1
|
Darini R, Ahari H, Khosrojerdi A, Jannat B, Babazadeh H. Antimicrobial properties of Graphene sheets embedded with Titanium Oxide and Calcium Oxide nanoparticles for industrial wastewater treatment. Sci Rep 2025; 15:1007. [PMID: 39762454 PMCID: PMC11704011 DOI: 10.1038/s41598-024-84335-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 12/23/2024] [Indexed: 01/11/2025] Open
Abstract
This study investigated the antimicrobial efficacy of graphene, titanium dioxide nanoparticles (TiO2NPs), and calcium oxide nanoparticles (CaONPs) against various microorganisms in dairy wastewater. The minimum inhibitory concentration (MIC) of graphene was determined to be 41.66 mg/L for Escherichia coli and 33.33 mg/L for Staphylococcus aureus, outperforming TiO2NPs and CaONPs. Additionally, graphene sheets embedded with 2.8% TiO2 (GST2.8) demonstrated superior performance in inhibiting bacterial growth compared to unmodified or other modified graphene sheets. The GST2.8 treatment significantly reduced microbial counts for S. aureus, E. coli, and mold/yeast, with the lowest observed counts being 4.85 CFU/mL, 3.00 CFU/mL, and 4.04 CFU/mL, respectively. These results suggest that graphene-based nanocomposites incorporating TiO2NPs and CaONPs hold promise as effective antimicrobial agents for wastewater treatment applications.
Collapse
Affiliation(s)
- Reza Darini
- Department of Water Science and Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Hamed Ahari
- Department of Food Science and Technology, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Amir Khosrojerdi
- Department of Water Science and Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Behrooz Jannat
- Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran
| | - Hossein Babazadeh
- Department of Water Science and Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
2
|
Zhu H, Wang R, Cheng JH, Keener KM. Engineering pineapple peel cellulose nanofibrils with oxidase-mimic functionalities for antibacterial and fruit preservation. Food Chem 2024; 451:139417. [PMID: 38678651 DOI: 10.1016/j.foodchem.2024.139417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 05/01/2024]
Abstract
In this study, an antibacterial material (CNF@CoMn-NS) with oxidase-like activity was created using ultrathin cobalt‑manganese nanosheets (CoMn-NS) with a larger specific surface area grown onto pineapple peel cellulose nanofibrils (CNF). The results showed that the CoMn-NS grew well on the CNF, and the obtained CNF@CoMn-NS exhibited good oxidase-like activity. The imidazole salt framework of the CNF@CoMn-NS contained cobalt and manganese in multiple oxidation states, enabling an active redox cycle and generating active oxygen species (ROS) such as singlet molecular oxygen atoms (1O2) and superoxide radical (·O2-), resulting in the significant inactivation of Staphylococcus aureus (74.14%) and Escherichia coli (54.87%). Importantly, the CNF@CoMn-NS did not exhibit cytotoxicity. The CNF@CoMn-NS further self-assembled into a CNF@CoMn-NS paper with flexibility, stability, and antibacterial properties, which can effectively protect the wound of two varieties of pears from decay caused by microorganisms. This study demonstrated the potential of using renewable and degradable CNF as substrate combined with artificial enzymes as a promising approach to creating antibacterial materials for food preservation and even extending to textiles and biomedical applications.
Collapse
Affiliation(s)
- Hong Zhu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Ruilin Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Jun-Hu Cheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China.
| | - Kevin M Keener
- School of Engineering, University of Guelph, Albert Thornbrough Building, Rm 2344, Guelph, Canada
| |
Collapse
|
3
|
Senthil R. Bone implant substitutes from synthetic polymer and reduced graphene oxide: Current perspective. Int J Artif Organs 2024; 47:57-66. [PMID: 38087802 DOI: 10.1177/03913988231216572] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2024]
Abstract
In the present work, bone implant materials (BIM) were produced, in sheet form which comprises epoxy resin (synthetic polymer) (ER), calcium carbonate (CaCO3), and reduced graphene oxide (R-GO), by open mold method, for the possibility uses in bone tissue engineering. The developed BIM was analyzed for its physico-chemical, mechanical, bioactivity test, antimicrobial study, and biocompatibility. The BIM had excellent mechanical properties such as tensile strength (194.44 + 0.21 MPa), flexural strength (278.76 + 0.41 MPa), and water absorption (02.61 + 0.24%). A pore size distribution study using the HR-SEM has proved the 180 and 255 μm average pore was observed in the BIM structure. The Bioactivity test of BIM was examined after being immersed in a simulated body fluids (SBF) solution. The result of BIM formed an excellent deposition of bone tube apatite crystals. High-resolution scanning electron microscopy (HR-SEM) morphology of the bone tube apatite crystals revealed the diameter size in the range from 100 ± 159 to 210 ± 188 nm. BIM has excellent antimicrobial characteristics against E. coli (8.75 + 0.06 mm) and S. aureus (9.82 + 0.08 mm). The biocompatibility of the study MTT (3-(4, 5-dimethyl) thiazol-2-yl-2, 5-dimethyl tetrazolium bromide) assay using the MG-63 (human osteoblast cell line) has proven to be the 78% viable cell presence in BIM. After receiving the necessary approval, the scaffold with the required strength and biocompatibility could be tested as a bone implant material in large animals.
Collapse
Affiliation(s)
- Rethinam Senthil
- Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| |
Collapse
|
4
|
Kumar SR, Hu CC, Vi TTT, Chen DW, Lue SJ. Antimicrobial Peptide Conjugated on Graphene Oxide-Containing Sulfonated Polyetheretherketone Substrate for Effective Antibacterial Activities against Staphylococcus aureus. Antibiotics (Basel) 2023; 12:1407. [PMID: 37760704 PMCID: PMC10525520 DOI: 10.3390/antibiotics12091407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/18/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
In the present study, the antimicrobial peptide nisin was successfully conjugated onto the surface of sulfonated polyetheretherketone (SPEEK), which was decorated with graphene oxide (GO) to investigate its biofilm resistance and antibacterial properties. The PEEK was activated with sulfuric acid, resulting in a porous structure. The GO deposition fully covered the porous SPEEK specimen. The nisin conjugation was accomplished using the crosslinker 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) through a dip-coating method. The surface micrographs of the SPEEK-GO-nisin sample indicated that nisin formed discrete islets on the flat GO surface, allowing both the GO and nisin to perform a bactericidal effect. The developed materials were tested for bactericidal efficacy against Staphylococcus aureus (S. aureus). The SPEEK-GO-nisin sample had the highest antibacterial activity with an inhibition zone diameter of 27 mm, which was larger than those of the SPEEK-nisin (19 mm) and SPEEK-GO (10 mm) samples. Conversely, no inhibitory zone was observed for the PEEK and SPEEK samples. The surface micrographs of the bacteria-loaded SPEEK-GO-nisin sample demonstrated no bacterial adhesion and no biofilm formation. The SPEEK-nisin and SPEEK-GO samples showed some bacterial attachment, whereas the pure PEEK and SPEEK samples had abundant bacterial colonies and thick biofilm formation. These results confirmed the good biofilm resistance and antibacterial efficacy of the SPEEK-GO-nisin sample, which is promising for implantable orthopedic applications.
Collapse
Affiliation(s)
- Selvaraj Rajesh Kumar
- Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan City 333, Taiwan; (S.R.K.); (T.T.T.V.)
| | - Chih-Chien Hu
- Department of Orthopedics, Chang Gung Memorial Hospital, Linkou, Taoyuan City 333, Taiwan;
| | - Truong Thi Tuong Vi
- Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan City 333, Taiwan; (S.R.K.); (T.T.T.V.)
- Division of Pediatric Gastroenterology and Hepatology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan City 333, Taiwan
| | - Dave W. Chen
- Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Keelung City 204, Taiwan
| | - Shingjiang Jessie Lue
- Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan City 333, Taiwan; (S.R.K.); (T.T.T.V.)
- Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Keelung City 204, Taiwan
- Department of Safety, Health and Environment Engineering, Ming Chi University of Technology, New Taipei City 243, Taiwan
| |
Collapse
|
5
|
Mohamad EA, Ramadan MA, Mostafa MM, Elneklawi MS. Enhancing the antibacterial effect of iron oxide and silver nanoparticles by extremely low frequency electric fields (ELF-EF) against S. aureus. Electromagn Biol Med 2023; 42:99-113. [PMID: 37154170 DOI: 10.1080/15368378.2023.2208610] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 03/05/2023] [Indexed: 05/10/2023]
Abstract
Staphylococcus aureus is the cause of many infectious and inflammatory diseases and a lot of studies aim to discover alternative ways for infection control and treatment rather than antibiotics. This work attempts to reduce bacterial activity and growth characteristics of Staphylococcus aureus using nanoparticles (iron oxide nanoparticles and silver nanoparticles) and extremely low frequency electric fields (ELF-EF). Bacterial suspensions of Staphylococcus aureus were used to prepare the samples, which were evenly divided into groups. Control group, 10 groups were exposed to ELF-EF in the frequency range (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1 Hz), iron oxide NPs treated group, iron oxide NPs exposed to 0.8 Hz treated group, silver NPs treated group and the last group was treated with silver NPs and 0.8 Hz. Antibiotic sensitivity testing, dielectric relaxation, and biofilm development for the living microbe were used to evaluate morphological and molecular alterations. Results showed that combination of nanoparticles with ELF-EF at 0.8 Hz enhanced the bacterial inhibition efficiency, which may be due to structural changes. These were supported by the dielectric measurement results which indicated the differences in the dielectric increment and electrical conductivity for the treated samples compared with control samples. This was also confirmed by biofilm formation measurements obtained. We may conclude that the exposure of Staphylococcus aureus bacteria to ELF-EF and NPs affected its cellular activity and structure. This technique is nondestructive, safe and fast and could be considered as a mean to reduce the use of antibiotics.
Collapse
Affiliation(s)
- Ebtesam A Mohamad
- Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Marwa A Ramadan
- Department of laser application in metrology photochemistry and agriculture, National institute of laser Enhanced science NILES Cairo University Egypt, Giza, Egypt
| | - Marwa M Mostafa
- Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Mona S Elneklawi
- Department of Biomedical Equipments & Systems, Faculty of Applied Medical Sciences, October 6 University, Giza, Egypt
| |
Collapse
|
6
|
Eskandari F, Ghahramani Y, Abbaszadegan A, Gholami A. The antimicrobial efficacy of nanographene oxide and double antibiotic paste per se and in combination: part II. BMC Oral Health 2023; 23:253. [PMID: 37131216 PMCID: PMC10155346 DOI: 10.1186/s12903-023-02957-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 04/10/2023] [Indexed: 05/04/2023] Open
Abstract
BACKGROUND Finding strategies to overcome the rising trends of antimicrobial resistance against currently available antimicrobial agents has become increasingly relevant. Graphene oxide has recently emerged as a promising material due to its outstanding physicochemical and biological properties. This study aimed to validate previous data on the antibacterial activity of nanographene oxide (nGO), double antibiotic paste (DAP), and their combination (nGO-DAP). METHODS The antibacterial evaluation was performed against a wide range of microbial pathogens. Synthesis of nGO was achieved using a modified Hummers' method, and loading it with ciprofloxacin and metronidazole resulted in nGO-DAP. The microdilution method was utilized to assess the antimicrobial efficacy of nGO, DAP, and nGO-DAP against two gram-positive bacteria (S. aureus and E. faecalis), two gram-negative bacteria (E. coli, and S. typhi), and an opportunistic pathogenic yeast (C. albicans). Statistical analysis was conducted using one-sample t-test and one-way ANOVA (α = 0.05). RESULTS All three antimicrobial agents significantly increased the killing percent of microbial pathogens compared to the control group (P < 0.05). Furthermore, the synthesized nGO-DAP exhibited higher antimicrobial activity than nGO and DAP per se. CONCLUSION The novel synthesized nGO-DAP can be used as an effective antimicrobial nanomaterial for use in dental, biomedical, and pharmaceutical fields against a range of microbial pathogens, including gram-negative and gram-positive bacteria, as well as yeasts.
Collapse
Affiliation(s)
- Fateme Eskandari
- Dentist, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Yasamin Ghahramani
- Department of Endodontics, School of Dentistry, Shiraz University of Medical Sciences, Ghasrdasht Street, Shiraz, 71956-15878, Iran
| | - Abbas Abbaszadegan
- Department of Endodontics, School of Dentistry, Shiraz University of Medical Sciences, Ghasrdasht Street, Shiraz, 71956-15878, Iran.
| | - Ahmad Gholami
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
7
|
Antibacterial Enhancement of High-Efficiency Particulate Air Filters Modified with Graphene-Silver Hybrid Material. Microorganisms 2023; 11:microorganisms11030745. [PMID: 36985318 PMCID: PMC10059912 DOI: 10.3390/microorganisms11030745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/11/2023] [Accepted: 03/11/2023] [Indexed: 03/15/2023] Open
Abstract
Bacterial infections are a major concern as antibiotic resistance poses a great threat, therefore leading to a race against time into finding new drugs or improving the existing resources. Nanomaterials with high surface area and bactericidal properties are the most promising ones that help combating microbial infections. In our case, graphene decorated with silver nanoparticles Gr-Ag (5 wt% Ag) exhibited inhibitory capacity against S. aureus and E. coli. The newly formed hybrid material was next incubated with high-efficiency particulate air (HEPA) filter, to obtain one with bactericidal properties. The modified filter had greater inhibitory action against the tested strains, compared to the control, and the effect was better against the Gram-negative model. Even if the bacteria remained attached to the filters, their colony forming unit capacity was affected by the Gr-Ag (5 wt% Ag) hybrid material, when they were subsequently re-cultured on fresh agar media. Therefore, the HEPA filter modified with Gr-Ag (5 wt% Ag) has high antibacterial properties that may substantially improve the existing technology.
Collapse
|
8
|
Taheri-Ledari R, Tarinsun N, Sadat Qazi F, Heidari L, Saeidirad M, Ganjali F, Ansari F, Hassanzadeh-Afruzi F, Maleki A. Vancomycin-Loaded Fe 3O 4/MOF-199 Core/Shell Cargo Encapsulated by Guanidylated-β-Cyclodextrine: An Effective Antimicrobial Nanotherapeutic. Inorg Chem 2023; 62:2530-2547. [PMID: 36734619 DOI: 10.1021/acs.inorgchem.2c02634] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
This study describes an efficient antimicrobial drug delivery system composed of iron oxide magnetic nanoparticles (Fe3O4 NPs) coated by an MOF-199 network. Then, the prepared vancomycin (VAN)-loaded carrier was fully packed in a lattice of beta-cyclodextrin (BCD). For cell adhesion, beta-cyclodextrin has been functionalized with guanidine (Gn) groups within in situ synthetic processes. Afterward, drug loading efficiency and the release patterns were investigated through precise analytical methods. Confocal microscopy has shown that the prepared cargo (formulated as [VAN@Fe3O4/MOF-199]BCD-Gn) could be attached to the Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) bacterial cells in a higher rate than the individual VAN. The presented system considerably increased the antibacterial effects of the VAN with a lower dosage of drug. The cellular experiments such as the zone of inhibition and optical density (OD600) have confirmed the enhanced antibacterial effect of the designed cargo. In addition, the MIC/MBC (minimum inhibitory and bactericidal concentrations) values have been estimated for the prepared cargo compared to the individual VAN, revealing high antimicrobial potency of the VAN@Fe3O4/MOF-199]BCD-Gn cargo.
Collapse
Affiliation(s)
- Reza Taheri-Ledari
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran16846-13114, Iran
| | - Nasibe Tarinsun
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran16846-13114, Iran
| | - Fateme Sadat Qazi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran16846-13114, Iran
| | - Leili Heidari
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran16846-13114, Iran
| | - Mahdi Saeidirad
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran16846-13114, Iran
| | - Fatemeh Ganjali
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran16846-13114, Iran
| | - Fatemeh Ansari
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran16846-13114, Iran
| | - Fereshte Hassanzadeh-Afruzi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran16846-13114, Iran
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran16846-13114, Iran
| |
Collapse
|
9
|
Alarcon R, Walter M, Paez M, Azócar MI. Ostwald Ripening and Antibacterial Activity of Silver Nanoparticles Capped by Anti-Inflammatory Ligands. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:428. [PMID: 36770389 PMCID: PMC9920692 DOI: 10.3390/nano13030428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
Silver nanoparticles (AgNPs) have been extensively studied during recent decades as antimicrobial agents. However, their stability and antibacterial activity over time have yet to be sufficiently studied. In this work, AgNPs were coated with different stabilizers (naproxen and diclofenac and 5-chlorosalicylic acid) in different concentrations. The suspensions of nanostructures were characterized by transmission electron microscopy, UV-Vis and FT-IR spectroscopic techniques. The antibacterial activity as a function of time was determined through microbiological studies against Staphylococcus aureus. The AgNPs show differences in stabilities when changing the coating agent and its concentration. This fact could be a consequence of the difference in the nature of the interaction between the stabilizer and the surface of the NPs, which were evaluated by FT-IR spectroscopy. In addition, an increase in the size of the nanoparticles was observed after 30 days, which could be related to an Ostwald maturation phenomenon. This result raises new questions about the role that stabilizers play on the surface of NPs, promoting size change in NPs. It is highly probable that the stabilizer functions as a growth controller of the NPs, thus determining an effect on their biological properties. Finally, the antibacterial activity was evaluated over time against the bacterium Staphylococcus aureus. The results showed that the protective or stabilizing agents can play an important role in the antibacterial capacity, the control of the size of the AgNPs and additionally in the stability over time.
