1
|
Chauhan N, Saxena K, Rawal R, Yadav L, Jain U. Advances in surface-enhanced Raman spectroscopy-based sensors for detection of various biomarkers. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 184:32-41. [PMID: 37648087 DOI: 10.1016/j.pbiomolbio.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 08/18/2023] [Accepted: 08/27/2023] [Indexed: 09/01/2023]
Abstract
Surface enhanced Raman spectroscopy (SERS) allows the ultrasensitive detection of analytes present in traces or even single molecule levels by the generation of electromagnetic fields. It is a powerful vibrational spectroscopic method that is capable to detect traces of chemical and biological analytes. SERS technique is involved in the extremely sophisticated studies of molecules with high specificity and sensitivity. In the vicinity of nanomaterials decorated surfaces, SERS can monitor extremely low concentrations of analytes in a non-destructive manner with narrow line widths. This review article is focused on some recently developed SERS-based sensors for distinct types of analytes like disease-related biomarkers, organic and inorganic molecules, various toxins, dyes, pesticides, bacteria as well as single molecules. This study aims to enlighten the arising sensing approaches based on the SERS technique. Apart from this, some basics of the SERS technique like their mechanism, detection strategy, and involvement of some specific nanomaterials are also highlighted herein. Finally, the study concluded with some discussion of applications of SERS in various fields like food and environmental analysis.
Collapse
Affiliation(s)
- Nidhi Chauhan
- School of Health Sciences & Technology (SoHST), University of Petroleum and Energy Studies (UPES), Bidholi, 248007, Dehradun, India
| | - Kirti Saxena
- Amity Institute of Nanotechnology (AINT), Amity University Uttar Pradesh (AUUP), Noida, 201313, India
| | - Rachna Rawal
- Department of Physics and Astrophysics, University of Delhi, Delhi, 110007, India
| | - Lalit Yadav
- Amity Institute of Nanotechnology (AINT), Amity University Uttar Pradesh (AUUP), Noida, 201313, India.
| | - Utkarsh Jain
- School of Health Sciences & Technology (SoHST), University of Petroleum and Energy Studies (UPES), Bidholi, 248007, Dehradun, India.
| |
Collapse
|
2
|
Fan T, Cai L, Huang Z, Tang H, Zhang L, Li Z. Spontaneous Redox-Reaction-Driven Growth of Ag Nanoparticles on Co(OH) 2 Nanoflower Arrays for Surface-Enhanced Raman Scattering. Inorg Chem 2023. [PMID: 37463408 DOI: 10.1021/acs.inorgchem.3c00814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
A simple and reliable method is developed to fabricate Ag-nanoparticle-decorated Co(OH)2 nanoflowers grafted on polyacrylonitrile (PAN) nanopillar arrays as uniform and sensitive surface-enhanced Raman scattering (SERS) substrates. First, Co(OH)2-nanosheet-assembled nanoflowers are achieved on the highly uniform PAN nanopillar arrays via electrochemical deposition. Then, Ag nanoparticles (Ag-NPs) are decorated onto the Au-nanoparticle-precoated Co(OH)2 nanoflowers based on a spontaneous redox reaction (SRR) between the silver ions and Co(OH)2 nanosheets at room temperature. Ag-NPs can be successfully in situ synthesized on the Co(OH)2 nanoflowers, and Au nanoparticles precoated on the surface of the Co(OH)2 nanosheets can ensure that the Co(OH)2 nanoflower structure does not collapse. Because of the highly uniform PAN nanopillar arrays and the high-density sub-10 nm gaps between the neighboring Ag-NPs on the surface of the Co(OH)2 nanoflowers, the hierarchical three-dimensional Ag@Co(OH)x grown on PAN nanopillar arrays can produce a reproducible and sensitive SERS effect. To verify the SERS performance of the substrate, 4-aminothiophenol (4-ATP) is used as the probe molecule, and the Ag@Co(OH)x grown on PAN nanopillar arrays is employed as the SERS substrate. As a result, 4-ATP concentrations as low as 10-10 M can still be identified, exhibiting high SERS activity. Additionally, the relative standard deviation value of the main characteristic peak of 10-5 M 4-ATP is 9.43%, indicating good uniformity of the SERS signal of the substrate. The SRR between silver ions and Co(OH)2 can provide a simple route to prepare heterostructures as SERS substrates, which has great potential for application in the field of analysis.
