1
|
Horvatinec J, Buczny J, Ondrasek G. Fly ash application impacts master physicochemical pedovariables: A multilevel meta-analysis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 368:122066. [PMID: 39116811 DOI: 10.1016/j.jenvman.2024.122066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 07/20/2024] [Accepted: 07/30/2024] [Indexed: 08/10/2024]
Abstract
Fly ash (FA) is a very alkaline, hazardous waste with a potential to be recycled in amelioration of master pedovariables, notably: i) pH, drives soil biogeochemistry, ii) electrical conductivity (EC), reflects soil salinity level and overall soil health, iii) water holding capacity (WHC), determines soil hydraulic functions and iv) bulk denisity (BD), indicates soil compaction and water-air relations. We performed a multilevel meta-analysis, encompassing 30 out of 1325 screend studies, using a random effect model and non-aggregated data sets. By moderating; experimental type, FA application rate, soil type and land use, two distinct meta-analytical approaches on observed pedovariables were performed: i) uni-moderator, considering moderators separately, and ii) multi-moderator, considering moderators combined. It was found that FA application: increased soil pH by 15.4% (Hedge's g = 8.07), EC by 51.7% (Hedge's g = 8.07), WHC by 22.6% (Hedge's g = 7.79), and reduced BD by 13.5% (Hedge's g = -5.03). However, the uni-moderator meta-analytical model revealed a significant increase in pH and EC only with relatively lower FA dosage (up to 20%). In addition, the impact of FA on pH and EC was significantly positive in acid (pHH2O < 6.5), negative in alkaline (pHH2O > 7.2), and not significant in neutral (pHH2O = 6.6-7.2) soil types. The same uni-moderator approach revealed that FA dosages above 5% significantly increased WHC, but reduced BD. Moreover, the multi-moderator model identified two significant interactions: i) between varying FA dosage and land use, and ii) between varying FA dosage and soil type. Confirmed positive implications of FA on key soil properties underscore its strong potential as a valuable resource for sustainable soil management, mitigating widespread soil constraints and contributing waste reduction. However, careful consideration of FA dosage, soil type, and land use is imperative to optimize FA application and prevent potential adverse environmental implications.
Collapse
Affiliation(s)
- Jelena Horvatinec
- Department of Soil Amelioration, University of Zagreb Faculty of Agriculture, Zagreb, Croatia
| | - Jacek Buczny
- Department of Experimental and Applied Psychology, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Gabrijel Ondrasek
- Department of Soil Amelioration, University of Zagreb Faculty of Agriculture, Zagreb, Croatia.
| |
Collapse
|
2
|
Andrunik M, Skalny M, Gajewska M, Marzec M, Bajda T. Comparison of pesticide adsorption efficiencies of zeolites and zeolite-carbon composites and their regeneration possibilities. Heliyon 2023; 9:e20572. [PMID: 37842606 PMCID: PMC10570599 DOI: 10.1016/j.heliyon.2023.e20572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/20/2023] [Accepted: 09/29/2023] [Indexed: 10/17/2023] Open
Abstract
The presence of pesticides in our environment is a consequence of intensive industrial and civilizational development, necessitating the search for effective and safe methods to remove them. We suggest utilizing zeolite X and a zeolite-carbon composite, obtained through the chemical transformation of fly ash, as pesticide sorbents. To increase the sorption efficiency of 2,4-dichlorophenoxyacetic acid (2,4-D), 2-methyl-4-chlorophenoxyacetic acid (MCPA), carbendazim, and simazine, we functionalized the zeolite materials with cationic (hexadecyltrimethylammonium) and nonionic (Triton X-100) surfactants. We used transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), thermogravimetric/differential thermal analysis (TG/DTA) and point of zero charge (pHpzc) analysis to characterize the functionalized sorbent materials. Our results indicate that cationic surfactants significantly enhance the adsorption of 2,4-D and MCPA. In contrast, carbendazim and simazine exhibit maximum sorption on the unmodified zeolite-carbon composite. The sorption mechanism is intricate, with physical sorption predominating, primarily due to electrostatic interactions between the protonated binding sites of the adsorbents and the negatively charged pesticide molecules. Regeneration tests demonstrated that ethanol is the most effective in regenerating zeolite-carbon composite with adsorbed MCPA and 2,4-D, while thermal regeneration was not possible. Adsorbents with simazine and carbendazim can be regenerated using both thermal and ethanol methods, but the thermal regeneration of zeolite with adsorbed simazine is more efficient. Utilizing functionalized zeolite materials obtained from industrial waste, such as fly ash, could provide an efficient way to remove pesticides from the environment.
Collapse
Affiliation(s)
- Magdalena Andrunik
- AGH University of Science and Technology, Faculty of Geology, Geophysics and Environmental Protection, A. Mickiewicz 30 Ave, 30-059, Krakow, Poland
| | - Mateusz Skalny
- AGH University of Science and Technology, Faculty of Geology, Geophysics and Environmental Protection, A. Mickiewicz 30 Ave, 30-059, Krakow, Poland
| | - Marta Gajewska
- AGH University of Science and Technology, Academic Centre for Materials and Nanotechnology, A. Mickiewicz 30 Ave, 30-059, Krakow, Poland
| | - Mateusz Marzec
- AGH University of Science and Technology, Academic Centre for Materials and Nanotechnology, A. Mickiewicz 30 Ave, 30-059, Krakow, Poland
| | - Tomasz Bajda
- AGH University of Science and Technology, Faculty of Geology, Geophysics and Environmental Protection, A. Mickiewicz 30 Ave, 30-059, Krakow, Poland
| |
Collapse
|
3
|
Montini D, Cara C, D’Arienzo M, Di Credico B, Mostoni S, Nisticò R, Pala L, Scotti R. Recent Advances on Porous Siliceous Materials Derived from Waste. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5578. [PMID: 37629869 PMCID: PMC10456868 DOI: 10.3390/ma16165578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/01/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023]
Abstract
In recent years, significant efforts have been made in view of a transition from a linear to a circular economy, where the value of products, materials, resources, and waste is maintained as long as possible in the economy. The re-utilization of industrial and agricultural waste into value-added products, such as nanostructured siliceous materials, has become a challenging topic as an effective strategy in waste management and a sustainable model aimed to limit the use of landfill, conserve natural resources, and reduce the use of harmful substances. In light of these considerations, nanoporous silica has attracted attention in various applications owing to the tunable pore dimensions, high specific surface areas, tailorable structure, and facile post-functionalization. In this review, recent progress on the synthesis of siliceous materials from different types of waste is presented, analyzing the factors influencing the size and morphology of the final product, alongside different synthetic methods used to impart specific porosity. Applications in the fields of wastewater/gas treatment and catalysis are discussed, focusing on process feasibility in large-scale productions.