Collapse
Affiliation(s)
| | | | | | - Manuel Ignacio Azócar
- Departamento de Quimica de los Materiales, Facultad de Quimica y Biologia, & SMAT-C, Universidad de Santiago de Chile, Av. Bernardo O’Higgins 3363, Estacion Central, Santiago 8990000, Chile
| |
Collapse
|
10
|
Eskandari F, Abbaszadegan A, Gholami A, Ghahramani Y. The antimicrobial efficacy of graphene oxide, double antibiotic paste, and their combination against Enterococcus faecalis in the root canal treatment. BMC Oral Health 2023; 23:20. [PMID: 36639767 PMCID: PMC9840282 DOI: 10.1186/s12903-023-02718-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 01/04/2023] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Inter-appointment medication of the root canals with appropriate intracanal medicaments has been advocated to improve root canal disinfection. Graphene oxide (GO) has shown promising antimicrobial activity against a wide range of microorganisms, besides the capability of carrying antibiotics. The current study aimed to compare the antibacterial activity of double antibiotic paste (DAP) and GO per se and in combination (GO-DAP) against Enterococcus faecalis (E. faecalis). METHODS A total of 108 extracted human mandibular premolars were contaminated with three-week-old E. faecalis and subjected to a primary microbial assessment. The samples were categorized into 15 groups concerning the intracanal medicament (DAP, GO, GO-DAP, and control) and contact time (1, 7, and 14 days). Then, the root canals were medicated, incubated, and resubjected to a secondary antimicrobial evaluation. The colony-forming units (CFU) were counted to calculate the antimicrobial efficacy. The data were analyzed via the Kruskal-Wallis test (α = 0.05). RESULTS GO-DAP was the only medicament that completely eradicated E. faecalis in 1 day. The percentage reduction of CFU/ml in the GO-DAP and DAP groups was higher than that in the GO group at all allocated contact times. Furthermore, a significant decrease of the CFU/ml was seen in the GO and DAP groups after 7 and 14 days of being medicated (P < 0.05). CONCLUSION Since GO-DAP improved root canal disinfection, this novel material can be introduced as a promising intracanal medicament against E. faecalis even in the short run.
Collapse
Affiliation(s)
- Fateme Eskandari
- School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abbas Abbaszadegan
- Department of Endodontics, School of Dentistry, Shiraz University of Medical Sciences, Ghasrdasht Street, Shiraz, 71956-15878, Iran
| | - Ahmad Gholami
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Yasamin Ghahramani
- Department of Endodontics, School of Dentistry, Shiraz University of Medical Sciences, Ghasrdasht Street, Shiraz, 71956-15878, Iran.
| |
Collapse
|
11
|
Ameera Rosli N, Yeit Haan T, Mahmoudi E. Optimisation for the Synthesis of Uniformly Dispersed Antimicrobial Ag/GO Nanohybrid Latex Film. J IND ENG CHEM 2023. [DOI: 10.1016/j.jiec.2023.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
12
|
Benalcázar J, Lasso ED, Ibarra-Barreno CM, Arcos Pareja JA, Vispo NS, Chacón-Torres JC, Briceño S. Photochemical Optimization of a Silver Nanoprism/Graphene Oxide Nanocomposite's Antibacterial Properties. ACS OMEGA 2022; 7:46745-46755. [PMID: 36570286 PMCID: PMC9773961 DOI: 10.1021/acsomega.2c05793] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/29/2022] [Indexed: 06/13/2023]
Abstract
Optimizing the antibacterial properties of nanocomposites is a fundamental challenge for many biomedical applications. Here, we study how we may optimize the antibacterial activity of narrow-sized anisotropically flat silver nanoprisms (S-NPs) on graphene oxide (GO) against Escherichia coli. To do so, we transformed silver nanoparticles (AgNPs) into S-NPs and anchored them to GO via a facile and low-cost photochemical reduction method by varying the irradiation wavelength during the synthesis process in the visible range (440 to 650 nm and white light). We performed a physicochemical characterization of the resulting S-NP/GO nanocomposite using a combination of UV-vis spectroscopy, X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Our results reveal a synergistic effect between the silver nanoprism and the oxygen functional groups of the GO surface. The antibacterial activity of the S-NPs/GO nanocomposite shows a significantly higher 53% inhibition efficiency after being irradiated with a 540 nm wavelength light source, compared to AgNPs with a 1% inhibition efficiency, respectively. In so doing, we have demonstrated the utility of a low-cost photoreduction method to control the structural properties of silver nanoprism on GO and, in this way, enhance the antibacterial properties of the nanocomposite. These results should be of great interest in a wide range of biomedical applications and medical devices.
Collapse
Affiliation(s)
- Joselyn Benalcázar
- Yachay
Tech University, School of Physical
Sciences and Nanotechnology, 100119Urcuquí, Ecuador
| | - Esteban D. Lasso
- Yachay
Tech University, School of Physical
Sciences and Nanotechnology, 100119Urcuquí, Ecuador
| | | | | | - Nelson Santiago Vispo
- Yachay
Tech University, School of Biological Sciences
and Engineering, 100119Urcuquí, Ecuador
| | - Julio C. Chacón-Torres
- Yachay
Tech University, School of Physical
Sciences and Nanotechnology, 100119Urcuquí, Ecuador
| | - Sarah Briceño
- Yachay
Tech University, School of Physical
Sciences and Nanotechnology, 100119Urcuquí, Ecuador
| |
Collapse
|
13
|
Silver nanoparticles based on Sulfobutylether-β-cyclodextrin functionalized graphene oxide nanocomposite: synthesized, characterization, and antibacterial activity. Colloids Surf B Biointerfaces 2022; 221:113009. [DOI: 10.1016/j.colsurfb.2022.113009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 10/28/2022] [Accepted: 11/06/2022] [Indexed: 11/11/2022]
|
14
|
Zheng M, Gao B, Zhang J, El-Din MG, Snyder SA, Wu M, Tang L. In-situ chemical attenuation of pharmaceutically active compounds using CaO 2: Influencing factors, mechanistic modeling, and cooperative inactivation of water-borne microbial pathogens. ENVIRONMENTAL RESEARCH 2022; 212:113531. [PMID: 35613632 DOI: 10.1016/j.envres.2022.113531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/13/2022] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
Water polluted by pharmaceutically active compounds (PhACs) and water-borne pathogens urgently need to develop eco-friendly and advanced water treatment techniques. This paper evaluates the potential of using calcium peroxide (CaO2), a safe and biocompatible oxidant both PhACs (thiamphenicol, florfenicol, carbamazepine, phenobarbital, and primidone) and pathogens (Escherichia coli, Staphylococcus aureus) in water. This paper evaluates the potential of using calcium peroxide (CaO2) as a safe and biocompatible oxidant to remove both PhACs (thiamphenicol, florfenicol, carbamazepine, phenobarbital, and primidone) and pathogens (Escherichia coli, Staphylococcus aureus) in water. The increased CaO2 dosage increased efficiencies of PhACs attenuation and pathogens inactivation, and both exhibited pseudo-first-order degradation kinetics (R2 > 0.90). PhACs attenuation were mainly via oxidization (H2O2, •OH/O•-, and O2•-) and alkaline hydrolysis (OH-) from CaO2. Moreover, concentrations of these reactive species and their contributions to PhACs attenuation were quantified, and mechanistic model was established and validated. Besides, possible transformation pathways of target PhACs except primidone were proposed. As for pathogen indicators, the suitable inactivation dosage of CaO2 was 0.1 g L-1. The oxidability (18-64%) and alkalinity (82-36%) generated from CaO2 played vital roles in pathogen inactivation. In addition, CaO2 at 0.01-0.1 g L-1 can be applied in remediation of SW contaminated by PhACs and pathogenic bacteria, which can degrade target PhACs with efficiencies of 21-100% under 0.01 g L-1 CaO2, and inactivate 100% of test bacteria under 0.1 g L-1 CaO2. In short, capability of CaO2 to remove target PhACs and microbial pathogens reveals its potential to be used as a representative technology for the advanced treatment of waters contaminated by organic compounds and microbial pathogens.