Collapse
Affiliation(s)
- Tingting Fan
- College of Light-Textile Engineering and Art, Anhui Agricultural University, Hefei 230036, China
| | - Li Cai
- College of Light-Textile Engineering and Art, Anhui Agricultural University, Hefei 230036, China
| | - Zhulin Huang
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
| | - Haibin Tang
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
| | - Lijun Zhang
- College of Light-Textile Engineering and Art, Anhui Agricultural University, Hefei 230036, China
| | - Zhongbo Li
- College of Light-Textile Engineering and Art, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
3
|
Pang J, Yu J, Yang H, Ruan S, Ouyang D, Yang C, Deng L. Non-uniform droplet deposition on femtosecond laser patterned superhydrophobic/superhydrophilic SERS substrates for high-sensitive detection. OPTICS EXPRESS 2023; 31:19886-19896. [PMID: 37381394 DOI: 10.1364/oe.491434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/18/2023] [Indexed: 06/30/2023]
Abstract
Surface-enhanced Raman scattering (SERS) sensors combined with superhydrophobic/superhydrophilic (SH/SHL) surfaces have shown the ability to detect ultra-low concentrations. In this study, femtosecond laser fabricated hybrid SH/SHL surfaces with designed patterns are successfully applied to improve the SERS performances. The shape of SHL patterns can be regulated to determine the droplet evaporation process and deposition characteristics. The experimental results show that the uneven droplet evaporation along the edges of non-circular SHL patterns facilitates the enrichment of analyte molecules, thereby enhancing the SERS performance. The highly identifiable corners of SHL patterns are beneficial for capturing the enrichment area during Raman tests. The optimized 3-pointed star SH/SHL SERS substrate shows a detection limit concentration as low as 10-15 M by using only 5 µL R6G solutions, corresponding to an enhancement factor of 9.73 × 1011. Meanwhile, a relative standard deviation of 8.20% can be achieved at a concentration of 10-7 M. The research results suggest that the SH/SHL surfaces with designed patterns could be a practical approach in ultratrace molecular detections.
Collapse
|
4
|
Borodaenko Y, Khairullina E, Levshakova A, Shmalko A, Tumkin I, Gurbatov S, Mironenko A, Mitsai E, Modin E, Gurevich EL, Kuchmizhak AA. Noble-Metal Nanoparticle-Embedded Silicon Nanogratings via Single-Step Laser-Induced Periodic Surface Structuring. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1300. [PMID: 37110886 PMCID: PMC10146168 DOI: 10.3390/nano13081300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/30/2023] [Accepted: 04/05/2023] [Indexed: 06/19/2023]
Abstract
Here, we show that direct femtosecond laser nanostructuring of monocrystalline Si wafers in aqueous solutions containing noble-metal precursors (such as palladium dichloride, potassium hexachloroplatinate, and silver nitrate) allows for the creation of nanogratings decorated with mono- (Pd, Pt, and Ag) and bimetallic (Pd-Pt) nanoparticles (NPs). Multi-pulse femtosecond-laser exposure was found to drive periodically modulated ablation of the Si surface, while simultaneous thermal-induced reduction of the metal-containing acids and salts causes local surface morphology decoration with functional noble metal NPs. The orientation of the formed Si nanogratings with their nano-trenches decorated with noble-metal NPs can be controlled by the polarization direction of the incident laser beam, which was justified, for both linearly polarized Gaussian and radially (azimuthally) polarized vector beams. The produced hybrid NP-decorated Si nanogratings with a radially varying nano-trench orientation demonstrated anisotropic antireflection performance, as well as photocatalytic activity, probed by SERS tracing of the paraaminothiophenol-to-dimercaptoazobenzene transformation. The developed single-step maskless procedure of liquid-phase Si surface nanostructuring that proceeds simultaneously with the localized reduction of noble-metal precursors allows for the formation of hybrid Si nanogratings with controllable amounts of mono- and bimetallic NPs, paving the way toward applications in heterogeneous catalysis, optical detection, light harvesting, and sensing.
Collapse
Affiliation(s)
- Yulia Borodaenko
- Institute of Automation and Control Processes, Far Eastern Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia
| | - Evgeniia Khairullina
- Institute of Chemistry, Saint Petersburg State University, 7/9 Universitetskaya Nab., 199034 St. Petersburg, Russia
| | - Aleksandra Levshakova
- Institute of Chemistry, Saint Petersburg State University, 7/9 Universitetskaya Nab., 199034 St. Petersburg, Russia
| | - Alexander Shmalko
- Interdisciplinary Resource Center for Nanotechnology of Research Park of SPbSU, Saint Petersburg State University, 7/9 Universitetskaya Nab., 199034 St. Petersburg, Russia
| | - Ilya Tumkin
- Institute of Chemistry, Saint Petersburg State University, 7/9 Universitetskaya Nab., 199034 St. Petersburg, Russia
| | - Stanislav Gurbatov
