1
|
Isaković J, Chin BD, Oberwinter M, Rance HK. From lab coats to clinical trials: Evolution and application of electromagnetic fields for ischemic stroke rehabilitation and monitoring. Brain Res 2024; 1850:149391. [PMID: 39662791 DOI: 10.1016/j.brainres.2024.149391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 12/05/2024] [Accepted: 12/06/2024] [Indexed: 12/13/2024]
Abstract
Stroke is a neurovascular disorder which stands as one of the leading causes of death and disability worldwide, resulting in motor and cognitive impairment. Although the treatment approach depends on the time elapsed, the type of stroke and the availability of care centers, common interventions include thrombectomy or the administration of a tissue plasminogen activator (tPA). While these methods restore blood flow, they fall short in helping patients regain lost function. With that, recent years have seen a rise in novel methods, one of which is the use of electromagnetic fields (EMFs). Due to their ability to impact the charges in their vicinity, thereby altering the immune response and cell signaling, EMFs became suitable candidates for stroke rehabilitation. Based on their characteristics, therapeutic EMFs can be categorized into transcranial magnetic stimulation (TMS), transcranial direct current stimulation (tDCS), pulsed (PEMFs) and low frequency (LF-EMFs) electromagnetic fields, among others. In addition to treatment, EMFs are being explored for stroke monitoring, utilizing external EMFs for imaging or recording innate EMFs linked to neural activity. Drawing from research on the effects of EMFs, this review aims to provide a comprehensive overview of the physical principles and molecular mechanisms underlying the action of EMFs, along with a discussion of their application in preclinical studies and clinical trials. Finally, this paper not only addresses the importance of treatment availability and potential side-effects, but also delves into the technical and ethical challenges associated with the use of EMFs, while exploring their prospects and future opportunities.
Collapse
Affiliation(s)
- Jasmina Isaković
- School of Medicine, European University Cyprus - Frankfurt Branch, 60488 Frankfurt am Main, Germany.
| | - Benjamin Daniel Chin
- School of Medicine, European University Cyprus - Frankfurt Branch, 60488 Frankfurt am Main, Germany
| | - Moritz Oberwinter
- School of Medicine, European University Cyprus - Frankfurt Branch, 60488 Frankfurt am Main, Germany
| | - Hannah Katarina Rance
- School of Medicine, European University Cyprus - Frankfurt Branch, 60488 Frankfurt am Main, Germany
| |
Collapse
|
2
|
Shlapakova LE, Pryadko AS, Zharkova II, Volkov A, Kozadaeva M, Chernozem RV, Mukhortova YR, Chesnokova D, Zhuikov VA, Zeltser A, Dudun AA, Makhina T, Bonartseva GA, Voinova VV, Shaitan KV, Romanyuk K, Kholkin AL, Bonartsev AP, Surmeneva MA, Surmenev RA. Osteogenic Potential and Long-Term Enzymatic Biodegradation of PHB-based Scaffolds with Composite Magnetic Nanofillers in a Magnetic Field. ACS APPLIED MATERIALS & INTERFACES 2024; 16:56555-56579. [PMID: 39377758 DOI: 10.1021/acsami.4c06835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Millions of people worldwide suffer from musculoskeletal damage, thus using the largest proportion of rehabilitation services. The limited self-regenerative capacity of bone and cartilage tissues necessitates the development of functional biomaterials. Magnetoactive materials are a promising solution due to clinical safety and deep tissue penetration of magnetic fields (MFs) without attenuation and tissue heating. Herein, electrospun microfibrous scaffolds were developed based on piezoelectric poly(3-hydroxybutyrate) (PHB) and composite magnetic nanofillers [magnetite with graphene oxide (GO) or reduced GO]. The scaffolds' morphology, structure, mechanical properties, surface potential, and piezoelectric response were systematically investigated. Furthermore, a complex mechanism of enzymatic biodegradation of these scaffolds is proposed that involves (i) a release of polymer crystallites, (ii) crystallization of the amorphous phase, and (iii) dissolution of the amorphous phase. Incorporation of Fe3O4, Fe3O4-GO, or Fe3O4-rGO accelerated the biodegradation of PHB scaffolds owing to pores on the surface of composite fibers and the enlarged content of polymer amorphous phase in the composite scaffolds. Six-month biodegradation caused a reduction in surface potential (1.5-fold) and in a vertical piezoresponse (3.5-fold) of the Fe3O4-GO scaffold because of a decrease in the PHB β-phase content. In vitro assays in the absence of an MF showed a significantly more pronounced mesenchymal stem cell proliferation on composite magnetic scaffolds compared to the neat scaffold, whereas in an MF (68 mT, 0.67 Hz), cell proliferation was not statistically significantly different when all the studied scaffolds were compared. The PHB/Fe3O4-GO scaffold was implanted into femur bone defects in rats, resulting in successful bone repair after nonperiodic magnetic stimulation (200 mT, 0.04 Hz) owing to a synergetic influence of increased surface roughness, the presence of hydrophilic groups near the surface, and magnetoelectric and magnetomechanical effects of the material.