Collapse
Affiliation(s)
- Daniele Montini
- Department of Materials Science, University of Milano-Bicocca, INSTM, Via R. Cozzi 55, 20125 Milano, Italy; (D.M.); (M.D.); (B.D.C.); (S.M.)
| | - Claudio Cara
- Fluorsid S.p.A., Strada Macchiareddu 2a, 09032 Assemini, Italy; (C.C.); (L.P.)
| | - Massimiliano D’Arienzo
- Department of Materials Science, University of Milano-Bicocca, INSTM, Via R. Cozzi 55, 20125 Milano, Italy; (D.M.); (M.D.); (B.D.C.); (S.M.)
| | - Barbara Di Credico
- Department of Materials Science, University of Milano-Bicocca, INSTM, Via R. Cozzi 55, 20125 Milano, Italy; (D.M.); (M.D.); (B.D.C.); (S.M.)
| | - Silvia Mostoni
- Department of Materials Science, University of Milano-Bicocca, INSTM, Via R. Cozzi 55, 20125 Milano, Italy; (D.M.); (M.D.); (B.D.C.); (S.M.)
| | - Roberto Nisticò
- Department of Materials Science, University of Milano-Bicocca, INSTM, Via R. Cozzi 55, 20125 Milano, Italy; (D.M.); (M.D.); (B.D.C.); (S.M.)
| | - Luca Pala
- Fluorsid S.p.A., Strada Macchiareddu 2a, 09032 Assemini, Italy; (C.C.); (L.P.)
| | - Roberto Scotti
- Department of Materials Science, University of Milano-Bicocca, INSTM, Via R. Cozzi 55, 20125 Milano, Italy; (D.M.); (M.D.); (B.D.C.); (S.M.)
| |
Collapse
|
4
|
Amaraweera SM, Gunathilake CA, Gunawardene OHP, Dassanayake RS, Cho EB, Du Y. Carbon Capture Using Porous Silica Materials. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2050. [PMID: 37513061 PMCID: PMC10383871 DOI: 10.3390/nano13142050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/04/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023]
Abstract
As the primary greenhouse gas, CO2 emission has noticeably increased over the past decades resulting in global warming and climate change. Surprisingly, anthropogenic activities have increased atmospheric CO2 by 50% in less than 200 years, causing more frequent and severe rainfall, snowstorms, flash floods, droughts, heat waves, and rising sea levels in recent times. Hence, reducing the excess CO2 in the atmosphere is imperative to keep the global average temperature rise below 2 °C. Among many CO2 mitigation approaches, CO2 capture using porous materials is considered one of the most promising technologies. Porous solid materials such as carbons, silica, zeolites, hollow fibers, and alumina have been widely investigated in CO2 capture technologies. Interestingly, porous silica-based materials have recently emerged as excellent candidates for CO2 capture technologies due to their unique properties, including high surface area, pore volume, easy surface functionalization, excellent thermal, and mechanical stability, and low cost. Therefore, this review comprehensively covers major CO2 capture processes and their pros and cons, selecting a suitable sorbent, use of liquid amines, and highlights the recent progress of various porous silica materials, including amine-functionalized silica, their reaction mechanisms and synthesis processes. Moreover, CO2 adsorption capacities, gas selectivity, reusability, current challenges, and future directions of porous silica materials have also been discussed.
Collapse
Affiliation(s)
- Sumedha M Amaraweera
- Department of Manufacturing and Industrial Engineering, Faculty of Engineering, University of Peradeniya, Peradeniya 20400, Sri Lanka
| | - Chamila A Gunathilake
- Department of Chemical and Process Engineering, Faculty of Engineering, University of Peradeniya, Peradeniya 20400, Sri Lanka
- Department of Applied Engineering & Technology, College of Aeronautics and Engineering, Kent State University, Kent, OH 44242, USA
| | - Oneesha H P Gunawardene
- Department of Chemical and Process Engineering, Faculty of Engineering, University of Peradeniya, Peradeniya 20400, Sri Lanka
| | - Rohan S Dassanayake
- Department of Biosystems Technology, Faculty of Technology, University of Sri Jayewardenepura, Homagama 10200, Sri Lanka
| | - Eun-Bum Cho
- Department of Fine Chemistry, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Yanhai Du
- Department of Applied Engineering & Technology, College of Aeronautics and Engineering, Kent State University, Kent, OH 44242, USA
| |
Collapse
|
5
|
Grabias-Blicharz E, Franus W. A critical review on mechanochemical processing of fly ash and fly ash-derived materials. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 860:160529. [PMID: 36574561 DOI: 10.1016/j.scitotenv.2022.160529] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/08/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Fly ash (FA) is a solid, fine powder that constitutes a by-product obtained when coal, biomass, municipal solid waste or a mixture of these are combusted. This review article focuses on the mechanochemistry of coal fly ash (CFA), as well as highlights the issue of fly ash from municipal solid waste (MSW). In general, FA is regarded as a waste of public concern (since it contains hazardous components), which is primarily consumed in the construction industry, as well as in chemical synthesis and environmental engineering. However, the actual amount of FA recycled is still less than the amount produced, with the reuse rate of only up to 30 %. Due to its relatively low reactivity and heterogeneity, FA is commonly landfilled in huge quantities. Nevertheless, the physical and chemical properties of FA can be tailored, for example, by mechanical forces, ultimately leading to a higher value-added product. Currently, mechanochemistry (MC) is drawing attention in chemical synthesis, pollution remediation and waste management, especially as a possible solution for various drawbacks of conventional syntheses and processes. Mechanochemical processing of FA can be considered eco-friendly, inexpensive and efficient, in particular for processing tons of readily available fly ash already stored in ponds or landfills. With the aim of highlighting the hidden potential and facilitating the favorable use of FA, this article deals with FA as an environmentally challenging material, FA reactivity and recycling through mechanochemical processing, mechanochemical stabilization of heavy metals in FA, as well as up-to-date challenges for life cycle assessment (LCA) in evaluating FA-derived materials. Furthermore, all these full-potential aspects of FA mechanochemistry have not been addressed before, which is a valuable contribution to the existing literature.