Collapse
Affiliation(s)
- Ming Zheng
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China; Department of Civil & Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada; Shunde Graduate School of University of Science and Technology Beijing, Foshan City, Guangdong, 528399, China.
| | - Bing Gao
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China.
| | - Jie Zhang
- School of Chemistry and Materials Engineering, Huizhou University, Huizhou, Guangdong, 516007, China.
| | - Mohamed Gamal El-Din
- Department of Civil & Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada.
| | - Shane A Snyder
- Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore, 637141, Singapore.
| | - Minghong Wu
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China.
| | - Liang Tang
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
15
|
Krishnaraj C, Kaliannagounder VK, Rajan R, Ramesh T, Kim CS, Park CH, Liu B, Yun SI. Silver nanoparticles decorated reduced graphene oxide: Eco-friendly synthesis, characterization, biological activities and embryo toxicity studies. ENVIRONMENTAL RESEARCH 2022; 210:112864. [PMID: 35149108 DOI: 10.1016/j.envres.2022.112864] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/19/2022] [Accepted: 01/27/2022] [Indexed: 05/27/2023]
Abstract
This study was aimed on the eco-friendly synthesis of silver nanoparticles (AgNPs), reduced graphene oxide (rGO) and AgNPs decorated rGO (rGO/AgNPs) nanocomposite and appraisal of their bioactivities and toxicity. As-prepared nanomaterials were established through high resolution X-ray diffraction (HR-XRD), high resolution transmission electron microscopy (HR-TEM), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, UV-Vis. spectroscopy and Fourier transform infrared spectroscopy (FT-IR). In this study, leaves extract, graphene oxide (GO) and rGO did not show antibacterial and anticancer activities; no significant embryo toxicity was recorded. On the other hand, AgNPs displayed good antibacterial and anticancer activities; however, higher toxic effects were observed even at the lowest test concentration (0.7 μg/ml). In case of rGO/AgNPs nanocomposite, significant antibacterial activity together with low cytotoxicity was noticed. Interestingly, the embryo toxicity of AgNPs was significantly reduced by rGO, implying the biocompatible nature of as-synthesized nanocomposite. Taken together, these results clearly suggest that rGO/AgNPs nano hybrid composite could be developed as the promising biomaterial for future biomedical applications.
Collapse
Affiliation(s)
- Chandran Krishnaraj
- Department of Food Science and Technology, College of Agriculture and Life Sciences, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea; Department of Agricultural Convergence Technology, College of Agriculture and Life Science, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea.
| | - Vignesh Krishnamoorthi Kaliannagounder
- Department of Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea; Department of Bionanosystem Engineering, Graduate School, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea
| | - Ramachandran Rajan
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo, 255000, Shandong, China
| | - Thiyagarajan Ramesh
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Cheol Sang Kim
- Department of Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea; Department of Bionanosystem Engineering, Graduate School, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea
| | - Chan Hee Park
- Department of Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea; Mechanical Design Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea
| | - Bo Liu
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo, 255000, Shandong, China
| | - Soon-Il Yun
- Department of Food Science and Technology, College of Agriculture and Life Sciences, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea; Department of Agricultural Convergence Technology, College of Agriculture and Life Science, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea.
| |
Collapse
|
16
|
Rossa V, Monteiro Ferreira LE, da Costa Vasconcelos S, Tai Shimabukuro ET, Gomes da Costa Madriaga V, Carvalho AP, Castellã Pergher SB, de Carvalho da Silva F, Ferreira VF, Conte Junior CA, de Melo Lima T. Nanocomposites based on the graphene family for food packaging: historical perspective, preparation methods, and properties. RSC Adv 2022; 12:14084-14111. [PMID: 35558848 PMCID: PMC9094098 DOI: 10.1039/d2ra00912a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 05/04/2022] [Indexed: 11/21/2022] Open
Abstract
Nanotechnology experienced a great technological advance after the discovery of the graphene family (graphene - Gr, graphene oxide - GO, and reduced graphene oxide-rGO). Based on the excellent properties of these materials, it is possible to develop novel polymeric nanocomposites for several applications in our daily routine. One of the most prominent applications is for food packaging, offering nanocomposites with improved thermal, mechanical, anti-microbial, and barrier properties against gas and water vapor. This paper reviewed food packaging from its inception to the present day, with the development of more resistant and intelligent packaging. Herein, the most common combinations of polymeric matrices (derived from non-renewable and renewable sources) with Gr, GO, and rGO and their typical preparation methods are presented. Besides, the interactions present in these nanocomposites will be discussed in detail, and their final properties will be thoroughly analyzed as a function of the preparation technique and graphene family-matrix combinations.
Collapse
Affiliation(s)
- Vinicius Rossa
- Departamento de Química Inorgânica, Campus Do Valonguinho, Instituto de Química, Universidade Federal Fluminense - IQ-UFF 24020-150 Niterói RJ Brazil
| | - Luanne Ester Monteiro Ferreira
- Departamento de Química Inorgânica, Campus Do Valonguinho, Instituto de Química, Universidade Federal Fluminense - IQ-UFF 24020-150 Niterói RJ Brazil
| | - Sancler da Costa Vasconcelos
- Departamento de Química Inorgânica, Campus Do Valonguinho, Instituto de Química, Universidade Federal Fluminense - IQ-UFF 24020-150 Niterói RJ Brazil
| | - Eric Thomas Tai Shimabukuro
- Departamento de Química Inorgânica, Campus Do Valonguinho, Instituto de Química, Universidade Federal Fluminense - IQ-UFF 24020-150 Niterói RJ Brazil
| | - Vinicius Gomes da Costa Madriaga
- Departamento de Química Inorgânica, Campus Do Valonguinho, Instituto de Química, Universidade Federal Fluminense - IQ-UFF 24020-150 Niterói RJ Brazil
| | - Anna Paula Carvalho
- Food Science Program, Instituto de Química, Universidade Federal Do Rio de Janeiro 21941-909 Rio de Janeiro Brazil
| | - Sibele Berenice Castellã Pergher
- Laboratory Molecular Sieves - LABPEMOL, Chemistry Institute - Federal University of Rio Grande do Norte - IQ-UFRN Natal RN Brazil
| | - Fernando de Carvalho da Silva
- Departamento de Química Orgânica, Campus Do Valonguinho, Instituto de Química, Universidade Federal Fluminense 24020-150 Niterói RJ Brazil
| | - Vitor Francisco Ferreira
- Departamento de Tecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal Fluminense 24241-000 Niterói RJ Brazil
| | - Carlos Adam Conte Junior
- Food Science Program, Instituto de Química, Universidade Federal Do Rio de Janeiro 21941-909 Rio de Janeiro Brazil
| | - Thiago de Melo Lima
- Departamento de Química Inorgânica, Campus Do Valonguinho, Instituto de Química, Universidade Federal Fluminense - IQ-UFF 24020-150 Niterói RJ Brazil
| |
Collapse
|
17
|
Nanocomposites of Graphene Oxide-Silver Nanoparticles for Enhanced Antibacterial Activity: Mechanism of Action and Medical Textiles Coating. MATERIALS 2022; 15:ma15093122. [PMID: 35591457 PMCID: PMC9100992 DOI: 10.3390/ma15093122] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/02/2022] [Accepted: 04/24/2022] [Indexed: 02/01/2023]
Abstract
The resistance of microorganisms to antibiotics is a crucial problem for which the application of nanomaterials is among a growing number of solutions. The aim of the study was to create a nanocomposite (composed of graphene oxide and silver nanoparticles) with a precise mode of antibacterial action: what enables textiles to be coated in order to exhibit antibacterial properties. A characterization of nanomaterials (silver nanoparticles and graphene oxide) by size distribution, zeta potential measurements, TEM visualization and FT-IR was performed. The biological studies of the nanocomposite and its components included the toxicity effect toward two pathogenic bacteria species, namely Pseudomonas aeruginosa and Staphylococcus aureus, interaction of nanomaterials with the outer layer of microorganisms, and the generation of reactive oxygen species and lipid peroxidation. Afterwards, antibacterial studies of the nanocomposite’s coated textiles (cotton, interlining fabric, polypropylene and silk) as well as studies of the general toxicity towards a chicken embryo chorioallantoic membrane model were conducted. The toxicity of the nanocomposite used was higher than its components applied separately (zones of growth inhibition for P. aeruginosa for the final selected concentrations were as follows: silver nanoparticles 21 ± 0.7 mm, graphene oxide 14 ± 1.9 mm and nanocomposite 23 ± 1.6 mm; and for S. aureus were: silver nanoparticles 27 ± 3.8 mm, graphene oxide 14 ± 2.1 mm, and nanocomposite 28 ± 0.4 mm. The viability of P. aeruginosa and S. aureus after treatment with selected GO-Ag decreased to 27% and 31%, respectively, compared to AgNPs, when the viability of both species was 31% and 34%, accordingly). The coated textiles showed encouraging antibacterial features without general toxicity towards the chicken embryo chorioallantoic membrane model. We demonstrated that graphene oxide might constitute a functional platform for silver nanoparticles, improving the antibacterial properties of bare silver. Due to the application of the nanocomposite, the textiles showed promising antibacterial features with a low general toxicity, thereby creating a wide possibility for them to be used in practice.