Collapse
Affiliation(s)
- Lada E Shlapakova
- Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Tomsk 634050, Russia
| | - Artyom S Pryadko
- Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Tomsk 634050, Russia
| | - Irina I Zharkova
- Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow 119234, Russia
| | - Alexey Volkov
- P. Lumumba Peoples' Friendship University of Russia, 6 Miklukho-Maklaya Str., Moscow 117198, Russia
- Avtsyn Research Institute of Human Morphology at FSBSI Petrovsky National Research Centre of Surgery, 3 Tsyurupy Str., Moscow 117418, Russia
| | - Maria Kozadaeva
- Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Tomsk 634050, Russia
| | - Roman V Chernozem
- Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Tomsk 634050, Russia
| | - Yulia R Mukhortova
- Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Tomsk 634050, Russia
| | - Dariana Chesnokova
- Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow 119234, Russia
| | - Vsevolod A Zhuikov
- Research Center of Biotechnology, Russian Academy of Sciences, Leninsky Ave 33, Bldg. 2, Moscow 119071, Russia
| | - Angelina Zeltser
- Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow 119234, Russia
| | - Andrey A Dudun
- Research Center of Biotechnology, Russian Academy of Sciences, Leninsky Ave 33, Bldg. 2, Moscow 119071, Russia
| | - Tatiana Makhina
- Research Center of Biotechnology, Russian Academy of Sciences, Leninsky Ave 33, Bldg. 2, Moscow 119071, Russia
| | - Garina A Bonartseva
- Research Center of Biotechnology, Russian Academy of Sciences, Leninsky Ave 33, Bldg. 2, Moscow 119071, Russia
| | - Vera V Voinova
- Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow 119234, Russia
| | - Konstantin V Shaitan
- Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow 119234, Russia
| | - Konstantin Romanyuk
- Department of Physics & CICECO─Aveiro Institute of Materials, University of Aveiro, Aveiro 3810-193, Portugal
| | - Andrei L Kholkin
- Department of Physics & CICECO─Aveiro Institute of Materials, University of Aveiro, Aveiro 3810-193, Portugal
| | - Anton P Bonartsev
- Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow 119234, Russia
| | - Maria A Surmeneva
- Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Tomsk 634050, Russia
| | - Roman A Surmenev
- Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Tomsk 634050, Russia
| |
Collapse
|
3
|
Castilla-Casadiego DA, Loh DH, Pineda-Hernandez A, Rosales AM. Stimuli-Responsive Substrates to Control the Immunomodulatory Potential of Stromal Cells. Biomacromolecules 2024; 25:6319-6337. [PMID: 39283807 PMCID: PMC11506505 DOI: 10.1021/acs.biomac.4c00835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2024]
Abstract
Mesenchymal stromal cells (MSCs) have broad immunomodulatory properties that range from regulation, proliferation, differentiation, and immune cell activation to secreting bioactive molecules that inhibit inflammation and regulate immune response. These properties provide MSCs with high therapeutic potency that has been shown to be relevant to tissue engineering and regenerative medicine. Hence, researchers have explored diverse strategies to control the immunomodulatory potential of stromal cells using polymeric substrates or scaffolds. These substrates alter the immunomodulatory response of MSCs, especially through biophysical cues such as matrix mechanical properties. To leverage these cell-matrix interactions as a strategy for priming MSCs, emerging studies have explored the use of stimuli-responsive substrates to enhance the therapeutic value of stromal cells. This review highlights how stimuli-responsive materials, including chemo-responsive, microenvironment-responsive, magneto-responsive, mechano-responsive, and photo-responsive substrates, have specifically been used to promote the immunomodulatory potential of stromal cells by controlling their secretory activity.
Collapse
Affiliation(s)
- David A Castilla-Casadiego
- Mcketta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Darren H Loh
- Mcketta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Aldaly Pineda-Hernandez
- Mcketta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Adrianne M Rosales
- Mcketta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
4
|
Russo T, Peluso V, Gloria A, Gargiulo V, Alfe M, Ausanio G. An integrated design strategy coupling additive manufacturing and matrix-assisted pulsed laser evaporation (MAPLE) towards the development of a new concept 3D scaffold with improved properties for tissue regeneration. NANOSCALE ADVANCES 2024; 6:3064-3072. [PMID: 38868830 PMCID: PMC11166109 DOI: 10.1039/d4na00098f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/12/2024] [Indexed: 06/14/2024]
Abstract
Bioinspired strategies for scaffold design and optimization were improved by the introduction of Additive Manufacturing (AM), thus allowing for replicating and reproducing complex shapes and structures in a reliable manner, adopting different kinds of polymeric and nanocomposite materials properly combined according to the features of the natural host tissues. Benefiting from recent findings in AM, a Matrix-Assisted Pulsed Laser Evaporation (MAPLE) technique was employed for obtaining graphene-like material (GL) uniform coatings on 3D scaffolds for tissue repair strategies, towards the development of a new concept 3D scaffold with controlled morphological/architectural and surface features and mechanical and biological properties. The effect of the material-design combination through an integrated technological approach (i.e., MAPLE deposition of GL on 3D AM PCL scaffolds) was assessed through scanning electron microscopy, atomic force microscopy, contact angle measurements, mechanical measurements and biological analyses (cell viability assay and alkaline phosphatase activity) in conjunction with confocal laser scanning microscopy. The differentiation of hMSCs towards the osteoblast phenotype was also investigated analysing the gene expression profile. The obtained findings provided a further insight into the development of improved strategies for the functionalization or combination of GL with other materials and 3D structures in a hybrid fashion for ensuring a tighter adhesion onto the substrates, improving cell fate over time, without negatively altering the mechanical properties and behaviour of the neat constructs. In particular, the results provided interesting information, making 3D AM GL-coated scaffolds potential candidates for bone tissue engineering.