- Institute of Automation and Control Processes, Far Eastern Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia
| | | | - Eugeny Mitsai
- Institute of Automation and Control Processes, Far Eastern Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia
| | - Evgeny Modin
- CIC nanoGUNE BRTA, E-20018 Donostia-San Sebastian, Spain
| | - Evgeny L. Gurevich
- Laser Center (LFM), University of Applied Sciences Munster, Stegerwaldstraße 39, 48565 Steinfurt, Germany
| | - Aleksandr A. Kuchmizhak
- Institute of Automation and Control Processes, Far Eastern Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia
- Far Eastern Federal University, 690090 Vladivostok, Russia
| |
Collapse
|
5
|
Shi XS, Zhao YF, Zhang HY, Xu XF. Rational design of wettability-patterned microchips for high-performance attomolar surface-enhanced Raman detection. Talanta 2023; 258:124417. [PMID: 36931060 DOI: 10.1016/j.talanta.2023.124417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/28/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023]
Abstract
Recent progress in wettability-patterned microchips has facilitated the development of ultra-trace detection in multiple biomedical and food safety fields. The existence of a superhydrophilic trap can realize targeted deposition of the analyte. However, the wetting transition from the Cassie-Baxter state to the Wenzel state usually occurs during evaporation and leads to a larger deposition footprint, which has a strong impact on the detection sensitivity and uniformity. In this paper, we report an integrated design, fabrication, and evaporation strategy to avoid the transition for high-performance attomolar surface-enhanced Raman scattering (SERS) detection. An improved force balance model was proposed to design the microstructures of wettability-patterned microchips, which were fabricated by nanosecond laser direct writing and surface fluorination. The microchips were composed of superhydrophobic micro-grooves and superhydrophilic traps, by which the targeted deposition of Au nanoparticles and rhodamine 6G (R6G) onto a minimal area of ∼70 × 70 μm2 was realized after a two-step heated evaporation. Accordingly, the detection limit was down to the attomolar level (5 × 10-18 M) with SERS enhancement factors (EFs) exceeding 1010. More importantly, the Raman signals showed good uniformity (RSD of 11.5%) for the concentration of 2 × 10-17 M. A good linear relationship was obtained in the quantitative concentration range of 10-12 M to 5 × 10-18 M with a high correlation coefficient (R2) of 0.996. These wettability-patterned microchips exhibit high performance (that is, both good sensitivity and good uniformity) in the detection of ultra-trace molecules in aqueous solutions, avoiding the need for expensive equipment and considerable skill in operations. The proposed strategy could also be applied to other microfluidic devices for rapid and simple analyte pre-concentration.
Collapse
Affiliation(s)
- Xue-Song Shi
- School of Technology, Beijing Forestry University, Beijing, 100083, PR China.
| | - Yu-Fan Zhao
- School of Technology, Beijing Forestry University, Beijing, 100083, PR China
| | - Hong-Ye Zhang
- School of Technology, Beijing Forestry University, Beijing, 100083, PR China
| | - Xue-Feng Xu
- School of Technology, Beijing Forestry University, Beijing, 100083, PR China
| |
Collapse
|
6
|
Fabre V, Carcenac F, Laborde A, Doucet JB, Vieu C, Louarn P, Trevisiol E. Hierarchical Superhydrophobic Device to Concentrate and Precisely Localize Water-Soluble Analytes: A Route to Environmental Analysis. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:14249-14260. [PMID: 36368024 DOI: 10.1021/acs.langmuir.2c01690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
An efficient superhydrophobic concentrator is developed using a hierarchical superhydrophobic surface on which the evaporation of a sessile droplet (6 μL) drives the nonvolatile elements it contains on a predefined micrometric analytical surface (pedestal of 80 μm diameter). This hierarchical silicon surface exhibits a surface texture made of etched nanopillars and consists of micropillars and guiding lines, arranged in radial symmetry around the central pedestal. The guiding lines ensure the overall convergence of the sessile droplet toward the central pedestal during evaporation. The nanopillar texturing induced a delay in the Cassie-Baxter to Wenzel regime transition, until the edge of the droplet reaches the periphery of the pedestal. Experiments performed with polymer microparticles suspended in ultrapure water or with DNA molecules solubilized in ultrapure water at sub-fM concentrations demonstrated that the totality of the nonvolatile elements in the liquid microvolume is delivered on or close to the pedestal area, in a very reproducible manner. The very high concentration capacity of the device enabled the discrimination of the degree of purity of ultrapure water samples from different origins. The concentrator also turned out to be functional for raw water samples, opening possible applications to environmental analysis.