Collapse
|
18
|
Prismatic Silver Nanoparticles Decorated on Graphene Oxide Sheets for Superior Antibacterial Activity. Pharmaceutics 2022; 14:pharmaceutics14050924. [PMID: 35631509 PMCID: PMC9147939 DOI: 10.3390/pharmaceutics14050924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/14/2022] [Accepted: 04/20/2022] [Indexed: 12/10/2022] Open
Abstract
Spherical silver nanoparticles (Ag NPs) and silver nanoprisms (Ag NPrsms) were synthesized and decorated on graphene oxide (GO) nanosheets. The Ag contents were 29% and 23% in the GO−Ag NPs and GO−Ag NPrsms, respectively. The Ag NPrsms exhibited stronger (111) crystal signal than Ag NPs. The GO−Ag NPrsms exhibited higher Ag (I) content (75.6%) than GO-Ag NPs (69.9%). Increasing the nanomaterial concentration from 25 to 100 µg mL−1 improved the bactericidal efficiency, and the antibacterial potency was in the order: GO−Ag NPrsms > GO−Ag NPs > Ag NPrsms > Ag NPs > GO. Gram-positive Staphylococcus aureus (S. aureus) was more vulnerable than Gram-negative Escherichia coli (E. coli) upon exposure to these nanomaterials. The GO−Ag NPrsms demonstrated a complete (100%) bactericidal effect against S. aureus at a concentration of 100 µg mL−1. The GO−Ag composites outperformed those of Ag or GO due to the synergistic effect of bacteriostatic Ag particles and GO affinity toward bacteria. The levels of reactive oxygen species produced in the bacteria−nanomaterial mixtures were highly correlated to the antibacterial efficacy values. The GO−Ag NPrsms are promising as bactericidal agents to suppress biofilm formation and inhibit bacterial infection.
Collapse
|
19
|
Raul PK, Thakuria A, Das B, Devi RR, Tiwari G, Yellappa C, Kamboj DV. Carbon Nanostructures As Antibacterials and Active Food-Packaging Materials: A Review. ACS OMEGA 2022; 7:11555-11559. [PMID: 35449978 PMCID: PMC9016856 DOI: 10.1021/acsomega.2c00848] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/15/2022] [Indexed: 05/08/2023]
Abstract
In this article, we discuss carbon nanoparticles for application as antibacterials and food-packaging materials. The use of petroleum-derived products, synthetic materials, ceramics, wax, etc. in the food-packaging industry emits polluted gas and wastewater, which leads to environmental pollution. To overcome the problems faced by the industry to preserve and package food, carbon nanomaterials may be good alternatives to enhance the shelf life of food without affecting the nutrients. Carbon atoms bond with each other in diverse ways to form many allotropes, resulting in a variety of carbon nanomaterials (CNMs). CNMs include zero-dimensional carbon dots, graphene quantum dots, 1-dimensional carbon nanotubes, 2-dimensional pristine graphene, graphene oxide, reduced graphene oxide, and other derivatives of graphene. Most of the carbon-based nanomaterials are synthesized through a green process that is widely used in the field of food science and technology, and they are used mostly as antibacterial agents and as a biofiller in the development of active food-packaging materials. Carbon nanomaterials (CNMs), viz., carbon dots, graphene, activated carbon-based nanocomposites, carbon nanotubes, etc., are found to be environmentally benign and better materials for food packaging. With antibacterial efficiency, they support food preservation and other applications as well. Thus, carbon nanostructures are found to be applicable as superior materials for food preservation and packaging in modern industry.
Collapse
Affiliation(s)
- Prasanta K. Raul
- Defence
Research Laboratory, Defence Research and
Development Organisation, Post bag no. 2, Tezpur, Assam, India 784001
- E-mail:
| | | | - Bodhaditya Das
- Defence
Research Laboratory, Defence Research and
Development Organisation, Post bag no. 2, Tezpur, Assam, India 784001
| | - Rashmi R Devi
- Defence
Research Laboratory, Defence Research and
Development Organisation, Post bag no. 2, Tezpur, Assam, India 784001
| | - Gaurav Tiwari
- Defence
Research Laboratory, Defence Research and
Development Organisation, Post bag no. 2, Tezpur, Assam, India 784001
| | - Chidugundi Yellappa
- Defence
Research Laboratory, Defence Research and
Development Organisation, Post bag no. 2, Tezpur, Assam, India 784001
| | - Dev Vrat Kamboj
- Defence
Research Laboratory, Defence Research and
Development Organisation, Post bag no. 2, Tezpur, Assam, India 784001
| |
Collapse
|
20
|
Hochvaldová L, Panáček D, Válková L, Prucek R, Kohlová V, Večeřová R, Kolář M, Kvítek L, Panáček A. Restoration of antibacterial activity of inactive antibiotics via combined treatment with a cyanographene/Ag nanohybrid. Sci Rep 2022; 12:5222. [PMID: 35338239 PMCID: PMC8956642 DOI: 10.1038/s41598-022-09294-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 03/14/2022] [Indexed: 11/18/2022] Open
Abstract
The number of antibiotic-resistant bacterial strains is increasing due to the excessive and inappropriate use of antibiotics, which are therefore becoming ineffective. Here, we report an effective way of enhancing and restoring the antibacterial activity of inactive antibiotics by applying them together with a cyanographene/Ag nanohybrid, a nanomaterial that is applied for the first time for restoring the antibacterial activity of antibiotics. The cyanographene/Ag nanohybrid was synthesized by chemical reduction of a precursor material in which silver cations are coordinated on a cyanographene sheet. The antibacterial efficiency of the combined treatment was evaluated by determining fractional inhibitory concentrations (FIC) for antibiotics with different modes of action (gentamicin, ceftazidime, ciprofloxacin, and colistin) against the strains Escherichia coli, Pseudomonas aeruginosa, and Enterobacter kobei with different resistance mechanisms. Synergistic and partial synergistic effects against multiresistant strains were demonstrated for all of these antibiotics except ciprofloxacin, which exhibited an additive effect. The lowest average FICs equal to 0.29 and 0.39 were obtained for colistin against E. kobei and for gentamicin against E. coli, respectively. More importantly, we have experimentally confirmed for the first time, that interaction between the antibiotic's mode of action and the mechanism of bacterial resistance strongly influenced the combined treatment’s efficacy.
Collapse
Affiliation(s)
- Lucie Hochvaldová
- Department of Physical Chemistry, Faculty of Science, Palacký University in Olomouc, 17. listopadu 12, 771 46, Olomouc, Czech Republic
| | - David Panáček
- Department of Physical Chemistry, Faculty of Science, Palacký University in Olomouc, 17. listopadu 12, 771 46, Olomouc, Czech Republic.,Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University in Olomouc, Křížkovského 511/8, 779 00, Olomouc, Czech Republic
| | - Lucie Válková
- Department of Physical Chemistry, Faculty of Science, Palacký University in Olomouc, 17. listopadu 12, 771 46, Olomouc, Czech Republic
| | - Robert Prucek
- Department of Physical Chemistry, Faculty of Science, Palacký University in Olomouc, 17. listopadu 12, 771 46, Olomouc, Czech Republic
| | - Věra Kohlová
- Department of Physical Chemistry, Faculty of Science, Palacký University in Olomouc, 17. listopadu 12, 771 46, Olomouc, Czech Republic
| | - Renata Večeřová
- Department of Microbiology, Faculty of Medicine and Dentistry, Palacký University in Olomouc, Hněvotínská 5, 775 15, Olomouc, Czech Republic
| | - Milan Kolář
- Department of Microbiology, Faculty of Medicine and Dentistry, Palacký University in Olomouc, Hněvotínská 5, 775 15, Olomouc, Czech Republic
| | - Libor Kvítek
- Department of Physical Chemistry, Faculty of Science, Palacký University in Olomouc, 17. listopadu 12, 771 46, Olomouc, Czech Republic
| | - Aleš Panáček
- Department of Physical Chemistry, Faculty of Science, Palacký University in Olomouc, 17. listopadu 12, 771 46, Olomouc, Czech Republic.
