1
|
Rubio-Camacho M, Cuestas-Ayllón C, Torres-Herrero B, Martínez-Tomé MJ, de la Fuente JM, Mateo CR. Harnessing the power of thermosensitive liposomes with gold nanoprisms and silica for controlled drug delivery in combined chemotherapy and phototherapy. RSC Adv 2024; 14:23073-23082. [PMID: 39040708 PMCID: PMC11261576 DOI: 10.1039/d4ra03359k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/16/2024] [Indexed: 07/24/2024] Open
Abstract
In recent years, the scientific community has tried to address the treatment of complex diseases such as cancer in a more appropriate and promising way. Regarding this and benefiting from the unique optical properties of gold nanoprisms (AuNPRs), the physicochemical properties of thermosensitive liposomes (TSLs), and the tunable drug encapsulation and release properties of silica nanoparticles (BioSi@NPs), this study has developed two nanoformulations. These nanoformulations have the potential to integrate chemotherapy and photothermal therapy within a single entity. Once their components were synthesized and characterized separately, two strategies were taken in order to develop these multifunctional nanoformulations: (1) covalent binding of AuNPRs to TSLs and (2) co-encapsulation of both components within BioSi@NPs, without modifying the optical and physicochemical properties of AuNPRs and TSLs. Finally, the suitability of both nanoformulations to carry and release hydrophilic drugs when triggered by a 1064 nm NIR laser has been explored by using the fluorescent probe 5(6)-carboxyfluorescein (CF) as a hydrophilic drug model. Different laser power and time of exposure were also tested evidencing that hydrophilic drugs were only released from TSLs in the presence of AuNPRs and that the drug release profile was dependent on the type of nanoformulation and irradiation conditions used. In conclusion, these multifunctional nanoformulations exhibit promising potential for controlled drug delivery in combined chemotherapy and phototherapy, with the capability to precisely control the release kinetics based on specific therapeutic needs.
Collapse
Affiliation(s)
- Marta Rubio-Camacho
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández (UMH) c/Avenida de la Universidad de Elche s/n 03202 Elche Alicante Spain
| | - Carlos Cuestas-Ayllón
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza (UNIZAR), CIBER-BBN c/Pedro Cerbuna s/n 50009 Zaragoza Spain
| | - Beatriz Torres-Herrero
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza (UNIZAR), CIBER-BBN c/Pedro Cerbuna s/n 50009 Zaragoza Spain
| | - María José Martínez-Tomé
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández (UMH) c/Avenida de la Universidad de Elche s/n 03202 Elche Alicante Spain
| | - Jesús M de la Fuente
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza (UNIZAR), CIBER-BBN c/Pedro Cerbuna s/n 50009 Zaragoza Spain
| | - C Reyes Mateo
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández (UMH) c/Avenida de la Universidad de Elche s/n 03202 Elche Alicante Spain
| |
Collapse
|
2
|
Das N, Vikas, Kumar A, Soni S, Rayavarapu RG. Gold nanomakura: nanoarchitectonics and their photothermal response in association with carrageenan hydrogels. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2024; 15:678-693. [PMID: 38887524 PMCID: PMC11181249 DOI: 10.3762/bjnano.15.56] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 05/16/2024] [Indexed: 06/20/2024]
Abstract
Photothermal conversion of light into heat energy is an intrinsic optical property of metal nanoparticles when irradiated using near-infrared radiation. However, the impact of size and shape on the photothermal behaviour of gold nanomakura particles possessing optical absorption within 600-700 nm as well as on incorporation in hydrogels is not well reported. In this study, nanomakura-shaped anisotropic gold nanoparticles (AuNMs) were synthesized via a surfactant-assisted seed-mediated protocol. Quaternary cationic surfactants having variable carbon tail length (n = 16, 14, 12) were used as capping for tuning the plasmon peak of gold nanomakura within a 600-700 nm wavelength. The aspect ratio as well as anisotropy of synthesized gold nanomakura can influence photothermal response upon near-infrared irradiation. The role of carbon tail length was evident via absorption peaks obtained from longitudinal surface plasmon resonance analysis at 670, 650, and 630 nm in CTAB-AuNM, MTAB-AuNM, and DTAB-AuNM, respectively. Furthermore, the impact of morphology and surrounding milieu of the synthesized nanomakuras on photothermal conversion is investigated owing to their retention of plasmonic stability. Interestingly, we found that photothermal conversion was exclusively assigned to morphological features (i.e., nanoparticles of higher aspect ratio showed higher temperature change and vice versa irrespective of the surfactant used). To enable biofunctionality and stability, we used kappa-carrageenan- (k-CG) based hydrogels for incorporating the nanomakuras and further assessed their photothermal response. Nanomakura particles in association with k-CG were also able to show photothermal conversion, depicting their ability to interact with light without hindrance. The CTAB-AuNM, MTAB-AuNM, and DTAB-AuNM after incorporation into hydrogel beads attained up to ≈17.2, ≈17.2, and ≈15.7 °C, respectively. On the other hand, gold nanorods after incorporation into k-CG did not yield much photothermal response as compared to that of AuNMs. The results showed a promising platform to utilize nanomakura particles along with kappa-carrageenan hydrogels for enabling usage on nanophotonic, photothermal, and bio-imaging applications.