Collapse
Affiliation(s)
- Ewelina Grabias-Blicharz
- Department of Construction Materials Engineering and Geoengineering, Faculty of Civil Engineering and Architecture, Lublin University of Technology, Nadbystrzycka 40, 20-618 Lublin, Poland.
| | - Wojciech Franus
- Department of Construction Materials Engineering and Geoengineering, Faculty of Civil Engineering and Architecture, Lublin University of Technology, Nadbystrzycka 40, 20-618 Lublin, Poland.
| |
Collapse
|
6
|
Evaluation of Dithiocarbamate-Modified Silica for Cisplatin Removal from Water. Processes (Basel) 2023. [DOI: 10.3390/pr11020472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Despite the globally increasing use of platinum-based cytostatic drugs in the treatment of several types of cancer, only limited attention has been paid to developing a treatment for contaminated liquid samples originating from hospitals, laboratories and manufacturing facilities before and after their administration. In this work, we assess the efficiency of a low-cost adsorbent material, a dithiocarbamate-functionalized silica, in removing cisplatin from a solution containing it in the 0.5–150 mg L−1 concentration range. The advantage of having a surface-functionalized silica is that adsorption can occur by either non-covalent interaction or surface complexation. In the latter case platinum(II) is de-complexed and the original drug is no longer present. Adsorption occurs through a first rapid step, followed by a second slower process. This is likely due to the fact that in our operating conditions (0.9% w/v NaCl), only the original compound is present, for which ligand substitution is known to proceed slowly. The interesting performance, even at low metal concentration, and facile synthesis of the material mean it could be adapted for other applications where the recycling of platinum can be realized.
Collapse
|
7
|
Functionalized adsorbents resulting from the transformation of fly ash: characterization, modification, and adsorption of pesticides. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
8
|
Zhang H, Gan S, Sun H, Yang H, Xie S. Fly‐Ash‐Based Hierarchical MCM‐41 Molecular Sieve as an Efficient Adsorbent for Methylene Blue Removal from Wastewater over a Wide pH. ChemistrySelect 2022. [DOI: 10.1002/slct.202203213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Huabing Zhang
- School of Biology and Chemical Engineering Panzhihua University No. 10 Airport Road, East District Panzhihua Sichuan Province 617000 People's Republic of China
| | - Simeng Gan
- School of Biology and Chemical Engineering Panzhihua University No. 10 Airport Road, East District Panzhihua Sichuan Province 617000 People's Republic of China
| | - Houxiang Sun
- School of Biology and Chemical Engineering Panzhihua University No. 10 Airport Road, East District Panzhihua Sichuan Province 617000 People's Republic of China
| | - Haiyan Yang
- School of Biology and Chemical Engineering Panzhihua University No. 10 Airport Road, East District Panzhihua Sichuan Province 617000 People's Republic of China
| | - Sicai Xie
- School of Biology and Chemical Engineering Panzhihua University No. 10 Airport Road, East District Panzhihua Sichuan Province 617000 People's Republic of China
| |
Collapse
|
9
|
Fundamentals and applications of nanobubbles: A review. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
10
|
Yuan N, Zhao A, Hu Z, Tan K, Zhang J. Preparation and application of porous materials from coal gasification slag for wastewater treatment: A review. CHEMOSPHERE 2022; 287:132227. [PMID: 34826920 DOI: 10.1016/j.chemosphere.2021.132227] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/24/2021] [Accepted: 09/08/2021] [Indexed: 06/13/2023]
Abstract
In recent years, coal gasification has been gradually promoted as clean technology, and coal gasification slag (CGS) emissions have increased accordingly. CGS, including coarse slag and fine slag, is rich in SiO2 and Al2O3 and has pozzolanic activity, and thus CGS can be regarded as a cheap source of aluminosilicate. Also, CGS, especially the fine slag, usually contains higher contents of residual carbon which has a large specific surface area and low volatility and hence can be considered as a favorable precursor of activated carbon. Benefiting from these characteristics, CGS can be used to prepare high value-added porous materials, such as zeolite, mesoporous silica, carbon-silicon composite, and porous ceramics, and the obtained structures accommodate both sufficient adsorption capacity and low cost. Here, we review the research advances in characteristics of CGS and preparation methods of CGS-based porous materials, as well as their adsorption performance of heavy metal ions, organic dyes, ammonia nitrogen, and other water pollutants. The current studies indicate that CGS-derived adsorbents are effective and economical alternatives for removing aqueous pollutants. In addition, further research prospects on CGS-based porous materials are proposed.