| |
Collapse
|
21
|
Cao T, Tong W, Feng F, Zhang S, Li Y, Liang S, Wang X, Chen Z, Zhang Y. H 2O 2 generation enhancement by ultrasonic nebulisation with a zinc layer for spray disinfection. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2022. [PMID: 34899039 DOI: 10.1016/j.cej.2022.134886] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
With the outbreak of COVID-19, microbial pollution has gained increasing attention as a threat to human health. Consequently, many research efforts are being devoted to the development of efficient disinfection methods. In this context, hydrogen peroxide (H2O2) stands out as a green and broad-spectrum disinfectant, which can be produced and sprayed in the air directly by cavitation in ultrasonic nebulisation. However, the yield of H2O2 obtained by ultrasonic nebulisation is too low to satisfy the requirements for disinfection by spraying and needs to be improved to achieve efficient disinfection of the air and objects. Herein, we report the introduction of a zinc layer into an ultrasonic nebuliser to improve the production of H2O2 and generate additional Zn2+ by self-corrosion, achieving good disinfecting performance. Specifically, a zinc layer was assembled on the oscillator plate of a commercial ultrasonic nebuliser, resulting in a 21-fold increase in the yield of H2O2 and the production of 4.75 μg/mL Zn2+ in the spraying droplets. When the generated water mist was used to treat a bottle polluted with Escherichia coli for 30 min, the sterilisation rate reached 93.53%. This ultrasonic nebulisation using a functional zinc layer successfully enhanced the production of H2O2 while generating Zn2+, providing a platform for the development of new methodologies of spray disinfection.
Collapse
Affiliation(s)
- Tingting Cao
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| | - Wangshu Tong
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| | - Feng Feng
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| | - Shuting Zhang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| | - Yanan Li
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| | - Shaojie Liang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| | - Xin Wang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| | - Zhensheng Chen
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| | - Yihe Zhang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| |
Collapse
|
22
|
Cao T, Tong W, Feng F, Zhang S, Li Y, Liang S, Wang X, Chen Z, Zhang Y. H 2O 2 generation enhancement by ultrasonic nebulisation with a zinc layer for spray disinfection. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2022; 431:134005. [PMID: 34899039 PMCID: PMC8645284 DOI: 10.1016/j.cej.2021.134005] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 11/17/2021] [Accepted: 12/01/2021] [Indexed: 05/27/2023]
Abstract
With the outbreak of COVID-19, microbial pollution has gained increasing attention as a threat to human health. Consequently, many research efforts are being devoted to the development of efficient disinfection methods. In this context, hydrogen peroxide (H2O2) stands out as a green and broad-spectrum disinfectant, which can be produced and sprayed in the air directly by cavitation in ultrasonic nebulisation. However, the yield of H2O2 obtained by ultrasonic nebulisation is too low to satisfy the requirements for disinfection by spraying and needs to be improved to achieve efficient disinfection of the air and objects. Herein, we report the introduction of a zinc layer into an ultrasonic nebuliser to improve the production of H2O2 and generate additional Zn2+ by self-corrosion, achieving good disinfecting performance. Specifically, a zinc layer was assembled on the oscillator plate of a commercial ultrasonic nebuliser, resulting in a 21-fold increase in the yield of H2O2 and the production of 4.75 μg/mL Zn2+ in the spraying droplets. When the generated water mist was used to treat a bottle polluted with Escherichia coli for 30 min, the sterilisation rate reached 93.53%. This ultrasonic nebulisation using a functional zinc layer successfully enhanced the production of H2O2 while generating Zn2+, providing a platform for the development of new methodologies of spray disinfection.
Collapse
Affiliation(s)
- Tingting Cao
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| | - Wangshu Tong
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| | - Feng Feng
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| | - Shuting Zhang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| | - Yanan Li
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| | - Shaojie Liang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| | - Xin Wang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| | - Zhensheng Chen
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| | - Yihe Zhang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| |
Collapse
|
23
|
Shaheen S, Iqbal A, Ikram M, Ul-Ain K, Naz S, Ul-Hamid A, Shahzadi A, Haider A, Nabgan W, Haider J. Effective Disposal of Methylene Blue and Bactericidal Benefits of Using GO-Doped MnO 2 Nanorods Synthesized through One-Pot Synthesis. ACS OMEGA 2021; 6:24866-24878. [PMID: 34604668 PMCID: PMC8482489 DOI: 10.1021/acsomega.1c03723] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/09/2021] [Indexed: 05/28/2023]
Abstract
Graphene oxide (GO)-doped MnO2 nanorods loaded with 2, 4, and 6% GO were synthesized via the chemical precipitation route at room temperature. The aim of this work was to determine the catalytic and bactericidal activities of prepared nanocomposites. Structural, optical, and morphological properties as well as elemental composition of samples were investigated with advanced techniques such as X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, UV-visible (vis) spectroscopy, photoluminescence (PL), energy-dispersive spectrometry (EDS), and high-resolution transmission electron microscopy (HR-TEM). XRD measurements confirmed the monoclinic structure of MnO2. Vibrational mode and rotational mode of functional groups (O-H, C=C, C-O, and Mn-O) were evaluated using FTIR results. Band gap energy and blueshift in the absorption spectra of MnO2 and GO-doped MnO2 were identified with UV-vis spectroscopy. Emission spectra were attained using PL spectroscopy, whereas elemental composition of prepared materials was recorded with scanning electron microscopy (SEM)-EDS. Moreover, HR-TEM micrographs of doped and undoped MnO2 revealed elongated nanorod-like structure. Efficient degradation of methylene blue enhanced the catalytic activity in the presence of a reducing agent (NaBH4); this was attributed to the implantation of GO on MnO2 nanorods. Furthermore, substantial inhibition areas were measured for Escherichia coli (EC) ranging 2.10-2.85 mm and 2.50-3.15 mm at decreased and increased levels for doped MnO2 nanorods and 3.05-4.25 mm and 4.20-5.15 mm for both attentions against SA, respectively. In silico molecular docking studies suggested the inhibition of FabH and DNA gyrase of E. coli and Staphylococcus aureus as a possible mechanism behind the bactericidal activity of MnO2 and MnO2-doped GO nanoparticles (NPs).
Collapse
Affiliation(s)
- Saira Shaheen
- Department
of Physics, School of Science, University
of Management and Technology, Lahore 54000, Pakistan
| | - Azhar Iqbal
- Department
of Physics, School of Science, University
of Management and Technology, Lahore 54000, Pakistan
| | - Muhammad Ikram
- Solar
Cell Applications Research Lab, Government
College University Lahore, Lahore 54000, Pakistan
| | - Kashaf Ul-Ain
- Department
of Physics, RICAS, Riphah International
University, Lahore Campus, Lahore 54000, Pakistan
| | - Sadia Naz
- Tianjin
Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Anwar Ul-Hamid
- Core
Research Facilities, Research Institute, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | - Anum Shahzadi
- Punjab University
College of Pharmacy, University of the Punjab, Lahore 54000, Pakistan
| | - Ali Haider
- Department
of Clinical Medicine and Surgery, University
of Veterinary and Animal Sciences, Lahore 54000, Punjab, Pakistan
| | - Walid Nabgan
- School
of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Junaid Haider
- Tianjin
Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| |
Collapse
|
24
|
Jang W, Kim HS, Alam K, Ji MK, Cho HS, Lim HP. Direct-Deposited Graphene Oxide on Dental Implants for Antimicrobial Activities and Osteogenesis. Int J Nanomedicine 2021; 16:5745-5754. [PMID: 34471350 PMCID: PMC8404087 DOI: 10.2147/ijn.s319569] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/29/2021] [Indexed: 12/05/2022] Open
Abstract
Objective To determine the effects of graphene oxide (GO) deposition (on a zirconia surface) on bacterial adhesion and osteoblast activation. Methods An atmospheric pressure plasma generator (PGS-300) was used to coat Ar/CH4 mixed gas onto zirconia specimens (15-mm diameter × 2.5-mm thick disks) at a rate of 10 L/min and 240 V. Zirconia specimens were divided into two groups: uncoated (control; Zr) group and GO-coated (Zr-GO) group. Surface characteristics and element structures of each specimen were evaluated by field emission scanning electron microscope (FE-SEM), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and contact angle. Additionally, crystal violet staining was performed to assess the adhesion of Streptococcus mutans. WST-8 and ALP (Alkaline phosphatase) assays were conducted to evaluate MC3T3-E1 osteoblast adhesion, proliferation, and differentiation. Statistical analysis was calculated by the Mann–Whitney U-test. Results FE–SEM and Raman spectroscopy demonstrated effective GO deposition on the zirconia surface in Zr-GO. The attachment and biofilm formation of S. mutans was significantly reduced in Zr-GO compared with that of Zr (P < 0.05). While no significant differences in cell attachment of MC3T3-1 were observed, both proliferation and differentiation were increased in Zr-GO as compared with that of Zr (P < 0.05). Significance GO-coated zirconia inhibited the attachment of S. mutans and stimulated proliferation and differentiation of osteoblasts. Therefore, GO-coated zirconia can prevent peri-implantitis by inhibiting bacterial adhesion. Moreover, its osteogenic ability can increase bone adhesion and success rate of implants.