Collapse
Affiliation(s)
- Nabojit Das
- Nanomaterial Toxicology Laboratory, Drug and Chemical Toxicology Group, Food, Drug & Chemical, Environment and Systems Toxicology (FEST) Division, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Vikas
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Biomedical Applications Group, CSIR-Central Scientific Instruments Organisation, Sector 30C, Chandigarh 160030, India
| | - Akash Kumar
- Nanomaterial Toxicology Laboratory, Drug and Chemical Toxicology Group, Food, Drug & Chemical, Environment and Systems Toxicology (FEST) Division, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sanjeev Soni
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Biomedical Applications Group, CSIR-Central Scientific Instruments Organisation, Sector 30C, Chandigarh 160030, India
| | - Raja Gopal Rayavarapu
- Nanomaterial Toxicology Laboratory, Drug and Chemical Toxicology Group, Food, Drug & Chemical, Environment and Systems Toxicology (FEST) Division, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
3
|
Fernández-Gómez P, Pérez de la Lastra Aranda C, Tosat-Bitrián C, Bueso de Barrio JA, Thompson S, Sot B, Salas G, Somoza Á, Espinosa A, Castellanos M, Palomo V. Nanomedical research and development in Spain: improving the treatment of diseases from the nanoscale. Front Bioeng Biotechnol 2023; 11:1191327. [PMID: 37545884 PMCID: PMC10401050 DOI: 10.3389/fbioe.2023.1191327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/23/2023] [Indexed: 08/08/2023] Open
Abstract
The new and unique possibilities that nanomaterials offer have greatly impacted biomedicine, from the treatment and diagnosis of diseases, to the specific and optimized delivery of therapeutic agents. Technological advances in the synthesis, characterization, standardization, and therapeutic performance of nanoparticles have enabled the approval of several nanomedicines and novel applications. Discoveries continue to rise exponentially in all disease areas, from cancer to neurodegenerative diseases. In Spain, there is a substantial net of researchers involved in the development of nanodiagnostics and nanomedicines. In this review, we summarize the state of the art of nanotechnology, focusing on nanoparticles, for the treatment of diseases in Spain (2017-2022), and give a perspective on the future trends and direction that nanomedicine research is taking.
Collapse
Affiliation(s)
- Paula Fernández-Gómez
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), Madrid, Spain
| | - Carmen Pérez de la Lastra Aranda
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), Madrid, Spain
- Centro de Investigaciones Biológicas Margarita Salas-CSIC, Madrid, Spain
| | - Carlota Tosat-Bitrián
- Centro de Investigaciones Biológicas Margarita Salas-CSIC, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Sebastián Thompson
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), Madrid, Spain
| | - Begoña Sot
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), Madrid, Spain
- Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Unidad de Innovación Biomédica, Madrid, Spain
- Advanced Therapies Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJ UAM), Madrid, Spain
| | - Gorka Salas
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), Madrid, Spain
- Unidad Asociada al Centro Nacional de Biotecnología (CSIC), Madrid, Spain
| | - Álvaro Somoza
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), Madrid, Spain
- Unidad Asociada al Centro Nacional de Biotecnología (CSIC), Madrid, Spain
| | - Ana Espinosa
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), Madrid, Spain
- Instituto de Ciencia de Materiales de Madrid, ICMM-CSIC, Madrid, Spain
| | - Milagros Castellanos
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), Madrid, Spain
| | - Valle Palomo
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Unidad Asociada al Centro Nacional de Biotecnología (CSIC), Madrid, Spain
| |
Collapse
|
4
|
Yu X, Wang Z, Cui H, Wu X, Chai W, Wei J, Chen Y, Zhang Z. A Review on Gold Nanotriangles: Synthesis, Self-Assembly and Their Applications. Molecules 2022; 27:8766. [PMID: 36557899 PMCID: PMC9783914 DOI: 10.3390/molecules27248766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/03/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Gold nanoparticles (AuNPs) with interesting optical properties have attracted much attention in recent years. The synthesis and plasmonic properties of AuNPs with a controllable size and shape have been extensively investigated. Among these AuNPs, gold nanotriangles (AuNTs) exhibited unique optical and plasmonic properties due to their special triangular anisotropy. Indeed, AuNTs showed promising applications in optoelectronics, optical sensing, imaging and other fields. However, only few reviews about these applications have been reported. Herein, we comprehensively reviewed the synthesis and self-assembly of AuNTs and their applications in recent years. The preparation protocols of AuNTs are mainly categorized into chemical synthesis, biosynthesis and physical-stimulus-induced synthesis. The comparison between the advantages and disadvantages of various synthetic strategies are discussed. Furthermore, the specific surface modification of AuNTs and their self-assembly into different dimensional nano- or microstructures by various interparticle interactions are introduced. Based on the unique physical properties of AuNTs and their assemblies, the applications towards chemical biology and sensing were developed. Finally, the future development of AuNTs is prospected.