Collapse
Affiliation(s)
- Teresa Russo
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy 80125 Naples Italy
| | - Valentina Peluso
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy 80125 Naples Italy
| | - Antonio Gloria
- Department of Industrial Engineering, University of Naples Federico II 80125 Naples Italy
| | - Valentina Gargiulo
- Institute of Sciences and Technologies for Sustainable Energy and Mobility (STEMS), National Research Council of Italy 80125 Naples Italy
| | - Michela Alfe
- Institute of Sciences and Technologies for Sustainable Energy and Mobility (STEMS), National Research Council of Italy 80125 Naples Italy
| | - Giovanni Ausanio
- Dipartimento di Fisica "Ettore Pancini", Università degli Studi di Napoli Federico II 80125 Napoli Italy
| |
Collapse
|
5
|
Inam H, Sprio S, Tavoni M, Abbas Z, Pupilli F, Tampieri A. Magnetic Hydroxyapatite Nanoparticles in Regenerative Medicine and Nanomedicine. Int J Mol Sci 2024; 25:2809. [PMID: 38474056 DOI: 10.3390/ijms25052809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/26/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
This review focuses on the latest advancements in magnetic hydroxyapatite (mHA) nanoparticles and their potential applications in nanomedicine and regenerative medicine. mHA nanoparticles have gained significant interest over the last few years for their great potential, offering advanced multi-therapeutic strategies because of their biocompatibility, bioactivity, and unique physicochemical features, enabling on-demand activation and control. The most relevant synthetic methods to obtain magnetic apatite-based materials, either in the form of iron-doped HA nanoparticles showing intrinsic magnetic properties or composite/hybrid compounds between HA and superparamagnetic metal oxide nanoparticles, are described as highlighting structure-property correlations. Following this, this review discusses the application of various magnetic hydroxyapatite nanomaterials in bone regeneration and nanomedicine. Finally, novel perspectives are investigated with respect to the ability of mHA nanoparticles to improve nanocarriers with homogeneous structures to promote multifunctional biological applications, such as cell stimulation and instruction, antimicrobial activity, and drug release with on-demand triggering.
Collapse
Affiliation(s)
- Hina Inam
- Institute of Science, Technology and Sustainability for Ceramics (ISSMC), National Research Council of Italy (CNR), 48018 Faenza, Italy
- Department of Material Science and Technology, University of Parma, 43121 Parma, Italy
| | - Simone Sprio
- Institute of Science, Technology and Sustainability for Ceramics (ISSMC), National Research Council of Italy (CNR), 48018 Faenza, Italy
| | - Marta Tavoni
- Institute of Science, Technology and Sustainability for Ceramics (ISSMC), National Research Council of Italy (CNR), 48018 Faenza, Italy
- Department of Material Science and Technology, University of Parma, 43121 Parma, Italy
| | - Zahid Abbas
- Institute of Science, Technology and Sustainability for Ceramics (ISSMC), National Research Council of Italy (CNR), 48018 Faenza, Italy
- Department of Chemistry "Giacomo Ciamician", University of Bologna, 40126 Bologna, Italy
| | - Federico Pupilli
- Institute of Science, Technology and Sustainability for Ceramics (ISSMC), National Research Council of Italy (CNR), 48018 Faenza, Italy
- Department of Chemical Sciences, University of Padova, 35122 Padova, Italy
| | - Anna Tampieri
- Institute of Science, Technology and Sustainability for Ceramics (ISSMC), National Research Council of Italy (CNR), 48018 Faenza, Italy
| |
Collapse
|
6
|
Shlapakova LE, Botvin VV, Mukhortova YR, Zharkova II, Alipkina SI, Zeltzer A, Dudun AA, Makhina T, Bonartseva GA, Voinova VV, Wagner DV, Pariy I, Bonartsev AP, Surmenev RA, Surmeneva MA. Magnetoactive Composite Conduits Based on Poly(3-hydroxybutyrate) and Magnetite Nanoparticles for Repair of Peripheral Nerve Injury. ACS APPLIED BIO MATERIALS 2024; 7:1095-1114. [PMID: 38270084 DOI: 10.1021/acsabm.3c01032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Peripheral nerve injury poses a threat to the mobility and sensitivity of a nerve, thereby leading to permanent function loss due to the low regenerative capacity of mature neurons. To date, the most widely clinically applied approach to bridging nerve injuries is autologous nerve grafting, which faces challenges such as donor site morbidity, donor shortages, and the necessity of a second surgery. An effective therapeutic strategy is urgently needed worldwide to overcome the current limitations. Herein, a magnetic nerve guidance conduit (NGC) based on biocompatible biodegradable poly(3-hydroxybutyrate) (PHB) and 8 wt % of magnetite nanoparticles modified by citric acid (Fe3O4-CA) was fabricated by electrospinning. The crystalline structure of NGCs was studied by X-ray diffraction, which indicated an enlarged β-phase of PHB in the composite conduit compared to a pure PHB conduit. Tensile tests revealed greater ductility of PHB/Fe3O4-CA: the composite conduit has Young's modulus of 221 ± 52 MPa and an elongation at break of 28.6 ± 2.9%, comparable to clinical materials. Saturation magnetization (σs) of Fe3O4-CA and PHB/Fe3O4-CA is 61.88 ± 0.29 and 7.44 ± 0.07 emu/g, respectively. The water contact angle of the PHB/Fe3O4-CA conduit is lower as compared to pure PHB, while surface free energy (σ) is significantly higher, which was attributed to higher surface roughness and an amorphous phase as well as possible PHB/Fe3O4-CA interface interactions. In vitro, the conduits supported the proliferation of rat mesenchymal stem cells (rMSCs) and SH-SY5Y cells in a low-frequency magnetic field (0.67 Hz, 68 mT). In vivo, the conduits were used to bridge damaged sciatic nerves in rats; pure PHB and composite PHB/Fe3O4-CA conduits did not cause acute inflammation and performed a barrier function, which promotes nerve regeneration. Thus, these conduits are promising as implants for the regeneration of peripheral nerves.