Collapse
Affiliation(s)
- Ning Yuan
- School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing, 100083, China.
| | - Aijing Zhao
- School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing, 100083, China
| | - Zekai Hu
- School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing, 100083, China
| | - Kaiqi Tan
- School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing, 100083, China
| | - Jianbo Zhang
- CAS Key Laboratory of Green Process and Engineering, National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100090, China
| |
Collapse
|
11
|
Extraction and Characterization of Biogenic Silica Obtained from Selected Agro-Waste in Africa. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app112110363] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Increased amounts of available biomass residues from agricultural food production are present widely around the globe. These biomass residues can find essential applications as bioenergy feedstock and precursors to produce value-added materials. This study assessed the production of biogenic silica (SiO2) from different biomass residues in Africa, including cornhusk, corncob, yam peelings, cassava peelings and coconut husks. Two processes were performed to synthesize the biogenic silica. First, the biomass fuels were chemically pre-treated with 1 and 5% w/v citric acid solutions. In the second stage, combustion at 600 °C for 2 h in a muffle oven was applied. The characterization of the untreated biomasses was conducted using Inductively coupled plasma—optical emission spectrometry (ICP-OES), thermal analysis (TG-DTA) and Fourier-transform infrared spectroscopy (FTIR). The resulting ashes from the combustion step were subjected to ICP, nitrogen physisorption, Energy dispersive X-ray spectroscopy (EDX) as well as X-ray diffraction (XRD). ICP results revealed that the SiO2 content in the ashes varies between 42.2 to 81.5 wt.% db and 53.4 to 90.8 wt.% db after acidic pre-treatment with 1 and 5 w/v% acid, respectively. The relative reductions of K2O by the citric acid in yam peel was the lowest (79 wt.% db) in comparison to 92, 97, 98 and 97 wt.% db calculated for corncob, cassava peel, coconut husk and cornhusk, respectively. XRD analysis revealed dominant crystalline phases of arcanite (K2SO4), sylvite (KCl) and calcite (CaCO3) in ashes of the biomass fuels pre-treated with 1 w/v% citric acid due to potassium and calcium ions present. In comparison, the 5 w/v% citric acid pre-treatment produced amorphous, biogenic silica with specific surface areas of up to 91 m2/g and pore volumes up to 0.21 cm3/g. The examined biomass residues are common wastes from food production in Africa without competition in usage with focus application. Our studies have highlighted a significant end-value to these wastes by the extraction of high quality, amorphous silica, which can be considered in applications such as catalyst support, construction material, concrete and backing material.
Collapse
|
12
|
Muir B, Sobczyk M, Bajda T. Fundamental features of mesoporous functional materials influencing the efficiency of removal of VOCs from aqueous systems: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 784:147121. [PMID: 34088064 DOI: 10.1016/j.scitotenv.2021.147121] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 03/26/2021] [Accepted: 04/09/2021] [Indexed: 06/12/2023]
Abstract
Volatile organic compounds (VOCs) are harmful contaminants that are emitted into the environment as a result of various commercial, industrial, and domestic practices. Their presence in water leads to pollution and poses a huge threat to the ecological environment and human health. They are typically released into the environment through a spill or inappropriate disposal which allows the chemicals to get absorbed into the ground or enter the sewage system. Thus far, several treatment methods have been developed to remove VOCs from water, including steam stripping or air stripping, ion exchange, filtration, adsorption, and application of various types of sorbents. Due to their cost-effectiveness and efficiency, the use of mesoporous materials, especially those synthesized from coal fly ash (FA), is recognized as the most promising strategy for slowing down the impact of VOCs. This study is believed to be the first to assess the advances made in improving the adsorption of VOCs by different functional mesoporous materials (FA, zeolites, mesoporous silica, metal organic frameworks). The impact associated with the properties of these materials is carefully summarized in this paper, in regard to their solid-state characteristics, material synthesis method, and surface modification. In addition, their chemical and physical interactions in solution, the reaction kinetics, and the influence of temperature and pH are described in detail. The aim of this work was to compare the sorption properties of the materials synthesized from FA with more complex mesoporous materials. This overview provides a comprehensive understanding of VOC removal from water systems using various functional materials, as well as helps in identifying the materials that may play a key role in the future.
Collapse
Affiliation(s)
- Barbara Muir
- AGH University of Science and Technology, Faculty of Geology, Geophysics and Environmental Protection, al. A. Mickiewicza 30, 30-059 Kraków, Poland.