Collapse
Affiliation(s)
| | | | | | | | | | - Jinjian Wei
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Yuqin Chen
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Zhide Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| |
Collapse
|
5
|
Barbir R, Jiménez RR, Martín-Rapún R, Strasser V, Domazet Jurašin D, Dabelić S, de la Fuente JM, Vinković Vrček I. Interaction of Differently Sized, Shaped, and Functionalized Silver and Gold Nanoparticles with Glycosylated versus Nonglycosylated Transferrin. ACS APPLIED MATERIALS & INTERFACES 2021; 13:27533-27547. [PMID: 34082528 DOI: 10.1021/acsami.1c04063] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Exposure of nanomaterials (NMs) to biological medium results in their direct interaction with biomolecules and the formation of a dynamic biomolecular layer known as the biomolecular corona. Despite numerous published data on nano-biointeractions, the role of protein glycosylation in the formation, characteristics, and fate of such nano-biocomplexes has been almost completely neglected, although most serum proteins are glycosylated. This study aimed to systematically investigate the differences in interaction of metallic NPs with glycosylated vs nonglycosylated transferrin. To reach this aim, we compared interaction mechanisms between differently sized, shaped, and surface-functionalized silver NMs and gold NMs to commercially available human transferrin (TRF), a glycosylated protein, and to its nonglycosylated recombinant form (ngTRF). Bovine serum albumin (BSA) was also included in the study for comparative purposes. Characterization of NMs was performed using transmission electron microscopy and dynamic and electrophoretic light scattering techniques. Fluorescence quenching and circular dichroism methods were used to evaluate protein binding constants on the nanosurface and conformational changes after the protein-NM interactions, respectively. Competitive binding of TRF, ngTRF, and BSA to the surface of different NMs was evaluated by separating them after extraction from protein corona by gel electrophoresis following quantification with a commercial protein assay. The results showed that the binding strength between NMs and transferrin and the changes in the secondary protein structure largely depend not only on NM physicochemical properties but also on the protein glycosylation status. Data gained by this study highlight the relevance of protein glycosylation for all future design, development, and efficacy and safety assessment of NMs.
Collapse
Affiliation(s)
- Rinea Barbir
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, Zagreb 10 000, Croatia
| | - Rafael Ramírez Jiménez
- Instituto de Nanociencia y Materiales de Aragón (INMA), Universidad de Zaragoza - CSIC and CIBER-BBN, Zaragoza 50018, Spain
| | - Rafael Martín-Rapún
- Instituto de Nanociencia y Materiales de Aragón (INMA), Universidad de Zaragoza - CSIC and CIBER-BBN, Zaragoza 50018, Spain
| | - Vida Strasser
- Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, Zagreb 10 000, Croatia
| | - Darija Domazet Jurašin
- Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, Zagreb 10 000, Croatia
| | - Sanja Dabelić
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Ante Kovačića 1, Zagreb 10 000, Croatia
| | - Jesus M de la Fuente
- Instituto de Nanociencia y Materiales de Aragón (INMA), Universidad de Zaragoza - CSIC and CIBER-BBN, Zaragoza 50018, Spain
| | - Ivana Vinković Vrček
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, Zagreb 10 000, Croatia
| |
Collapse
|