Collapse
Affiliation(s)
- Victor Fabre
- LAAS-CNRS, Université de Toulouse, CNRS, INSA, 31400 Toulouse, France
- TBI, Université de Toulouse, CNRS, INRAE, INSA, 31400 Toulouse, France
| | - Franck Carcenac
- LAAS-CNRS, Université de Toulouse, CNRS, INSA, 31400 Toulouse, France
| | - Adrian Laborde
- LAAS-CNRS, Université de Toulouse, CNRS, INSA, 31400 Toulouse, France
| | | | - Christophe Vieu
- LAAS-CNRS, Université de Toulouse, CNRS, INSA, 31400 Toulouse, France
| | - Philippe Louarn
- IRAP, CNRS, Université de Toulouse, CNES, 31400 Toulouse, France
| | | |
Collapse
|
7
|
Gu Y, Li Q, Yin M, Yang D, Yang Y. A super-hydrophobic perfluoropolyether coated polytetrafluoroethylene sheets substrate for detection of acetamiprid surface-enhanced Raman spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 278:121373. [PMID: 35576838 DOI: 10.1016/j.saa.2022.121373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 05/04/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
In this paper, a hydrophobic substrate as concentrators including an inner layer of polytetrafluoroethylene (PTFE) and an outer layer covered a thin layer of perfluoropolyether (PFPE) was constructed to achieve a higher sensitivity for acetamiprid (AC) SERS detection. The condensation effect of the PTFE-PFPE hydrophobic substrate-induced aggregation of gold nanoparticles (Au NPs) result ''hot spots'' for SERS. The hydrophobic substrate is better reproducibility (RSD < 5%) compared with that on a conventional silicon wafer. A further application of the hydrophobic substrate was demonstrated by the detection of AC in tea samples within a detection range of 0.03 mg/L to 3 mg/L. The hydrophobic substrate eliminates the problem of solution diffusion to avoid the "coffee ring" effect (When a droplet adheres to a solid surface, the suspended molecular particles usually deposit on the edge of the droplet to form a ring).
Collapse
Affiliation(s)
- Yi Gu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Qiulan Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Mengjia Yin
- Yunnan Lunyang Technology Co., Ltd, Kunming 650032, Yunnan Province, China
| | - Dezhi Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| | - Yaling Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
8
|
Kazemzadeh M, Martinez-Calderon M, Paek SY, Lowe M, Aguergaray C, Xu W, Chamley LW, Broderick NGR, Hisey CL. Classification of Preeclamptic Placental Extracellular Vesicles Using Femtosecond Laser Fabricated Nanoplasmonic Sensors. ACS Sens 2022; 7:1698-1711. [PMID: 35658424 DOI: 10.1021/acssensors.2c00378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Placental extracellular vesicles (EVs) play an essential role in pregnancy by protecting and transporting diverse biomolecules that aid in fetomaternal communication. However, in preeclampsia, they have also been implicated in contributing to disease progression. Despite their potential clinical value, current technologies cannot provide a rapid and effective means of differentiating between healthy and diseased placental EVs. To address this, a fabrication process called laser-induced nanostructuring of SERS-active thin films (LINST) was developed to produce scalable nanoplasmonic substrates that provide exceptional Raman signal enhancement and allow the biochemical fingerprinting of EVs. After validating the performance of LINST substrates with chemical standards, placental EVs from tissue explant cultures were characterized, demonstrating that preeclamptic and normotensive placental EVs have classifiably distinct Raman spectra following the application of advanced machine learning algorithms. Given the abundance of placental EVs in maternal circulation, these findings encourage immediate exploration of surface-enhanced Raman spectroscopy (SERS) of EVs as a promising method for preeclampsia liquid biopsies, while this novel fabrication process will provide a versatile and scalable substrate for many other SERS applications.
Collapse
Affiliation(s)
- Mohammadrahim Kazemzadeh
- Department of Mechanical and Mechatronics Engineering, University of Auckland, Auckland 1010, New Zealand.,Dodd-Walls Centre for Photonic and Quantum Technologies, Dunedin 9054, New Zealand
| | | | - Song Y Paek
- Department of Obstetrics and Gynaecology, University of Auckland, Auckland 1023, New Zealand
| | - MoiMoi Lowe
- Department of Physics, University of Auckland, Auckland 1061, New Zealand
| | - Claude Aguergaray
- Dodd-Walls Centre for Photonic and Quantum Technologies, Dunedin 9054, New Zealand.,Department of Physics, University of Auckland, Auckland 1061, New Zealand
| | - Weiliang Xu
- Department of Mechanical and Mechatronics Engineering, University of Auckland, Auckland 1010, New Zealand.,Dodd-Walls Centre for Photonic and Quantum Technologies, Dunedin 9054, New Zealand
| | - Lawrence W Chamley
- Department of Obstetrics and Gynaecology, University of Auckland, Auckland 1023, New Zealand.,Hub for Extracellular Vesicle Investigations, University of Auckland, Auckland 1023, New Zealand
| | - Neil G R Broderick
- Dodd-Walls Centre for Photonic and Quantum Technologies, Dunedin 9054, New Zealand.,Department of Physics, University of Auckland, Auckland 1061, New Zealand
| | - Colin L Hisey
- Department of Obstetrics and Gynaecology, University of Auckland, Auckland 1023, New Zealand.,Hub for Extracellular Vesicle Investigations, University of Auckland, Auckland 1023, New Zealand.,Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
9
|
Electrically Controlled Enrichment of Analyte for Ultrasensitive SERS-Based Plasmonic Sensors. NANOMATERIALS 2022; 12:nano12050844. [PMID: 35269329 PMCID: PMC8912275 DOI: 10.3390/nano12050844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/21/2022] [Accepted: 02/26/2022] [Indexed: 01/27/2023]
Abstract
Recently, sensors using surface-enhanced Raman scattering (SERS) detectors combined with superhydrophobic/superhydrophilic analyte concentration systems showed the ability to reach detection limits below the femto-molar level. However, a further increase in the sensitivity of these sensors is limited by the impossibility of the concentration systems to deposit the analyte on an area of less than 0.01 mm2. This article proposes a fundamentally new approach to the analyte enrichment, based on the effect of non-uniform electrostatic field on the evaporating droplet. This approach, combined with the optimized geometry of a superhydrophobic/superhydrophilic concentration system allows more than a six-fold reduction of the deposition area. Potentially, this makes it possible to improve the detection limit of the plasmonic sensors by the same factor, bringing it down to the attomolar level.