| | - Maciej Sobczyk
- AGH University of Science and Technology, Faculty of Geology, Geophysics and Environmental Protection, al. A. Mickiewicza 30, 30-059 Kraków, Poland
| | - Tomasz Bajda
- AGH University of Science and Technology, Faculty of Geology, Geophysics and Environmental Protection, al. A. Mickiewicza 30, 30-059 Kraków, Poland
| |
Collapse
|
13
|
Martinez-Erro S, Navas F, Romaní-Cubells E, Fernández-García P, Morales V, Sanz R, García-Muñoz RA. Kidney-Protector Lipidic Cilastatin Derivatives as Structure-Directing Agents for the Synthesis of Mesoporous Silica Nanoparticles for Drug Delivery. Int J Mol Sci 2021; 22:7968. [PMID: 34360733 PMCID: PMC8348040 DOI: 10.3390/ijms22157968] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 01/23/2023] Open
Abstract
Mesoporous silica nanomaterials have emerged as promising vehicles in controlled drug delivery systems due to their ability to selectively transport, protect, and release pharmaceuticals in a controlled and sustained manner. One drawback of these drug delivery systems is their preparation procedure that usually requires several steps including the removal of the structure-directing agent (surfactant) and the later loading of the drug into the porous structure. Herein, we describe the preparation of mesoporous silica nanoparticles, as drug delivery systems from structure-directing agents based on the kidney-protector drug cilastatin in a simple, fast, and one-step process. The concept of drug-structure-directing agent (DSDA) allows the use of lipidic derivatives of cilastatin to direct the successful formation of mesoporous silica nanoparticles (MSNs). The inherent pharmacological activity of the surfactant DSDA cilastatin-based template permits that the MSNs can be directly employed as drug delivery nanocarriers, without the need of extra steps. MSNs thus synthesized have shown good sphericity and remarkable textural properties. The size of the nanoparticles can be adjusted by simply selecting the stirring speed, time, and aging temperature during the synthesis procedure. Moreover, the release experiments performed on these materials afforded a slow and sustained drug release over several days, which illustrates the MSNs potential utility as drug delivery system for the cilastatin cargo kidney protector. While most nanotechnology strategies focused on combating the different illnesses this methodology emphasizes on reducing the kidney toxicity associated to cancer chemotherapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Rafael A. García-Muñoz
- Department of Chemical and Environmental Technology, Rey Juan Carlos University (URJC), C/Tulipán s/n, Móstoles, 28933 Madrid, Spain; (S.M.-E.); (F.N.); (E.R.-C.); (P.F.-G.); (V.M.); (R.S.)
| |
Collapse
|
14
|
Improvement of Recycled Aggregates Properties by Means of CO2 Uptake. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11146571] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Concrete from deconstruction can have a second life in the form of recycled concrete aggregates (RCAs). They unfortunately have poor properties (high porosity and water absorption coefficient (WAC)) with respect to natural aggregates. Accelerated carbonation was implemented to improve the RCA properties and to increase their use by storing carbon dioxide (CO2) in the cement matrix and thereby reduce their environmental impact. This paper aims to perform a parametric study of a process for accelerated carbonation of RCAs to store the largest possible amount of CO2 and improve their properties. This study highlights the fact that each of these parameters affects CO2 storage, with an optimum water content for the maximum CO2 uptake depending on the nature and the source of the RCAs. This optimum is related to the RCA water absorption coefficient by a linear relationship. The results show that accelerated carbonation reduces the water absorption coefficient by as much as 67%. Finally, carbonation also decreases porosity, as observed by mercury intrusion porosimetry, by filling the capillary pores.
Collapse
|
15
|
Turning Agricultural Wastes into Biomaterials: Assessing the Sustainability of Scenarios of Circular Valorization of Corn Cob in a Life-Cycle Perspective. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11146281] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Circular economy plays a key role in increasing the sustainability of the agricultural sector, given the countless possibilities of transforming crop residues and recycling precious resources. The maize cultivation process produces a significant amount of residual organic materials, commonly left on the field, as a soil conditioner and source of nutrients even if some parts, such as the cob, play a minor role in these actions. The solutions for the valorization of this remnant depend on economic and environmental factors and the evaluation of the environmental performances of the processes in a life-cycle perspective is important to compare the overall sustainability of the valorization alternatives, maximizing their environmental added value. This work reports the results of Life Cycle Analysis, from cradle-to-gate of corn cob valorized as a raw material in two scenarios: corn cob pellet and corn cob abrasive grits to use as blasting or finishing media. A comparative study has been performed with two products available on the market and with the same functions. The results show that cob-based products have lower impact than those currently used. The work provides indication for evaluating the benefits of turning agricultural wastes in natural-based materials and intends to promote circular economy processes in agriculture production.
Collapse
|
16
|
Influencing Multi-Walled Carbon Nanotubes for the Removal of Ismate Violet 2R Dye from Wastewater: Isotherm, Kinetics, and Thermodynamic Studies. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11114786] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In this study, a multi-walled carbon nanotube (MWCNT) was synthesized and used as an adsorbent for the removal of Ismate violet 2R dye from contaminated water. The morphology and structure of the synthesized adsorbent were examined via the Brunauer–Emmett–Teller (BET) surface area, X-ray powder diffraction (XRD) analysis, infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and Raman spectroscopy. The effects of an MWCNT on the removal of IV2R were examined via a batch method using different factors such as pH, agitation time, adsorbent dosage, temperature, and initial dye concentration. The results showed that, at the acidic pH 4, 0.08 g of an MWCNT with 10 mg L−1 at 120 min realized the favorable removal of IV2R dye using an MWCNT. Under these operation conditions, the maximum elimination efficiency for real wastewater reached 88.2%. This process benefits from the ability to remove a large amount of dye (approximately 85.9%) in as short as 10 min using 0.005 g of MWCNTs. Moreover, the investigational isotherm data were examined by different models. The equations of error functions were used in the isotherm model to show the most appropriate isotherm model. The highest adsorption capacity for the removal of the dye was 76.92 mg g−1 for the MWCNT. Moreover, the regression data indicated that the adsorption kinetics were appropriate with a pseudo-second order and an R2 of 0.999. The thermodynamic study showed that the removal of IV2R is an endothermic, spontaneous, and chemisorption process. The MWCNT compound appears to be a new, promising adsorbent in water treatment, with 91.71% regeneration after three cycles.
Collapse
|
17
|
Mini-Review: Potential of Diatom-Derived Silica for Biomedical Applications. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11104533] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Diatoms are unicellular eukaryotic microalgae widely distributed in aquatic environments, possessing a porous silica cell wall known as frustule. Diatom frustules are considered as a sustainable source for several industrial applications because of their high biocompatibility and the easiness of surface functionalisation, which make frustules suitable for regenerative medicine and as drug carriers. Frustules are made of hydrated silica, and can be extracted and purified both from living and fossil diatoms using acid treatments or high temperatures. Biosilica frustules have proved to be suitable for biomedical applications, but, unfortunately, they are not officially recognised as safe by governmental food and medical agencies yet. In the present review, we highlight the frustule formation process, the most common purification techniques, as well as advantages and bottlenecks related to the employment of diatom-derived silica for medical purposes, suggesting possible solutions for a large-scale biosilica production.