Collapse
Affiliation(s)
- Lada E Shlapakova
- Physical Materials Science and Composite Materials Center, Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Tomsk 634050, Russia
| | - Vladimir V Botvin
- Physical Materials Science and Composite Materials Center, Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Tomsk 634050, Russia
| | - Yulia R Mukhortova
- Physical Materials Science and Composite Materials Center, Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Tomsk 634050, Russia
| | - Irina I Zharkova
- Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1-12, Moscow 119234, Russia
| | - Svetlana I Alipkina
- Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1-12, Moscow 119234, Russia
| | - Angelina Zeltzer
- Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1-12, Moscow 119234, Russia
| | - Andrey A Dudun
- Research Center of Biotechnology, Russian Academy of Sciences, Leninsky Ave 33, Bldg. 2, Moscow 119071, Russia
| | - Tatiana Makhina
- Research Center of Biotechnology, Russian Academy of Sciences, Leninsky Ave 33, Bldg. 2, Moscow 119071, Russia
| | - Garina A Bonartseva
- Research Center of Biotechnology, Russian Academy of Sciences, Leninsky Ave 33, Bldg. 2, Moscow 119071, Russia
| | - Vera V Voinova
- Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1-12, Moscow 119234, Russia
| | - Dmitry V Wagner
- National Research Tomsk State University, Tomsk 634050, Russia
| | - Igor Pariy
- Physical Materials Science and Composite Materials Center, Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Tomsk 634050, Russia
| | - Anton P Bonartsev
- Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1-12, Moscow 119234, Russia
| | - Roman A Surmenev
- Physical Materials Science and Composite Materials Center, Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Tomsk 634050, Russia
| | - Maria A Surmeneva
- Physical Materials Science and Composite Materials Center, Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Tomsk 634050, Russia
| |
Collapse
|
7
|
Mocanu-Dobranici AE, Costache M, Dinescu S. Insights into the Molecular Mechanisms Regulating Cell Behavior in Response to Magnetic Materials and Magnetic Stimulation in Stem Cell (Neurogenic) Differentiation. Int J Mol Sci 2023; 24:ijms24032028. [PMID: 36768351 PMCID: PMC9916404 DOI: 10.3390/ijms24032028] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/10/2023] [Accepted: 01/16/2023] [Indexed: 01/22/2023] Open
Abstract
Magnetic materials and magnetic stimulation have gained increasing attention in tissue engineering (TE), particularly for bone and nervous tissue reconstruction. Magnetism is utilized to modulate the cell response to environmental factors and lineage specifications, which involve complex mechanisms of action. Magnetic fields and nanoparticles (MNPs) may trigger focal adhesion changes, which are further translated into the reorganization of the cytoskeleton architecture and have an impact on nuclear morphology and positioning through the activation of mechanotransduction pathways. Mechanical stress induced by magnetic stimuli translates into an elongation of cytoskeleton fibers, the activation of linker in the nucleoskeleton and cytoskeleton (LINC) complex, and nuclear envelope deformation, and finally leads to the mechanical regulation of chromatin conformational changes. As such, the internalization of MNPs with further magnetic stimulation promotes the evolution of stem cells and neurogenic differentiation, triggering significant changes in global gene expression that are mediated by histone deacetylases (e.g., HDAC 5/11), and the upregulation of noncoding RNAs (e.g., miR-106b~25). Additionally, exposure to a magnetic environment had a positive influence on neurodifferentiation through the modulation of calcium channels' activity and cyclic AMP response element-binding protein (CREB) phosphorylation. This review presents an updated and integrated perspective on the molecular mechanisms that govern the cellular response to magnetic cues, with a special focus on neurogenic differentiation and the possible utility of nervous TE, as well as the limitations of using magnetism for these applications.
Collapse
Affiliation(s)
| | - Marieta Costache
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania
- Research Institute of the University of Bucharest (ICUB), 050063 Bucharest, Romania
| | - Sorina Dinescu
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania
- Research Institute of the University of Bucharest (ICUB), 050063 Bucharest, Romania
- Correspondence:
| |
Collapse
|
8
|
Magnetic Nanoparticles: Current Advances in Nanomedicine, Drug Delivery and MRI. CHEMISTRY 2022. [DOI: 10.3390/chemistry4030063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Magnetic nanoparticles (MNPs) have evolved tremendously during recent years, in part due to the rapid expansion of nanotechnology and to their active magnetic core with a high surface-to-volume ratio, while their surface functionalization opened the door to a plethora of drug, gene and bioactive molecule immobilization. Taming the high reactivity of the magnetic core was achieved by various functionalization techniques, producing MNPs tailored for the diagnosis and treatment of cardiovascular or neurological disease, tumors and cancer. Superparamagnetic iron oxide nanoparticles (SPIONs) are established at the core of drug-delivery systems and could act as efficient agents for MFH (magnetic fluid hyperthermia). Depending on the functionalization molecule and intrinsic morphological features, MNPs now cover a broad scope which the current review aims to overview. Considering the exponential expansion of the field, the current review will be limited to roughly the past three years.
Collapse
|
9
|
Pryadko A AS, Mukhortova YR, Chernozem RV, Pariy I, Alipkina SI, Zharkova II, Dudun AA, Zhuikov VA, Moisenovich AM, Bonartseva GA, Voinova VV, Chesnokova DV, Ivanov AA, Travnikova DY, Shaitan KV, Bonartsev AP, Wagner DV, Shlapakova LE, Surmenev RA, Surmeneva MA. Electrospun Magnetic Composite Poly-3-hydroxybutyrate/Magnetite Scaffolds for Biomedical Applications: Composition, Structure, Magnetic Properties, and Biological Performance. ACS APPLIED BIO MATERIALS 2022; 5:3999-4019. [PMID: 35925883 DOI: 10.1021/acsabm.2c00496] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Magnetically responsive composite polymer scaffolds have good potential for a variety of biomedical applications. In this work, electrospun composite scaffolds made of polyhydroxybutyrate (PHB) and magnetite (Fe3O4) particles (MPs) were studied before and after degradation in either PBS or a lipase solution. MPs of different sizes with high saturation magnetization were synthesized by the coprecipitation method followed by coating with citric acid (CA). Nanosized MPs were prone to magnetite-maghemite phase transformation during scaffold fabrication, as revealed by Raman spectroscopy; however, for CA-functionalized nanoparticles, the main phase was found to be magnetite, with some traces of maghemite. Submicron MPs were resistant to the magnetite-maghemite phase transformation. MPs did not significantly affect the morphology and diameter of PHB fibers. The scaffolds containing CA-coated MPs lost 0.3 or 0.2% of mass in the lipase solution and PBS, respectively, whereas scaffolds doped with unmodified MPs showed no mass changes after 1 month of incubation in either medium. In all electrospun scaffolds, no alterations of the fiber morphology were observed. Possible mechanisms of the crystalline-lamellar-structure changes in hybrid PHB/Fe3O4 scaffolds during hydrolytic and enzymatic degradation are proposed. It was revealed that particle size and particle surface functionalization affect the mechanical properties of the hybrid scaffolds. The addition of unmodified MPs increased scaffolds' ultimate strength but reduced elongation at break after the biodegradation, whereas simultaneous increases in both parameters were observed for composite scaffolds doped with CA-coated MPs. The highest saturation magnetization─higher than that published in the literature─was registered for composite PHB scaffolds doped with submicron MPs. All PHB scaffolds proved to be biocompatible, and the ones doped with nanosized MPs yielded faster proliferation of rat mesenchymal stem cells. In addition, all electrospun scaffolds were able to support angiogenesis in vivo at 30 days after implantation in Wistar rats.
