1
|
Ramírez O, Leal M, Briones X, Urzúa M, Bonardd S, Saldías C, Leiva A. New Hybrid Nanocomposites with Catalytic Properties Obtained by In Situ Preparation of Gold Nanoparticles on Poly (Ionic Liquid)/Poly (4-Vinylpyridine) Nanofibers. Polymers (Basel) 2022; 14:polym14183782. [PMID: 36145926 PMCID: PMC9504522 DOI: 10.3390/polym14183782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/02/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
In this work, we report the obtaining of new hybrid nanocomposites with catalytic activity formed by nanofibers of polymer blends and gold nanoparticles. The nanofibers were obtained by electrospinning blends of a poly (ionic liquid) (PIL) and its precursor polymer, poly (4-vinyl pyridine) (P4VPy). The characteristics of the nanofibers obtained proved to be dependent on the proportion of polymer in the blends. The nanofibers obtained were used to synthesize, in situ, gold nanoparticles on their surface by two-step procedure. Firstly, the adsorption of precursor ions on the nanofibers and then their reduction with sodium borohydride to generate gold nanoparticles. The results indicated a significant improvement in the performance of PIL-containing nanofibers over pure P4VPy NFs during ion adsorption, reaching a 20% increase in the amount of adsorbed ions and a 6-fold increase in the respective adsorption constant. The catalytic performance of the obtained hybrid systems in the reduction reaction of 4-nitrophenol to 4-aminophenol was studied. Higher catalytic conversions were obtained using the hybrid nanofibers containing PIL and gold nanoparticles achieving a maximum conversion rate of 98%. Remarkably, the highest value of kinetic constant was obtained for the nanofibers with the highest PIL content.
Collapse
Affiliation(s)
- Oscar Ramírez
- Departamento de Físico Química, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Matías Leal
- Centro de Bioinformática y Biología Integrativa, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370035, Chile
| | - Ximena Briones
- Departamento de Química Orgánica y Fisicoquímica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 8380544, Chile
| | - Marcela Urzúa
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile
| | - Sebastián Bonardd
- Departamento de Química Orgánica, Universidad de La Laguna, Avda. Astrofísico Francisco Sánchez 3, La Laguna, 38206 Tenerife, Spain
- Instituto de Bio-Orgánica Antonio González, Universidad de La Laguna, Avda. Astrofísico Francisco Sánchez 2, La Laguna, 38206 Tenerife, Spain
| | - Cesar Saldías
- Departamento de Físico Química, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Angel Leiva
- Departamento de Físico Química, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
- Correspondence:
| |
Collapse
|
2
|
Liu YQ, Xue SM, Zhang P, Xu LN, Wang DP, Li G, Cao JM. Silica Nanoparticles Disturb Ion Channels and Transmembrane Potentials of Cardiomyocytes and Induce Lethal Arrhythmias in Mice. Int J Nanomedicine 2020; 15:7397-7413. [PMID: 33116478 PMCID: PMC7547143 DOI: 10.2147/ijn.s261692] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 09/08/2020] [Indexed: 12/22/2022] Open
Abstract
Background The toxicity of silica nanoparticles (SiNPs) on cardiac electrophysiology has seldom been evaluated. Methods Patch-clamp was used to investigate the acute effects of SiNP-100 (100 nm) and SiNP-20 (20 nm) on the transmembrane potentials (TMPs) and ion channels in cultured neonatal mouse ventricular myocytes. Calcium mobilization in vitro, cardiomyocyte ROS generation, and LDH leakage after exposure to SiNPs in vitro and in vivo were measured using a microplate reader. Surface electrocardiograms were recorded in adult mice to evaluate the arrhythmogenic effects of SiNPs in vivo. SiNP endocytosis was observed using transmission electron microscopy. Results Within 30 min, both SiNPs (10-8-10-6 g/mL) did not affect the resting potential and IK1 channels. SiNP-100 increased the action potential amplitude (APA) and the INa current density, but SiNP-20 decreased APA and INa density. SiNP-100 prolonged the action potential duration (APD) and decreased the Ito current density, while SiNP-20 prolonged or shortened the APD, depending on exposure concentrations and increased Ito density. Both SiNPs (10-6 g/mL) induced calcium mobilization but did not increase ROS and LDH levels and were not endocytosed within 10 min in cardiomyocytes in vitro. In vivo, SiNP-100 (4-10 mg/kg) and SiNP-20 (4-30 mg/kg) did not elevate myocardial ROS but increased LDH levels depending on dose and exposure time. The same higher dose of SiNPs (intravenously injected) induced tachyarrhythmias and lethal bradyarrhythmias within 90 min in adult mice. Conclusion SiNPs (i) exert rapid toxic effects on the TMPs of cardiomyocytes in vitro largely owing to their direct interfering effects on the INa and Ito channels and Ca2+ homeostasis but not IK1 channels and ROS levels, and (ii) induce tachyarrhythmias and lethal bradyarrhythmias in vivo. SiNP-100 is more toxic than SiNP-20 on cardiac electrophysiology, and the toxicity mechanism is likely more complicated in vivo.
Collapse
Affiliation(s)
- Ya-Qin Liu
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| | - Si-Meng Xue
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| | - Peng Zhang
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| | - Lin-Na Xu
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| | - De-Ping Wang
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Department of Physiology, Shanxi Medical University, Taiyuan, Shanxi 030001, People's Republic of China
| | - Guang Li
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| | - Ji-Min Cao
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China.,Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Department of Physiology, Shanxi Medical University, Taiyuan, Shanxi 030001, People's Republic of China
| |
Collapse
|