Collapse
|
18
|
Enhancing the Functional and Environmental Properties of Asphalt Binders and Asphalt Mixtures Using Tourmaline Anion Powder Modification. COATINGS 2021. [DOI: 10.3390/coatings11050550] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Due to its good piezoelectric and thermoelectrical properties, tourmaline anion powder (TAP) can be used as a potential modifier to improve the piezoelectric, thermoelectric, rheological, and mechanical properties of asphalt binders and asphalt mixtures, respectively. This study was conducted to investigate the functional, piezoelectric, and thermoelectric properties of a TAP-modified asphalt binder (TAPMA) and the corresponding asphalt mixtures. In the study, the TAPMA’s environmental friendliness, such as the volatile organic compound (VOC) adsorption and metal immobilization, were investigated. Compared to TAP at 3.95 pC/N, the piezoelectric constant of TAPMA was found to be 3.42 pC/N. In general, the results indicated that TAP could potentially improve the functional properties of asphalt binders and asphalt mixtures, including the piezoelectric and thermoelectrical properties. With respect to environmental enhancement, the asphalt binder VOC emission reduced to 50% after TAP addition. In terms of metal immobilization, the heavy metals Fe and Ti exhibited the best stability followed by the alkali metals Li, K and Na, and lastly, Ca and Mg, respectively. Nonetheless, the emission concentrations of all the metals were below the regulatory threshold. Furthermore, the study findings also indicated that TAPMA can potentially adsorb the tail gas emissions of vehicles and heavy metals.
Collapse
|
19
|
Capture and Reuse of Carbon Dioxide (CO2) for a Plastics Circular Economy: A Review. Processes (Basel) 2021. [DOI: 10.3390/pr9050759] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Plastic production has been increasing at enormous rates. Particularly, the socioenvironmental problems resulting from the linear economy model have been widely discussed, especially regarding plastic pieces intended for single use and disposed improperly in the environment. Nonetheless, greenhouse gas emissions caused by inappropriate disposal or recycling and by the many production stages have not been discussed thoroughly. Regarding the manufacturing processes, carbon dioxide is produced mainly through heating of process streams and intrinsic chemical transformations, explaining why first-generation petrochemical industries are among the top five most greenhouse gas (GHG)-polluting businesses. Consequently, the plastics market must pursue full integration with the circular economy approach, promoting the simultaneous recycling of plastic wastes and sequestration and reuse of CO2 through carbon capture and utilization (CCU) strategies, which can be employed for the manufacture of olefins (among other process streams) and reduction of fossil-fuel demands and environmental impacts. Considering the previous remarks, the present manuscript’s purpose is to provide a review regarding CO2 emissions, capture, and utilization in the plastics industry. A detailed bibliometric review of both the scientific and the patent literature available is presented, including the description of key players and critical discussions and suggestions about the main technologies. As shown throughout the text, the number of documents has grown steadily, illustrating the increasing importance of CCU strategies in the field of plastics manufacture.
Collapse
|
20
|
Synthesis of Fe Doped Poly p-Phenylenediamine Composite: Co-Adsorption Application on Toxic Metal Ions (F - and As 3+) and Microbial Disinfection in Aqueous Solution. TOXICS 2021; 9:toxics9040074. [PMID: 33916218 PMCID: PMC8065817 DOI: 10.3390/toxics9040074] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 11/18/2022]
Abstract
Water is regarded as an important natural resource to sustain life, and its purification is an important criterion that determines its quality and usefulness. In this study, the incorporation of Fe3+ oxide onto a phenylenediamine (pPD) polymer matrix through chemical co-polymerization was prepared, and its arsenite and fluoride removal potentials at optimal conditions from aqueous solution were evaluated. The morphology and structural analysis of the synthesized Fe-doped pPD (Fe-pPD) were comparatively evaluated using the FT-IR, SEM, EDS, and XRD techniques. Fe was successfully incorporated onto pPD matrix as confirmed by different morphological characterizations. The rate of adsorption of F− and As3+ onto the Fe-pPD composite best followed the pseudo-second-order kinetic model. The experimental data for both As3+ and F− onto the Fe-pPD composite better fit the Freundlich isotherm model at different operating temperatures. Overall, the synthesized composite exhibited a strong affinity towards fluoride uptake (96.6%) than arsenite uptake (71.14%) with a maximum capacity of 6.79 (F−) and 1.86 (As3+) mg/g. Additionally, the synthesized adsorbent showed some level of antimicrobial activity against common water-borne bacterial. Therefore, the Fe-doped pPD composite has the potential ability for inorganic metal species pollutants remediation and bacterial disinfection in community-level water purification processes.