Collapse
|
10
|
Zhizhchenko AY, Shabalina AV, Aljulaih AA, Gurbatov SO, Kuchmizhak AA, Iwamori S, Kulinich SA. Stability of Octadecyltrimethoxysilane-Based Coatings on Aluminum Alloy Surface. MATERIALS 2022; 15:ma15051804. [PMID: 35269035 PMCID: PMC8911556 DOI: 10.3390/ma15051804] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 02/17/2022] [Accepted: 02/23/2022] [Indexed: 01/03/2023]
Abstract
Long-term stability in contact with water of organosilane layers formed by octadecyltrimethoxysilane (ODTMS) on polished aluminum alloy (AA2024) through dip-coating was studied by combining SEM, water contact angle measurements, and X-ray photoelectron spectroscopy. Similar organosilane layers were formed on AA2024 coated with permanganate conversion coating, 1,2-bis(triethoxysilyl)ethane (BTSE) and hydrated SiOx as under-layers, after which their long-term durability was also tested. During immersion in water for about one month, all the samples exhibited a decrease in hydrophobicity, implying the prepared organosilane layer was not stable over time, gradually hydrolyzing and letting water interact with the underlying layer. In parallel, SEM images of one-layer samples taken after immersion showed clear signs of local electrochemical corrosion, while XPS analysis confirmed a loss of silicon from the surface layer. The highest stability over time was demonstrated by a one-layer sample prepared in an ethanol/water bath for 5 min and by a similar ODTMS layer prepared on hydrated MnOx as an under-layer.
Collapse
Affiliation(s)
- Alexey Y. Zhizhchenko
- Far Eastern Federal University, Vladivostok 690091, Russia; (A.Y.Z.); (S.O.G.); (A.A.K.)
- Institute of Automation and Control Processes of FEB RAS, 5 Radio St., Vladivostok 690041, Russia
| | - Anastasiia V. Shabalina
- Siberian Physical-Technical Institute, National Research Tomsk State University, Tomsk 634050, Russia;
| | - Ali A. Aljulaih
- Department of Mechanical Engineering, Tokai University, Hiratsuka, Kanagawa 259-1292, Japan; (A.A.A.); (S.I.)
- Division of Physical Science & Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Stanislav O. Gurbatov
- Far Eastern Federal University, Vladivostok 690091, Russia; (A.Y.Z.); (S.O.G.); (A.A.K.)
- Institute of Automation and Control Processes of FEB RAS, 5 Radio St., Vladivostok 690041, Russia
| | - Aleksandr A. Kuchmizhak
- Far Eastern Federal University, Vladivostok 690091, Russia; (A.Y.Z.); (S.O.G.); (A.A.K.)
- Institute of Automation and Control Processes of FEB RAS, 5 Radio St., Vladivostok 690041, Russia
| | - Satoru Iwamori
- Department of Mechanical Engineering, Tokai University, Hiratsuka, Kanagawa 259-1292, Japan; (A.A.A.); (S.I.)
| | - Sergei A. Kulinich
- Far Eastern Federal University, Vladivostok 690091, Russia; (A.Y.Z.); (S.O.G.); (A.A.K.)
- Department of Mechanical Engineering, Tokai University, Hiratsuka, Kanagawa 259-1292, Japan; (A.A.A.); (S.I.)