Collapse
Affiliation(s)
- Artyom S Pryadko A
- Physical Materials Science and Composite Materials Center, Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Tomsk 634050, Russia
| | - Yulia R Mukhortova
- Physical Materials Science and Composite Materials Center, Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Tomsk 634050, Russia
| | - Roman V Chernozem
- Physical Materials Science and Composite Materials Center, Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Tomsk 634050, Russia
| | - Igor Pariy
- Physical Materials Science and Composite Materials Center, Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Tomsk 634050, Russia
| | - Svetlana I Alipkina
- Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1-12, Moscow 119234, Russia
| | - Irina I Zharkova
- Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1-12, Moscow 119234, Russia
| | - Andrey A Dudun
- Research Center of Biotechnology, Russian Academy of Sciences, Leninsky Ave 33, Bldg. 2, Moscow 119071, Russia
| | - Vsevolod A Zhuikov
- Research Center of Biotechnology, Russian Academy of Sciences, Leninsky Ave 33, Bldg. 2, Moscow 119071, Russia
| | - Anastasia M Moisenovich
- Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1-12, Moscow 119234, Russia
| | - Garina A Bonartseva
- Research Center of Biotechnology, Russian Academy of Sciences, Leninsky Ave 33, Bldg. 2, Moscow 119071, Russia
| | - Vera V Voinova
- Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1-12, Moscow 119234, Russia
| | - Dariana V Chesnokova
- Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1-12, Moscow 119234, Russia
| | - Alexey A Ivanov
- Physical Materials Science and Composite Materials Center, Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Tomsk 634050, Russia
| | - Daria Yu Travnikova
- Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1-12, Moscow 119234, Russia
| | - Konstantin V Shaitan
- Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1-12, Moscow 119234, Russia
| | - Anton P Bonartsev
- Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1-12, Moscow 119234, Russia
| | - Dmitry V Wagner
- National Research Tomsk State University, Tomsk 634050, Russia
| | - Lada E Shlapakova
- Physical Materials Science and Composite Materials Center, Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Tomsk 634050, Russia
| | - Roman A Surmenev
- Physical Materials Science and Composite Materials Center, Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Tomsk 634050, Russia
| | - Maria A Surmeneva
- Physical Materials Science and Composite Materials Center, Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Tomsk 634050, Russia
| |
Collapse
|
10
|
Abdel Aziz I, Maver L, Giannasi C, Niada S, Brini AT, Antognazza MR. Polythiophene-mediated light modulation of membrane potential and calcium signalling in human adipose-derived stem/stromal cells. JOURNAL OF MATERIALS CHEMISTRY. C 2022; 10:9823-9833. [PMID: 36277082 PMCID: PMC9487879 DOI: 10.1039/d2tc01426b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/05/2022] [Indexed: 06/16/2023]
Abstract
Recent progress in the fields of regenerative medicine and tissue engineering has been strongly fostered both by the investigation of crucial cues, able to trigger the regeneration of damaged tissues, and by the development of ad hoc functional materials, capable of selectively (re-)activating relevant physiological pathways. In parallel to the successful realization of biochemical cues and the optimization of delivery protocols, the use of biophysical stimuli has been emerging as an alternative, highly effective strategy. Techniques based on electrical, magnetic and mechanical stimulation have been reported to efficiently direct differentiation of stem cells and modulate cell physiology at different developmental stages. In this framework, the use of optical stimulation represents a valuable approach, possibly overcoming current limitations of chemical cues, like limited spatial and temporal resolution and poor control over the extracellular environment. Surprisingly, the effects of light on the physiological properties (light toxicity, cell membrane potential, and cell ionic trafficking) of undifferentiated cells, as well as on their differentiation pathways, were investigated to a very limited extent and rarely quantified in a systematic way. In this work, we aim at clarifying the effects of optical excitation on the physiological behaviour of undifferentiated human adipose-derived stem cells (hASC), cultured on top of a light-sensitive conjugated polymer, region-regular poly-3-hexyl-thiophene (P3HT). Interestingly, we observe statistically significant modulation of the cell membrane potential, as well as noticeable effects on intracellular calcium signalling, triggered by P3HT excitation upon green light stimuli. Possible mechanisms involved in the signal transduction pathways are considered and critically discussed. The capability to modulate the physiological response of hASC upon photoexcitation, in a highly controlled and selective manner, provides a promptly available and non invasive diagnostic tool, thus contributing to the understanding of the complex machinery behind stem cells and material interfaces. Moreover, it may open the route to novel techniques to drive the differentiation path with unprecedented versatility and operational easiness.