Collapse
|
21
|
Yadav VK, Gnanamoorthy G, Cabral-Pinto MMS, Alam J, Ahamed M, Gupta N, Singh B, Choudhary N, Inwati GK, Yadav KK. Variations and similarities in structural, chemical, and elemental properties on the ashes derived from the coal due to their combustion in open and controlled manner. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:10.1007/s11356-021-12989-5. [PMID: 33625705 DOI: 10.1007/s11356-021-12989-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 02/11/2021] [Indexed: 06/12/2023]
Abstract
Coal fly ash (CFA) and coal-based incense sticks ash (ISA) have several similarities and differences due to the presence of coal as a common component in both of them. CFA are produced from the combustion of pulverized coal during electricity production in the thermal power plants while ISA are produced from the burning of incense sticks at religious places and at houses. A typical black colored Indian, incense sticks are mainly are comprised of coal powder or potassium nitrate, wood chip, fragrance, binder or binding agent, and bamboo sticks. The black colored incense sticks have coal powder or charcoal as a facilitator for smoother burning of incense sticks. The detailed investigation of CFA and ISA by X-ray fluorescence spectroscopy (XRF), electron diffraction spectroscopy (EDS), inductively coupled plasma-atomic emission spectroscopy (ICP-AES), Fourier transform-infrared (FTIR), X-ray diffraction (XRD), particle size analyzer (PSA), field emission scanning electron microscopy (FESEM), and transmission electron microscopy (TEM) revealed the morphological, chemical, and elemental properties. Both the coal based ashes comprises minerals like calcites, silicates, ferrous, alumina, and traces of Mg, Na, K, P, Ti, and numerous toxic heavy metals as confirmed by the XRF, ICP-AES, and EDS. While, microscopy revealed the presence of well-organized spherical shaped particles, namely cenospheres, plerospheres, and ferrospheres of size varying from 0.02 μm to 7 microns in CFA. Whereas, ISA particles are irregular, aggregated, calcium to carbon rich whose size varies from 60 nm to 9 microns and absence of well-organized spherical structures. The well developed and crystalline structure in CFA is due to the controlled combustion parameter in thermal power plants during the burning of coal while incense sticks (IS) burning is under uncontrolled manner. So, FTIR and XRD confirmed that the major portion of fly ash constitutes crystalline minerals whereas ISA have mainly amorphous phase minerals. CFA have ferrospheres of both rough and smooth surfaced, which was absent from the ISA and hence ferrous particles of CFA are of high magnetic strength. The detailed investigation of ashes will lead to the applications of ashes in new fields, which will minimize the solid waste pollution in the environment.
Collapse
Affiliation(s)
- Virendra Kumar Yadav
- School of Lifesciences, Jaipur National University, Jaipur, Rajasthan, 302017, India
| | - Govindhan Gnanamoorthy
- Department of Inorganic Chemistry, University of Madras, Guindy Campus, Chennai, Tamil Nadu, 600025, India
| | - Marina M S Cabral-Pinto
- Department of Geosciences, Geobiotec Research Centre, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Javed Alam
- King Abdullah Institute for Nanotechnology, King Saud University, P.O. Box-2455, Riyadh, 11451, Saudi Arabia
| | - Maqusood Ahamed
- King Abdullah Institute for Nanotechnology, King Saud University, P.O. Box-2455, Riyadh, 11451, Saudi Arabia
| | - Neha Gupta
- Institute of Environment and Development Studies, Bundelkhand University, Kanpur Road, Jhansi, 284128, India
| | - Bijendra Singh
- School of Chemical Sciences, Central University of Gujarat, Gandhinagar, Gujarat, India
| | - Nisha Choudhary
- School of Nanosciences, Central University of Gujarat, Gandhinagar, Gujarat, 382030, India
| | | | - Krishna Kumar Yadav
- Institute of Environment and Development Studies, Bundelkhand University, Kanpur Road, Jhansi, 284128, India.
| |
Collapse
|
22
|
Recent Advances in Methods for the Recovery of Carbon Nanominerals and Polyaromatic Hydrocarbons from Coal Fly Ash and Their Emerging Applications. CRYSTALS 2021. [DOI: 10.3390/cryst11020088] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Coal fly ash is found to be one of the key pollutants worldwide due to its toxic heavy metal content. However, due to advancements in technology, coal fly ash has gained importance in various emerging fields. They are rich sources of carbonaceous particles which remain unburnt during burning of various coals in thermal power plants (TPPs). Various carbonaceous nanoparticles in the form of fullerenes, soot, and carbon nanotubes could be recovered from coal fly ash by applying trending techniques. Moreover, coal fly ash is comprised of rich sources of organic carbons such as polycyclic and polyaromatic hydrocarbons that are used in various industries for the development of carbon-derived value-added materials and nanocomposites. Here, we focus on all the types of carbon nanominerals from coal fly ash with the latest techniques applied. Moreover, we also emphasize the recovery of organic carbons in polyaromatic (PAHs) and polycyclic hydrocarbons (PCHs) from coal fly ash (CFA). Finally, we try to elucidate the latest applications of such carbon particle in the industry.
Collapse
|
23
|
Soil Stabilization Using Waste Paper Fly Ash: Precautions for Its Correct Use. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10238750] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This paper deals with the valorization of waste paper fly ash (WPFA) as a binder for soil stabilization. The mineralogical characterization shows the presence of free lime, as well as some non-reactive and cementitious phases. The hydration of lime is an expansive reaction and can be problematic in soil stabilization. Therefore, to study its effect on stabilized soil, an in-house experimental set-up is proposed to measure the possible expansion. Furthermore, to study the effect of water reduction and delay time on strength, unconfined compressive strength with different mixes is conducted. The obtained results showed that using WPFA causes expansion in stabilized soil, but a delay time of 30 min, after mixing the material with water and then compacting it, can decrease the expansion. Additionally, decreasing the water content by a point of Proctor can be essential for improving the strength in soil samples, even reaching the same strength values as control samples cured at 7 days. Finally, all the results obtained in this study have shown that WPFA is a suitable material for use as a binder for soil stabilization while reducing its optimum water content, adding a proper delay time, and taking into consideration WPFA’s expansive behavior at the moment of its use.