- Correspondence:
| |
Collapse
|
11
|
Yujie D, Shuai J, Yangyang G, Hongyue P, Ke L, Lin C. Inter-coffee-ring effects boost rapid and highly reliable SERS detection of TPhT on a light-confining structure. RSC Adv 2022; 12:27321-27329. [PMID: 36276030 PMCID: PMC9511688 DOI: 10.1039/d2ra04494c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/12/2022] [Indexed: 11/30/2022] Open
Abstract
Triphenyltin chloride (TPhT) is a widely applied toxic compound that poses a significant threat to humans and the environment. Surface-enhanced Raman spectroscopy (SERS), capable of non-destructive, rapid, and trace detection, is desirable to better evaluate its distribution and content. However, a sensitive method with simple measuring protocols which maintains excellent reproducibility remains challenging. Here, we proposed an inter-coffee-ring effect to accelerate the sampling and measuring process while maintaining highly reproducible results. Two overlapping coffee-rings are formed through sequenced drying of gold nanorod colloids and a gold nanorod TPhT mixture on a superhydrophobic light-confining structure. Both the gold nanorods and the TPhT are enriched in the overlapping region. The gold nanorods reordered in such an area under the inter-coffee-ring effect yielded vast numbers of consistent hotspots at the sub-2 nm level. Such consistency leads to excellent SERS performance under the light-confining effect induced by the nanoarray substrates. The detection limits of the probe molecule R6G reached 10−12 M, and TPhT reached 10−8 M while achieving excellent stability and reproducibility, and a linear regression coefficient above 0.99 was achieved for TPhT. Crucially, the visible nature of the inter-coffee-ring overlap enabled rapid measurements, thus providing robust support for detecting environmental pollutants. Nanoparticles reassembling in the inter coffee-ring region simply through sequenced drying of two droplets enabled ultrasensitive and highly reliable SERS detection. A rapid test protocol is realized by exciting the visible inter-coffee-ring mark.![]()
Collapse
Affiliation(s)
- Dai Yujie
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China, 400714
- University of Chinese Academy of Sciences, Beijing, China, 100049
| | - Jiang Shuai
- China CEC Engineering Corporation, Chang Sha, China, 410114
| | - Gao Yangyang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China, 400714
- China Three Gorges Construction Engineering Corporation, Chengdu, China, 610041
| | - Pan Hongyue
- China Three Gorges Construction Engineering Corporation, Chengdu, China, 610041
| | - Liu Ke
- China Three Gorges Construction Engineering Corporation, Chengdu, China, 610041
| | - Chang Lin
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China, 400714
- University of Chinese Academy of Sciences, Beijing, China, 100049
| |
Collapse
|
12
|
Wang L, Huang J, Su MJ, Wu JD, Liu W. AgNPs decorated 3D bionic silicon nanograss arrays pattern with high-density hot-spots for SERS sensing via green galvanic displacement without additives. RSC Adv 2021; 11:27152-27159. [PMID: 35480648 PMCID: PMC9037726 DOI: 10.1039/d1ra04874k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 07/29/2021] [Indexed: 12/17/2022] Open
Abstract
Surface-enhanced Raman scattering (SERS) sensing has always been considered as a kind of high-efficiency analysis technique in different areas. Herein, we report a AgNPs decorated 3D bionic silicon (Si) nanograss SERS substrate with higher sensitivity and specificity by green galvanic displacement. The Si nanograss arrays are directly grown on a Si substrate via catalyst-assisted vapor–liquid–solid (VLS) growth and subsequent plasma interaction. AgNPs were rapidly immobilized on Si nanograss arrays without any organic reagents, and avoiding the interference signal of additives. The AgNPs decorated 3D bionic silicon nanograss arrays not only possess a larger specific surface area (loading more reporter molecules), but also provide a potential distribution and arrangement for plentiful hot spots. Using Rhodamine 6G (R6G) as a probe molecule, the prepared SERS substrates exhibited great potential for high-sensitivity SERS sensing, and pushed the limit of detection (LOD) down to 0.1 pM. A higher Raman analytical enhancement factor (AEF, 3.3 × 107) was obtained, which was two magnitudes higher than our previous Ag micro–nano structures. Additionally, the practicality and reliability of our 3D bionic SERS substrates were confirmed by quantitative analysis of the spiked Sudan I in environmental water, with a wide linear range (from 10−10 M to 10−6 M) and low detection limit (0.1 nM). The Si nanograss arrays are directly grown on Si substrate via catalyst-assisted VLS growth and subsequent plasma interaction. AgNPs were rapidly immobilized on Si nanograss arrays for SERS sensing, without any organic reagents and additives.![]()
Collapse
Affiliation(s)
- Li Wang
- College of Chemistry and Chemical Engineering, Xi'an Shiyou University Xi'an Shaanxi 710065 China
| | - Jian Huang
- College of Chemistry and Chemical Engineering, Xi'an Shiyou University Xi'an Shaanxi 710065 China
| | - Mei-Juan Su
- College of Chemistry and Chemical Engineering, Xi'an Shiyou University Xi'an Shaanxi 710065 China
| | - Jin-Di Wu
- College of Chemistry and Chemical Engineering, Xi'an Shiyou University Xi'an Shaanxi 710065 China
| | - Weisheng Liu
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 P. R. China
| |
Collapse
|
13
|
Gurbatov SO, Modin E, Puzikov V, Tonkaev P, Storozhenko D, Sergeev A, Mintcheva N, Yamaguchi S, Tarasenka NN, Chuvilin A, Makarov S, Kulinich SA, Kuchmizhak AA. Black Au-Decorated TiO 2 Produced via Laser Ablation in Liquid. ACS APPLIED MATERIALS & INTERFACES 2021; 13:6522-6531. [PMID: 33502160 DOI: 10.1021/acsami.0c20463] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The rational combination of plasmonic and all-dielectric concepts within hybrid nanomaterials provides a promising route toward devices with ultimate performance and extended modalities. Spectral matching of plasmonic and Mie-type resonances for such nanostructures can only be achieved for their dissimilar characteristic sizes, thus making the resulting hybrid nanostructure geometry complex for practical realization and large-scale replication. Here, we produced amorphous TiO2 nanospheres decorated and doped with Au nanoclusters via single-step nanosecond-laser irradiation of commercially available TiO2 nanopowders dispersed in aqueous HAuCl4. Fabricated hybrids demonstrate remarkable light-absorbing properties (averaged value ≈96%) in the visible and near-IR spectral range mediated by bandgap reduction of the laser-processed amorphous TiO2 as well as plasmon resonances of the decorating Au nanoclusters. The findings are supported by optical spectroscopy, electron energy loss spectroscopy, transmission electron microscopy, and electromagnetic modeling. Light-absorbing and plasmonic properties of the produced hybrids were implemented to demonstrate catalytically passive SERS biosensor for identification of analytes at trace concentrations and solar steam generator that permitted to increase water evaporation rate by 2.5 times compared with that of pure water under identical 1 sun irradiation conditions.