Collapse
Affiliation(s)
- Ilaria Abdel Aziz
- Center for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, via Giovanni Pascoli 70/3 20133 Milano Italy
- Politecnico di Milano, Dip.to di Fisica, P.zza L. da Vinci 32 20133 Milano Italy
| | - Leonardo Maver
- Center for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, via Giovanni Pascoli 70/3 20133 Milano Italy
- Politecnico di Milano, Dip.to di Fisica, P.zza L. da Vinci 32 20133 Milano Italy
| | - Chiara Giannasi
- University of Milan, Department of Biomedical, Surgical and Dental Sciences, Via Vanvitelli 32 20129 Milano Italy
- IRCCS Istituto Ortopedico Galeazzi, Via Galeazzi 4 20161 Milano Italy
| | - Stefania Niada
- IRCCS Istituto Ortopedico Galeazzi, Via Galeazzi 4 20161 Milano Italy
| | - Anna T Brini
- University of Milan, Department of Biomedical, Surgical and Dental Sciences, Via Vanvitelli 32 20129 Milano Italy
- IRCCS Istituto Ortopedico Galeazzi, Via Galeazzi 4 20161 Milano Italy
| | - Maria Rosa Antognazza
- Center for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, via Giovanni Pascoli 70/3 20133 Milano Italy
| |
Collapse
|
11
|
Improta G, Borrelli A, Triassi M. Machine Learning and Lean Six Sigma to Assess How COVID-19 Has Changed the Patient Management of the Complex Operative Unit of Neurology and Stroke Unit: A Single Center Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:5215. [PMID: 35564627 PMCID: PMC9103695 DOI: 10.3390/ijerph19095215] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/19/2022] [Accepted: 04/23/2022] [Indexed: 02/04/2023]
Abstract
Background: In health, it is important to promote the effectiveness, efficiency and adequacy of the services provided; these concepts become even more important in the era of the COVID-19 pandemic, where efforts to manage the disease have absorbed all hospital resources. The COVID-19 emergency led to a profound restructuring-in a very short time-of the Italian hospital system. Some factors that impose higher costs on hospitals are inappropriate hospitalization and length of stay (LOS). The length of stay (LOS) is a very useful parameter for the management of services within the hospital and is an index evaluated for the management of costs. Methods: This study analyzed how COVID-19 changed the activity of the Complex Operative Unit (COU) of the Neurology and Stroke Unit of the San Giovanni di Dio e Ruggi d'Aragona University Hospital of Salerno (Italy). The methodology used in this study was Lean Six Sigma. Problem solving in Lean Six Sigma is the DMAIC roadmap, characterized by five operational phases. To add even more value to the processing, a single clinical case, represented by stroke patients, was investigated to verify the specific impact of the pandemic. Results: The results obtained show a reduction in LOS for stroke patients and an increase in the value of the diagnosis related group relative weight. Conclusions: This work has shown how, thanks to the implementation of protocols for the management of the COU of the Neurology and Stroke Unit, the work of doctors has improved, and this is evident from the values of the parameters taken into consideration.
Collapse
Affiliation(s)
- Giovanni Improta
- Department of Public Health, University of Naples “Federico II”, 80131 Naples, Italy;
- Interdepartmental Center for Research in Healthcare Management and Innovation in Healthcare (CIRMIS), University of Naples “Federico II”, 80131 Naples, Italy
| | - Anna Borrelli
- “San Giovanni di Dio e Ruggi d’Aragona” University Hospital, 84121 Salerno, Italy;
| | - Maria Triassi
- Department of Public Health, University of Naples “Federico II”, 80131 Naples, Italy;
- Interdepartmental Center for Research in Healthcare Management and Innovation in Healthcare (CIRMIS), University of Naples “Federico II”, 80131 Naples, Italy
| |
Collapse
|
12
|
Park HJ, Hong H, Thangam R, Song MG, Kim JE, Jo EH, Jang YJ, Choi WH, Lee MY, Kang H, Lee KB. Static and Dynamic Biomaterial Engineering for Cell Modulation. NANOMATERIALS 2022; 12:nano12081377. [PMID: 35458085 PMCID: PMC9028203 DOI: 10.3390/nano12081377] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/31/2022] [Accepted: 04/04/2022] [Indexed: 02/01/2023]
Abstract
In the biological microenvironment, cells are surrounded by an extracellular matrix (ECM), with which they dynamically interact during various biological processes. Specifically, the physical and chemical properties of the ECM work cooperatively to influence the behavior and fate of cells directly and indirectly, which invokes various physiological responses in the body. Hence, efficient strategies to modulate cellular responses for a specific purpose have become important for various scientific fields such as biology, pharmacy, and medicine. Among many approaches, the utilization of biomaterials has been studied the most because they can be meticulously engineered to mimic cellular modulatory behavior. For such careful engineering, studies on physical modulation (e.g., ECM topography, stiffness, and wettability) and chemical manipulation (e.g., composition and soluble and surface biosignals) have been actively conducted. At present, the scope of research is being shifted from static (considering only the initial environment and the effects of each element) to biomimetic dynamic (including the concepts of time and gradient) modulation in both physical and chemical manipulations. This review provides an overall perspective on how the static and dynamic biomaterials are actively engineered to modulate targeted cellular responses while highlighting the importance and advance from static modulation to biomimetic dynamic modulation for biomedical applications.
Collapse
Affiliation(s)
- Hyung-Joon Park
- Department of Interdisciplinary Biomicrosystem Technology, College of Engineering, Korea University, Seoul 02841, Korea;
| | - Hyunsik Hong
- Department of Materials Science and Engineering, College of Engineering, Korea University, Seoul 02841, Korea; (H.H.); (R.T.)
| | - Ramar Thangam
- Department of Materials Science and Engineering, College of Engineering, Korea University, Seoul 02841, Korea; (H.H.); (R.T.)