Collapse
|
24
|
Advances in Methods for Recovery of Ferrous, Alumina, and Silica Nanoparticles from Fly Ash Waste. CERAMICS-SWITZERLAND 2020. [DOI: 10.3390/ceramics3030034] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Fly ash or coal fly ash causes major global pollution in the form of solid waste and is classified as a “hazardous waste”, which is a by-product of thermal power plants produced during electricity production. Si, Al, Fe Ca, and Mg alone form more than 85% of the chemical compounds and glasses of most fly ashes. Fly ash has a chemical composition of 70–90%, as well as glasses of ferrous, alumina, silica, and CaO. Therefore, fly ash could act as a reliable and alternative source for ferrous, alumina, and silica. The ferrous fractions can be recovered by a simple magnetic separation method, while alumina and silica can be extracted by chemical or biological approaches. Alumina extraction is possible using both alkali- and acid-based methods, while silica is extracted by strong alkali, such as NaOH. Chemical extraction has a higher yield than the biological approaches, but the bio-based approaches are more environmentally friendly. Fly ash can also be used for the synthesis of zeolites by NaOH treatment of variable types, as fly ash is rich in alumino-silicates. The present review work deals with the recent advances in the field of the recovery and synthesis of ferrous, alumina, and silica micro and nanoparticles from fly ash.
Collapse
|
25
|
Kanti P, Sharma KV, C. G. R, Azmi WH. Experimental determination of thermophysical properties of Indonesian fly-ash nanofluid for heat transfer applications. PARTICULATE SCIENCE AND TECHNOLOGY 2020. [DOI: 10.1080/02726351.2020.1806971] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Praveen Kanti
- Department of Mechanical Engineering, Jyothy Institute of Technology, Bangalore, Karnataka, India
| | - Korada Viswanatha Sharma
- Department of Mechanical Engineering, Center for Energy Studies, JNTUH College of Engineering, Kukatpally, Telangana, India
| | - Ramachandra C. G.
- Department of Mechanical Engineering, Presidency University, Bangalore, Karnataka, India
| | - W. H. Azmi
- Faculty of Mechanical Engineering, Universiti Malaysia Pahang, Pekan, Pahang, Malaysia
| |
Collapse
|
26
|
Yadav VK, Ali D, Khan SH, Gnanamoorthy G, Choudhary N, Yadav KK, Thai VN, Hussain SA, Manhrdas S. Synthesis and Characterization of Amorphous Iron Oxide Nanoparticles by the Sonochemical Method and Their Application for the Remediation of Heavy Metals from Wastewater. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1551. [PMID: 32784715 PMCID: PMC7466584 DOI: 10.3390/nano10081551] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 08/02/2020] [Accepted: 08/03/2020] [Indexed: 12/27/2022]
Abstract
Nanoparticles have gained huge attention in the last decade due to their applications in electronics, medicine, and environmental clean-up. Iron oxide nanoparticles (IONPs) are widely used for the wastewater treatment due to their recyclable nature and easy manipulation by an external magnetic field. Here, in the present research work, iron oxide nanoparticles were synthesized by the sonochemical method by using precursors of ferrous sulfate and ferric chloride at 70 °C for one hour in an ultrasonicator. The synthesized iron oxide nanoparticles were characterized by diffraction light scattering (DLS), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), electron diffraction spectroscopy (EDS), high-resolution transmission electron microscopy (HRTEM) and vibrating sample magnetometer (VSM). The FTIR analysis exhibits characteristic absorption bands of IONPs at 400-800 cm-1, while the Raman spectra showed three characteristic bands at 273, 675, and 1379 cm-1 for the synthesized IONPs. The XRD data revealed three major intensity peaks at two theta, 33°, 35°, and 64° which indicated the presence of maghemite and magnetite phase. The size of the spherical shaped IONPs was varying from 9-70 nm with an average size of 38.9 nm while the size of cuboidal shaped particle size was in microns. The purity of the synthesized IONPs was confirmed by the EDS attached to the FESEM, which clearly show sharp peaks for Fe and O, while the magnetic behavior of the IONPs was confirmed by the VSM measurement and the magnetization was 2.43 emu/g. The batch adsorption study of lead (Pb) and chromium (Cr) from 20% fly ash aqueous solutions was carried out by using 0.6 mg/100 mL IONPs, which exhibited maximum removal efficiency i.e., 97.96% and 82.8% for Pb2+ and Cr ions, respectively. The fly ash are being used in making cements, tiles, bricks, bio fertilizers etc., where the presence of fly ash is undesired property which has to be either removed or will be brought up to the value of acceptable level in the fly ash. Therefore, the synthesized IONPs, can be applied in the elimination of heavy metals and other undesired elements from fly ash with a short period of time. Moreover, the IONPs that have been used as a nanoadsorbent can be recovered from the reaction mixture by applying an external magnetic field that can be recycled and reused. Therefore, this study can be effective in all the fly ash-based industries for elimination of the undesired elements, while recyclability and reusable nature of IONPs will make the whole adsorption or elimination process much economical.
Collapse
Affiliation(s)
- Virendra Kumar Yadav
- School of Lifesciences, Jaipur National University, Jaipur, Rajasthan 302017, India;
| | - Daoud Ali
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (S.A.H.); (S.M.)
| | - Samreen Heena Khan
- School of Nanosciences, Central University of Gujarat, Gandhinagar, Gujarat 382030, India; (S.H.K.); (N.C.)
| | - Govindhan Gnanamoorthy
- Department of inorganic chemistry, University of Madras, Guindy Campus, Chennai T.N. 600025, India;
| | - Nisha Choudhary
- School of Nanosciences, Central University of Gujarat, Gandhinagar, Gujarat 382030, India; (S.H.K.); (N.C.)
| | - Krishna Kumar Yadav
- Institute of Environment and Development Studies, Bundelkhand University, Kanpur Road, Jhansi 284128, India;
| | - Van Nam Thai
- Ho Chi Minh City University of Technology (HUTECH) 475A, Dien Bien Phu, Ward 25, Binh Thanh District, Ho Chi Minh City 700000, Vietnam
| | - Seik Altaf Hussain
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (S.A.H.); (S.M.)
| | - Salim Manhrdas
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (S.A.H.); (S.M.)
| |
Collapse
|