Collapse
Affiliation(s)
- WooHyung Jang
- Department of Prosthodontics, School of Dentistry, Chonnam National University, Gwangju, Korea
| | - Hee-Seon Kim
- Department of Prosthodontics, School of Dentistry, Chonnam National University, Gwangju, Korea
| | - Khurshed Alam
- Department of Materials Science and Engineering, Chonnam National University, Gwangju, 61186, Korea
| | - Min-Kyung Ji
- Optoelectronics Convergence Research Center, Chonnam National University, Gwangju, 61186, Korea
| | - Hoon-Sung Cho
- Department of Materials Science and Engineering, Chonnam National University, Gwangju, 61186, Korea
| | - Hyun-Pil Lim
- Department of Prosthodontics, School of Dentistry, Chonnam National University, Gwangju, Korea
| |
Collapse
|
25
|
Gholivand K, Rahimzadeh Dashtaki M, Alavinasab Ardebili SA, Mohammadpour M, Ebrahimi Valmoozi AA. New graphene oxide-phosphoramide nanocomposites as practical tools for biological applications including anti-bacteria, anti-fungi and anti-protein. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
26
|
Wang M, Li Z, Zhang Y, Li Y, Li N, Huang D, Xu B. Interaction with teichoic acids contributes to highly effective antibacterial activity of graphene oxide on Gram-positive bacteria. JOURNAL OF HAZARDOUS MATERIALS 2021; 412:125333. [PMID: 33951879 DOI: 10.1016/j.jhazmat.2021.125333] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 05/20/2023]
Abstract
Graphene oxide (GO) has high-efficient antibacterial activity to diverse pathogenic bacteria. However, the detailed antibacterial mechanism of GO is not fully clear. Herein the antibacterial properties of GO against model Gram-positive (Gram+) (Staphylococcus aureus and Staphylococcus epidermidis) and Gram-negative (Gram-) bacteria (Pseudomonas aeruginosa and Escherichia coli) were compared by plate count method. Results showed that 4 mg/L of GO induced the mortality of Gram+ and Gram- bacteria by > 99% and < 25%, respectively. GO had greater adsorption affinity to teichoic acids, the unique components existing in the cell wall of Gram+ bacteria, mainly via π-π interaction. The adsorption efficiency of teichoic acids was 27 times higher than that of peptidoglycan when they were simultaneously exposed to 100 mg/L GO. The superior adsorption of teichoic acids onto GO increased one order of magnitude of atlA expression, the autolysin related gene. As a result, these accelerated bacterial death by hydrolyzing peptidoglycan in cell walls. Exogenous addition of 50 mg/L teichoic acids could impair 4-5 fold of antibacterial activity of GO against S. aureus. These new findings illuminate the antibacterial mechanism of GO against Gram+ bacteria, which paves the way for the further application of graphene-based materials in water disinfection and pathogen control.
Collapse
Affiliation(s)
- Meizhen Wang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou 310012, China
| | - Zhangqiang Li
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou 310012, China
| | - Yunyun Zhang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Yue Li
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Na Li
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Dan Huang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou 310012, China.
| | - Baile Xu
- Institut für Biologie, Freie Universität Berlin, Berlin D-14195, Germany
| |
Collapse
|
27
|
Abstract
OBJECTIVE Environmental surfaces may serve as potential reservoirs for nosocomial pathogens and facilitate transmissions via contact depending on its tenacity. This study provides data on survival kinetics of the most important nosocomial bacteria on a panel of commonly used surfaces. Type strains of S. aureus, K. pneumoniae, P. aeruginosa, A. baumannii, S. marcescens, E. faecium, E. coli, and E. cloacae were suspended in 0.9% NaCl solution at a McFarland of 1 and got then plated via cotton swabs either on glass, polyvinyl chloride, stainless steel, or aluminum. Surfaces were stored at regular ambient temperature and humidity to simulate routine daycare conditions. Sampling was performed by contact plates for a time period of four weeks. RESULTS The longest survival was observed for A. baumannii and E. faecium on all materials (at least four weeks). S. aureus remained viable for at least one week. Gram negative species other than A. baumannii were usually inactivated in less than two days. Nosocomial transmission of the above mentioned bacteria may easily occur if no appropriate infection control measures are applied on a regular daily basis. This might be of particular importance when dealing with outbreaks of A. baumannii and E. faecium.
Collapse
|
28
|
Kumar SR, Hsu YH, Vi TTT, Pang JHS, Lee YC, Hsieh CH, Lue SJ. Graphene Oxide-Induced Protein Conformational Change in Nasopharyngeal Carcinoma Cells: A Joint Research on Cytotoxicity and Photon Therapy. MATERIALS (BASEL, SWITZERLAND) 2021; 14:1396. [PMID: 33805683 PMCID: PMC8001416 DOI: 10.3390/ma14061396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/05/2021] [Accepted: 03/10/2021] [Indexed: 11/16/2022]
Abstract
The objectives of this work aim to investigate the interaction and cytotoxicity between nanometric graphene oxide (GO) and nasopharyngeal carcinoma cells (NPC-BM1), and possible application in photon therapy. GO nanosheets were obtained in the size range of 100-200 nm, with a negative surface charge. This nanometric GO exhibited a limited (<10%) cytotoxicity effect and no significant dimensional change on NPC-BM1 cells in the tested GO concentration range (0.1-10 µg·mL-1). However, the secondary protein structure was modified in the GO-treated NPC-BM1 cells, as determined through synchrotron radiation-based Fourier transform infrared microspectroscopy (SR-FTIRM) mapping. To further study the cellular response of GO-treated NPC-BM1 cancer cells at low GO concentration (0.1 µg·mL-1), photon radiation was applied with increasing doses, ranging from 2 to 8 Gy. The low radiation energy (<5 Gy) did not cause significant cell mortality (5-7%). Increasing the radiation energy to 6-8 Gy accelerated cell apoptosis rate, especially in the GO-treated NPC-BM1 cells (27%). This necrosis may be due to GO-induced conformational changes in protein and DNA/RNA, resulting in cell vulnerability under photon radiation. The findings of the present work demonstrate the potential biological applicability of nanometric GO in different areas, such as targeted drug delivery, cellular imaging, and radiotherapy, etc.
Collapse
Affiliation(s)
- Selvaraj Rajesh Kumar
- Department of Chemical and Materials Engineering, Chang Gung University, Wenhua 1st Road, Guishan, Taoyuan 333, Taiwan; (S.R.K.); (T.T.T.V.)
| | - Ya-Hui Hsu
- Graduate Institute of Clinical Medical Sciences, Chang Gung University, Wenhua 1st Road, Guishan, Taoyuan 333, Taiwan; (Y.-H.H.); (J.-H.S.P.)
| | - Truong Thi Tuong Vi
- Department of Chemical and Materials Engineering, Chang Gung University, Wenhua 1st Road, Guishan, Taoyuan 333, Taiwan; (S.R.K.); (T.T.T.V.)
| | - Jong-Hwei Su Pang
- Graduate Institute of Clinical Medical Sciences, Chang Gung University, Wenhua 1st Road, Guishan, Taoyuan 333, Taiwan; (Y.-H.H.); (J.-H.S.P.)
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, Dinghu Road, Guishan, Taoyuan 333, Taiwan
| | - Yao-Chang Lee
- National Synchrotron Radiation Research Center, Hsin Ann Road, Hsinchu City 300, Taiwan;
| | - Chia-Hsun Hsieh
- Division of Hematology-Oncology, Department of Internal Medicine, New Taipei Municipal TuCheng Hospital, Jincheng Road, New Taipei City 236, Taiwan
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Fusing Street, Guishan, Taoyuan 333, Taiwan
- School of Medicine, Chang Gung University, Wenhua 1st Road, Guishan, Taoyuan 333, Taiwan
| | - Shingjiang Jessie Lue
- Department of Chemical and Materials Engineering, Chang Gung University, Wenhua 1st Road, Guishan, Taoyuan 333, Taiwan; (S.R.K.); (T.T.T.V.)