- Institute for High Technology Materials and Devices, Korea University, Seoul 02841, Korea
| | - Min-Gyo Song
- Department of Biomedical Engineering, College of Health Science, Korea University, Seoul 02841, Korea; (M.-G.S.); (W.-H.C.); (M.-Y.L.)
| | - Ju-Eun Kim
- Department of Biomedical Engineering, College of Engineering, Korea University, Seoul 02841, Korea; (J.-E.K.); (E.-H.J.)
| | - Eun-Hae Jo
- Department of Biomedical Engineering, College of Engineering, Korea University, Seoul 02841, Korea; (J.-E.K.); (E.-H.J.)
| | - Yun-Jeong Jang
- Department of Biomedical Engineering, Armour College of Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA;
| | - Won-Hyoung Choi
- Department of Biomedical Engineering, College of Health Science, Korea University, Seoul 02841, Korea; (M.-G.S.); (W.-H.C.); (M.-Y.L.)
| | - Min-Young Lee
- Department of Biomedical Engineering, College of Health Science, Korea University, Seoul 02841, Korea; (M.-G.S.); (W.-H.C.); (M.-Y.L.)
| | - Heemin Kang
- Department of Interdisciplinary Biomicrosystem Technology, College of Engineering, Korea University, Seoul 02841, Korea;
- Department of Materials Science and Engineering, College of Engineering, Korea University, Seoul 02841, Korea; (H.H.); (R.T.)
- Correspondence: (H.K.); (K.-B.L.)
| | - Kyu-Back Lee
- Department of Interdisciplinary Biomicrosystem Technology, College of Engineering, Korea University, Seoul 02841, Korea;
- Department of Biomedical Engineering, College of Health Science, Korea University, Seoul 02841, Korea; (M.-G.S.); (W.-H.C.); (M.-Y.L.)
- Department of Biomedical Engineering, College of Engineering, Korea University, Seoul 02841, Korea; (J.-E.K.); (E.-H.J.)
- Correspondence: (H.K.); (K.-B.L.)
| |
Collapse
|
13
|
Filippi M, Garello F, Yasa O, Kasamkattil J, Scherberich A, Katzschmann RK. Engineered Magnetic Nanocomposites to Modulate Cellular Function. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2104079. [PMID: 34741417 DOI: 10.1002/smll.202104079] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/13/2021] [Indexed: 06/13/2023]
Abstract
Magnetic nanoparticles (MNPs) have various applications in biomedicine, including imaging, drug delivery and release, genetic modification, cell guidance, and patterning. By combining MNPs with polymers, magnetic nanocomposites (MNCs) with diverse morphologies (core-shell particles, matrix-dispersed particles, microspheres, etc.) can be generated. These MNCs retain the ability of MNPs to be controlled remotely using external magnetic fields. While the effects of these biomaterials on the cell biology are still poorly understood, such information can help the biophysical modulation of various cellular functions, including proliferation, adhesion, and differentiation. After recalling the basic properties of MNPs and polymers, and describing their coassembly into nanocomposites, this review focuses on how polymeric MNCs can be used in several ways to affect cell behavior. A special emphasis is given to 3D cell culture models and transplantable grafts, which are used for regenerative medicine, underlining the impact of MNCs in regulating stem cell differentiation and engineering living tissues. Recent advances in the use of MNCs for tissue regeneration are critically discussed, particularly with regard to their prospective involvement in human therapy and in the construction of advanced functional materials such as magnetically operated biomedical robots.
Collapse
Affiliation(s)
- Miriam Filippi
- Soft Robotics Laboratory, ETH Zurich, Tannenstrasse 3, Zurich, 8092, Switzerland
| | - Francesca Garello
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, Torino, 10126, Italy
| | - Oncay Yasa
- Soft Robotics Laboratory, ETH Zurich, Tannenstrasse 3, Zurich, 8092, Switzerland
| | - Jesil Kasamkattil
- Department of Biomedicine, University Hospital Basel, Hebelstrasse 20, Basel, 4031, Switzerland
| | - Arnaud Scherberich
- Department of Biomedicine, University Hospital Basel, Hebelstrasse 20, Basel, 4031, Switzerland
- Department of Biomedical Engineering, University of Basel, Gewerbestrasse 14, Allschwil, 4123, Switzerland
| | - Robert K Katzschmann
- Soft Robotics Laboratory, ETH Zurich, Tannenstrasse 3, Zurich, 8092, Switzerland
| |
Collapse
|
14
|
Peluso V, Rinaldi L, Russo T, Oliviero O, Di Vito A, Garbi C, Giudice A, De Santis R, Gloria A, D’Antò V. Impact of Magnetic Stimulation on Periodontal Ligament Stem Cells. Int J Mol Sci 2021; 23:188. [PMID: 35008612 PMCID: PMC8745045 DOI: 10.3390/ijms23010188] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 12/16/2022] Open
Abstract
The aim of this study was to evaluate the effect of a time-dependent magnetic field on the biological performance of periodontal ligament stem cells (PDLSCs). A Western blot analysis and Alamar Blue assay were performed to investigate the proliferative capacity of magnetically stimulated PDLSCs (PDLSCs MAG) through the study of the MAPK cascade (p-ERK1/2). The observation of ALP levels allowed the evaluation of the effect of the magnetic field on osteogenic differentiation. Metabolomics data, such as oxygen consumption rate (OCR), extracellular acidification rate (ECAR) and ATP production provided an overview of the PDLSCs MAG metabolic state. Moreover, the mitochondrial state was investigated through confocal laser scanning microscopy. Results showed a good viability for PDLSCs MAG. Magnetic stimulation can activate the ERK phosphorylation more than the FGF factor alone by promoting a better cell proliferation. Osteogenic differentiation was more effectively induced by magnetic stimulation. The metabolic panel indicated significant changes in the mitochondrial cellular respiration of PDLSCs MAG. The results suggested that periodontal ligament stem cells (PDLSCs) can respond to biophysical stimuli such as a time-dependent magnetic field, which is able to induce changes in cell proliferation and differentiation. Moreover, the magnetic stimulation also produced an effect on the cell metabolic profile. Therefore, the current study demonstrated that a time-dependent magnetic stimulation may improve the regenerative properties of PDLSCs.