Collapse
Affiliation(s)
- Stanislav O Gurbatov
- Far Eastern Federal University, Vladivostok 690922, Russia
- Institute of Automation and Control Processes, Far Eastern Branch, Russian Academy of Science, Vladivostok 690041, Russia
| | - Evgeny Modin
- CIC nanoGUNE BRTA, E-20018 Donostia - San Sebastian, Spain
| | | | | | - Dmitriy Storozhenko
- Institute of Automation and Control Processes, Far Eastern Branch, Russian Academy of Science, Vladivostok 690041, Russia
| | - Aleksandr Sergeev
- Institute of Automation and Control Processes, Far Eastern Branch, Russian Academy of Science, Vladivostok 690041, Russia
| | - Neli Mintcheva
- Department of Chemistry, University of Mining and Geology, 1700 Sofia, Bulgaria
- Research Institute of Science and Technology, Tokai University, Hiratsuka, Kanagawa 259-1292, Japan
| | - Shigeru Yamaguchi
- Department of Physics, Tokai University, Hiratsuka, Kanagawa 259-1292, Japan
| | | | - Andrey Chuvilin
- CIC nanoGUNE BRTA, E-20018 Donostia - San Sebastian, Spain
- IKERBASQUE, Basque Foundation for Science, E-48013 Bilbao, Spain
| | | | - Sergei A Kulinich
- Far Eastern Federal University, Vladivostok 690922, Russia
- Research Institute of Science and Technology, Tokai University, Hiratsuka, Kanagawa 259-1292, Japan
| | - Aleksandr A Kuchmizhak
- Institute of Automation and Control Processes, Far Eastern Branch, Russian Academy of Science, Vladivostok 690041, Russia
| |
Collapse
|
14
|
Syubaev S, Gurbatov S, Modin E, Linklater DP, Juodkazis S, Gurevich EL, Kuchmizhak A. Laser Printing of Plasmonic Nanosponges. NANOMATERIALS 2020; 10:nano10122427. [PMID: 33291684 PMCID: PMC7761959 DOI: 10.3390/nano10122427] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 11/28/2020] [Accepted: 12/01/2020] [Indexed: 12/02/2022]
Abstract
Three-dimensional porous nanostructures made of noble metals represent novel class of nanomaterials promising for nonlinear nanooptics and sensors. Such nanostructures are typically fabricated using either reproducible yet time-consuming and costly multi-step lithography protocols or less reproducible chemical synthesis that involve liquid processing with toxic compounds. Here, we combined scalable nanosecond-laser ablation with advanced engineering of the chemical composition of thin substrate-supported Au films to produce nanobumps containing multiple nanopores inside. Most of the nanopores hidden beneath the nanobump surface can be further uncapped using gentle etching of the nanobumps by an Ar-ion beam to form functional 3D plasmonic nanosponges. The nanopores 10–150 nm in diameter were found to appear via laser-induced explosive evaporation/boiling and coalescence of the randomly arranged nucleation sites formed by nitrogen-rich areas of the Au films. Density of the nanopores can be controlled by the amount of the nitrogen in the Au films regulated in the process of their magnetron sputtering assisted with nitrogen-containing discharge gas.
Collapse
Affiliation(s)
- Sergey Syubaev
- Institute of Automation and Control Processes, Far Eastern Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia; (S.S.); (S.G.)
- Far Eastern Federal University, 690041 Vladivostok, Russia
| | - Stanislav Gurbatov
- Institute of Automation and Control Processes, Far Eastern Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia; (S.S.); (S.G.)
- Far Eastern Federal University, 690041 Vladivostok, Russia
| | - Evgeny Modin
- CIC NanoGUNE BRTA, Avda Tolosa 76, 20018 Donostia-San Sebastian, Spain;
| | - Denver P. Linklater
- Optical Sciences Center and ARC Training Centre in Surface Engineering for Advanced Materials (SEAM), School of Science, Swinburne University of Technology, John st., Hawthorn, VIC 3122, Australia; (D.P.L.); (S.J.)
