instrumental and crucial role. This review describes the discovery of (adult) stem cells in domesticated animals, mainly cats and dogs. The promise of cell-mediated regenerative veterinary medicine is compared to the actual achievements, and this will lead to a set of unanswered questions (controversies, research gaps, potential developments in relation to fundamental, pre-clinical, and clinical research). For veterinary regenerative medicine to have impact, either for human medicine and/or for domesticated animals, answering these questions is pivotal.
Collapse
|
7
|
Generation and cryopreservation of feline oviductal organoids. Theriogenology 2023; 196:167-173. [PMID: 36423511 DOI: 10.1016/j.theriogenology.2022.11.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/18/2022]
Abstract
Next-generation in vitro culture model systems are needed to study the reproductive pathologies that affect domestic animals. These 3D culture models more closely mimic normal physiological function to allow a greater understanding of reproductive pathology and to trial therapeutics without the welfare concerns and the increased time and cost associated with live animal research. Recent advances with in vitro cell culture systems utilizing human and laboratory animal tissues have been reported, but implementation of these technologies in veterinary species has been slower. Organoids are a physiologically representative 3D cell culture system that can be maintained long-term. By combining organoid culture with cryopreservation, a long-term, experimental model can be available for year-round application, thus bypassing seasonality and reproductive tract availability restrictions. Here we report the generation and cryopreservation of feline oviductal organoids for the first time. Optimal culture medium for the generation of feline oviductal organoids was established, and organoids were successfully cryopreserved using three different freezing media with organoids from each treatment demonstrating comparable viability, growth rate, and protein expression after thawing and culture. Feline oviductal organoids may facilitate an in vivo-like environment that, in conjunction with co-culture for in vitro maturation and in vitro fertilization, may positively influence in vitro gamete and embryo development, embryo quality, and pregnancy rates after embryo transfer in domestic and nondomestic felids. Furthermore, readily available cryopreserved feline oviductal organoids will facilitate this co-culture, which is of particular importance to endangered felid breeding programs where tissue and gamete samples are often opportunistically obtained with little or no notice.
Collapse
|