- Division of Join Reconstruction, Department of Orthopedics, Chang Gung Medical Center at Linkou, Fusing Street, Guishan, Taoyuan 333, Taiwan
- Department of Safety, Health and Environment Engineering, Ming-Chi University of Technology, Gongzhuan Road, Taishan, New Taipei City 243, Taiwan
- Center for Environmental Sustainability and Human Health, Ming-Chi University of Technology, Gongzhuan Road, Taishan, New Taipei City 243, Taiwan
| |
Collapse
|
29
|
Liu X, Cheng Z, Wen H, Zhang S, Chen M, Wang J. Hybrids of Upconversion Nanoparticles and Silver Nanoclusters Ensure Superior Bactericidal Capability via Combined Sterilization. ACS APPLIED MATERIALS & INTERFACES 2020; 12:51285-51292. [PMID: 33151062 DOI: 10.1021/acsami.0c15710] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
It is highly desired to develop new antibacterial agents with superior bactericidal efficiency for minimizing the damage to biological cells. We developed a combined antibacterial nanohybrid exhibiting a superb bactericidal effect and excellent biocompatibility by integrating upconversion nanoparticles (UCNPs) with silver nanoclusters (AgNCs). UCNPs and methylene blue (MB) molecules were encapsulated with silica microspheres via microemulsion, with MB as the photosensitizer. Silver ions (Ag+) were reduced by amino groups on the surface of silica spheres, wherein silver nanoclusters (AgNCs) were formed in situ to produce the nanohybrid, UCNPs@SiO2(MB)@AgNCs. UCNPs emit visible light at 655 nm under excitation by near-infrared radiation (NIR, 980 nm). MB absorbs the emission from UCNPs to generate toxic singlet oxygen (1O2), which leads to the apoptosis of bacteria cells. Meanwhile, silver ions released from AgNCs destroy the bacteria membrane structure. Upon NIR irradiation at 980 nm for 10 min, 8.33 μg mL-1 nanohybrid results in a 100% killing rate for both Gram-positive S. aureus (+) and Gram-negative E. coli (-).
Collapse
Affiliation(s)
- Xun Liu
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Zihan Cheng
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Hui Wen
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Shangqing Zhang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Mingli Chen
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Jianhua Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| |
Collapse
|
30
|
Jiji S, Udhayakumar S, Maharajan K, Rose C, Muralidharan C, Kadirvelu K. Bacterial cellulose matrix with in situ impregnation of silver nanoparticles via catecholic redox chemistry for third degree burn wound healing. Carbohydr Polym 2020; 245:116573. [DOI: 10.1016/j.carbpol.2020.116573] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 04/16/2020] [Accepted: 06/02/2020] [Indexed: 02/07/2023]
|
31
|
Vaishampayan A, Ahmed R, Wagner O, de Jong A, Haag R, Kok J, Grohmann E. Transcriptomic analysis of stress response to novel antimicrobial coatings in a clinical MRSA strain. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 119:111578. [PMID: 33321624 DOI: 10.1016/j.msec.2020.111578] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 08/20/2020] [Accepted: 09/24/2020] [Indexed: 02/06/2023]
Abstract
Multi-drug resistant pathogens such as methicillin-resistant Staphylococcus aureus (MRSA) cause nosocomial infections that can have deleterious effects on human health. Thus, it is imperative to find solutions to treat these detrimental infections as well as to control their spread. We tested the effect of two different antimicrobial materials, functionalised graphene oxide (GOX), and AGXX® coated on cellulose fibres, on the growth and transcriptome of the clinical MRSA strain S. aureus 04-02981. In addition, we investigated the effect of a third material as a combination of GOX and AGXX® fibres on S. aureus 04-02981. Standard plate count assay revealed that the combination of fibres, GOX-AGXX® inhibited the growth of S. aureus 04-02981 by 99.98%. To assess the effect of these antimicrobials on the transcriptome of our strain, cultures of S. aureus 04-02981 were incubated with GOX, AGXX®, or GOX-AGXX® fibres for different time periods and then subjected to RNA-sequencing. Uncoated cellulose fibres were used as a negative control. The antimicrobial fibres had a huge impact on the transcriptome of S. aureus 04-02981 affecting the expression of 2650 genes. Primarily genes related to biofilm formation and virulence (such as agr, sarA, and those of the two-component system SaeRS), and genes crucial for survival in biofilms (like arginine metabolism arc genes) were repressed. In contrast, the expression of siderophore biosynthesis genes (sbn) was induced, a probable response to stress imposed by the antimicrobials and the conditions of iron-deficiency. Genes associated with potassium transport, intracellular survival and pathogenesis (kdp) were also differentially expressed. Our data suggest that the combination of GOX and AGXX® acts as an efficient antimicrobial against S. aureus 04-02981. Thus, these materials are potential candidates for applications in antimicrobial surface coatings.
Collapse
Affiliation(s)
- Ankita Vaishampayan
- Life Sciences and Technology, Beuth University of Applied Sciences, Seestrasse 64, 13347 Berlin, Germany
| | - Rameez Ahmed
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
| | - Olaf Wagner
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
| | - Anne de Jong
- Department of Molecular Genetics, University of Groningen, Nijenborgh 7, 9747 Groningen, the Netherlands
| | - Rainer Haag
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
| | - Jan Kok
- Department of Molecular Genetics, University of Groningen, Nijenborgh 7, 9747 Groningen, the Netherlands
| | - Elisabeth Grohmann
- Life Sciences and Technology, Beuth University of Applied Sciences, Seestrasse 64, 13347 Berlin, Germany.
| |
Collapse
|
32
|
Tuning the Nature of N-Based Groups From N-Containing Reduced Graphene Oxide: Enhanced Thermal Stability Using Post-Synthesis Treatments. NANOMATERIALS 2020; 10:nano10081451. [PMID: 32722237 PMCID: PMC7466344 DOI: 10.3390/nano10081451] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/18/2020] [Accepted: 07/20/2020] [Indexed: 12/22/2022]
Abstract
The synthesis of N-containing graphene derivatives by functionalization and doping of graphene oxide (GO) has been widely reported as an alternative to tune both their chemical and physical properties. These materials are of interest for a wide range of applications, including biomedicine, sensors, energy, and catalysis, to name some. Understanding the role of the nature, reactivity, concentration, and distribution of the N-based species, would pave the way towards the design of synthetic routes to obtain improved materials for specific applications. The N-groups can be present either as aliphatic fractions (amides and amines) or becoming part of the planar conjugated lattice (N-doping). Here, we have modified the distribution of N-based moieties present in N-containing RGO samples (prepared by ammonolysis of GO) and evaluated the role of the concentration and nature of the species in the thermal stability of the materials once thermally annealed (500–1050 °C) under inert environments. After these post-synthesis treatments, samples underwent marked structural modifications that include the elimination and/or transformation of N-containing fractions, which might account for the observed enhanced thermal stability. It is remarkable the formation of pyridinic N-oxide species, which role in the properties of N-containing graphene derivatives has been barely reported. The presence of this fraction is found to confer an enhanced thermal stability to the material.
Collapse
|
33
|
Size-Dependent Antibacterial Activity of Silver Nanoparticle-Loaded Graphene Oxide Nanosheets. NANOMATERIALS 2020; 10:nano10061207. [PMID: 32575669 PMCID: PMC7353109 DOI: 10.3390/nano10061207] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/28/2020] [Accepted: 06/14/2020] [Indexed: 12/19/2022]
Abstract
A series of graphene oxide (GO) suspensions with different particle sizes (<100 nm, ~100 nm, ~1 µm and >1 µm) were successfully fabricated after 0, 30, 60 and 120 min of sonication, respectively. The antibacterial properties of GO suspensions showed that >1 µm GO size resulted in a loss of nearly 50% of bacterial viability, which was higher than treatment by ~100 nm GO size (25%) towards Escherichia coli (E. coli). Complete entrapment of bacteria by the larger GO was observed in transmission electron microscopy (TEM). Silver nanoparticles (Ag NPs) were doped onto GO samples with different lateral sizes to form GO-Ag NP composites. Resulting larger GO-Ag NPs showed higher antibacterial activity than smaller GO-Ag NPs. As observed by Fourier transform infrared spectroscopy (FTIR), the interaction between E. coli and GO occurred mainly at the outer membrane, where membrane amino acids interact with hydroxyl and epoxy groups. The reactive oxygen species (ROS) and the considerable penetration of released Ag+ into the inner bacterial cell membrane result in loss of membrane integrity and damaged morphology. The present work improves the combined action of GO size effect with constant Ag loadings for potential antibacterial activity.
Collapse
|
34
|
A. Butler J, Osborne L, El Mohtadi M, A. Whitehead K. Graphene derivatives potentiate the activity of antibiotics against <em>Enterococcus faecium, Klebsiella pneumoniae</em> and <em>Escherichia coli</em>. AIMS BIOENGINEERING 2020. [DOI: 10.3934/bioeng.2020010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|