- School of Science, RMIT University, Melbourne, VIC 3000, Australia
| | - Saulius Juodkazis
- Optical Sciences Center and ARC Training Centre in Surface Engineering for Advanced Materials (SEAM), School of Science, Swinburne University of Technology, John st., Hawthorn, VIC 3122, Australia; (D.P.L.); (S.J.)
- World Research Hub Initiative (WRHI), School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Evgeny L. Gurevich
- Laser Center (LFM), University of Applied Sciences Munster, Stegerwaldstraße 39, 48565 Steinfurt, Germany;
| | - Aleksandr Kuchmizhak
- Institute of Automation and Control Processes, Far Eastern Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia; (S.S.); (S.G.)
- Far Eastern Federal University, 690041 Vladivostok, Russia
- Correspondence:
| |
Collapse
|
15
|
Bonse J. Quo Vadis LIPSS?-Recent and Future Trends on Laser-Induced Periodic Surface Structures. NANOMATERIALS 2020; 10:nano10101950. [PMID: 33007873 PMCID: PMC7601024 DOI: 10.3390/nano10101950] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/24/2020] [Accepted: 09/29/2020] [Indexed: 02/06/2023]
Abstract
Nanotechnology and lasers are among the most successful and active fields of research and technology that have boomed during the past two decades. Many improvements are based on the controlled manufacturing of nanostructures that enable tailored material functionalization for a wide range of industrial applications, electronics, medicine, etc., and have already found entry into our daily life. One appealing approach for manufacturing such nanostructures in a flexible, robust, rapid, and contactless one-step process is based on the generation of laser-induced periodic surface structures (LIPSS). This Perspective article analyzes the footprint of the research area of LIPSS on the basis of a detailed literature search, provides a brief overview on its current trends, describes the European funding strategies within the Horizon 2020 programme, and outlines promising future directions.
Collapse
Affiliation(s)
- Jörn Bonse
- Bundesanstalt für Materialforschung und -prüfung (BAM), Unter den Eichen 87, D-12205 Berlin, Germany
| |
Collapse
|
16
|
Muneer S, Sarfo DK, Ayoko GA, Islam N, Izake EL. Gold-Deposited Nickel Foam as Recyclable Plasmonic Sensor for Therapeutic Drug Monitoring in Blood by Surface-Enhanced Raman Spectroscopy. NANOMATERIALS 2020; 10:nano10091756. [PMID: 32899949 PMCID: PMC7558188 DOI: 10.3390/nano10091756] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/24/2020] [Accepted: 09/02/2020] [Indexed: 01/05/2023]
Abstract
A sensitive and recyclable plasmonic nickel foam sensor has been developed for surface-enhanced Raman spectroscopy (SERS). A simple electrochemical method was used to deposit flower-shaped gold nanostructures onto nickel foam substrate. The high packing of the gold nanoflowers onto the nickel foam led to a high enhancement factor (EF) of 1.6 × 1011. The new SERS sensor was utilized for the direct determination of the broad-spectrum β-lactam carbapenem antibiotic meropenem in human blood plasma down to one pM. The sensor was also used in High Performance Liquid Chromatography (HPLC)-SERS assembly to provide fingerprint identification of meropenem in human blood plasma. Moreover, the SERS measurements were reproducible in aqueous solution and human blood plasma (RSD = 5.5%) and (RSD = 2.86%), respectively at 200 µg/mL (n = 3), and successfully recycled using a simple method, and hence, used for the repeated determination of the drug by SERS. Therefore, the new sensor has a strong potential to be applied for the therapeutic drug monitoring of meropenem at points of care and intensive care units.
Collapse
Affiliation(s)
- Saiqa Muneer
- School of Chemistry and Physics, Science and Engineering Faculty, Queensland University of Technology, 2 George St., Brisbane QLD 4000, Australia; (S.M.); (D.K.S.); (G.A.A.)
| | - Daniel K. Sarfo
- School of Chemistry and Physics, Science and Engineering Faculty, Queensland University of Technology, 2 George St., Brisbane QLD 4000, Australia; (S.M.); (D.K.S.); (G.A.A.)
| | - Godwin A. Ayoko
- School of Chemistry and Physics, Science and Engineering Faculty, Queensland University of Technology, 2 George St., Brisbane QLD 4000, Australia; (S.M.); (D.K.S.); (G.A.A.)
| | - Nazrul Islam
- School of Clinical Sciences, Faculty of Health, Queensland University of Technology, 2 George St., Brisbane, QLD 4000, Australia;
| | - Emad L. Izake
- School of Chemistry and Physics, Science and Engineering Faculty, Queensland University of Technology, 2 George St., Brisbane QLD 4000, Australia; (S.M.); (D.K.S.); (G.A.A.)
- Correspondence: ; Tel.: +61-7-3138-2501
| |
Collapse
|