Collapse
Affiliation(s)
- Valentina Peluso
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples Federico II, 80131 Naples, Italy; (V.P.); (O.O.); (C.G.)
| | - Laura Rinaldi
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, 80131 Naples, Italy;
| | - Teresa Russo
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, V.le J.F. Kennedy 54. Mostra d’Oltremare Pad. 20, 80125 Naples, Italy; (T.R.); (R.D.S.); (A.G.)
| | - Olimpia Oliviero
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples Federico II, 80131 Naples, Italy; (V.P.); (O.O.); (C.G.)
| | - Anna Di Vito
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy;
| | - Corrado Garbi
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples Federico II, 80131 Naples, Italy; (V.P.); (O.O.); (C.G.)
| | - Amerigo Giudice
- Department of Health Sciences, School of Dentistry, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy;
| | - Roberto De Santis
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, V.le J.F. Kennedy 54. Mostra d’Oltremare Pad. 20, 80125 Naples, Italy; (T.R.); (R.D.S.); (A.G.)
| | - Antonio Gloria
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, V.le J.F. Kennedy 54. Mostra d’Oltremare Pad. 20, 80125 Naples, Italy; (T.R.); (R.D.S.); (A.G.)
| | - Vincenzo D’Antò
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples Federico II, 80131 Naples, Italy; (V.P.); (O.O.); (C.G.)
| |
Collapse
|
15
|
Abstract
Tissue engineering or tissue reconstruction/repair/regeneration may be considered as a guiding strategy in oral and maxillofacial surgery, as well as in endodontics, orthodontics, periodontics, and daily clinical practice. A wide range of techniques has been developed over the past years, from tissue grafts to the more recent and innovative regenerative procedures. Continuous research in the field of natural and artificial materials and biomaterials, as well as in advanced scaffold design strategies has been carried out. The focus has also been on various growth factors involved in dental tissue repair or reconstruction. Benefiting from the recent literature, this review paper illustrates current innovative strategies and technological approaches in oral and maxillofacial tissue engineering, trying to offer some information regarding the available scientific data and practical applications. After introducing tissue engineering aspects, an overview on additive manufacturing technologies will be provided, with a focus on the applications of superparamagnetic iron oxide nanoparticles in the biomedical field. The potential applications of magnetic fields and magnetic devices on the acceleration of orthodontic tooth movement will be analysed.
Collapse
|
16
|
Porrelli D, Gruppuso M, Vecchies F, Marsich E, Turco G. Alginate bone scaffolds coated with a bioactive lactose modified chitosan for human dental pulp stem cells proliferation and differentiation. Carbohydr Polym 2021; 273:118610. [PMID: 34561009 DOI: 10.1016/j.carbpol.2021.118610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 06/21/2021] [Accepted: 08/20/2021] [Indexed: 12/27/2022]
Abstract
Bioactive and biodegradable porous scaffolds can hasten the healing of bone defects; moreover, patient stem cells seeded onto scaffolds can enhance the osteoinductive and osteoconductive properties of these biomaterials. In this work, porous alginate/hydroxyapatite scaffolds were functionalized with a bioactive coating of a lactose-modified chitosan (CTL). The highly interconnected porous structure of the scaffold was homogeneously coated with CTL. The scaffolds showed remarkable stability up to 60 days of aging. Human Dental Pulp Stem Cells (hDPSCs) cultured in the presence of CTL diluted in culture medium, showed a slight and negligible increase in terms of proliferation rate; on the contrary, an effect on osteogenic differentiation of the cells was observed as a significant increase in alkaline phosphatase activity. hDPSCs showed higher cell adhesion on CTL-coated scaffolds than on uncoated ones. CTL coating did not affect cell proliferation, but stimulated cell differentiation as shown by alkaline phosphatase activity analysis.
Collapse
Affiliation(s)
- Davide Porrelli
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Piazza dell'Ospitale 1, 34125 Trieste, Italy.
| | - Martina Gruppuso
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Piazza dell'Ospitale 1, 34125 Trieste, Italy.
| | - Federica Vecchies
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri 5, 34127 Trieste, Italy.
| | - Eleonora Marsich
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Via Licio Giorgieri 5, 34129 Trieste, Italy.
| | - Gianluca Turco
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Piazza dell'Ospitale 1, 34125 Trieste, Italy.
| |
Collapse
|
17
|
Petretta M, Gambardella A, Desando G, Cavallo C, Bartolotti I, Shelyakova T, Goranov V, Brucale M, Dediu VA, Fini M, Grigolo B. Multifunctional 3D-Printed Magnetic Polycaprolactone/Hydroxyapatite Scaffolds for Bone Tissue Engineering. Polymers (Basel) 2021; 13:3825. [PMID: 34771382 PMCID: PMC8588077 DOI: 10.3390/polym13213825] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/28/2021] [Accepted: 11/02/2021] [Indexed: 02/06/2023] Open
Abstract
Multifunctional and resistant 3D structures represent a great promise and a great challenge in bone tissue engineering. This study addresses this problem by employing polycaprolactone (PCL)-based scaffolds added with hydroxyapatite (HAp) and superparamagnetic iron oxide nanoparticles (SPION), able to drive on demand the necessary cells and other bioagents for a high healing efficiency. PCL-HAp-SPION scaffolds with different concentrations of the superparamagnetic component were developed through the 3D-printing technology and the specific topographical features were detected by Atomic Force and Magnetic Force Microscopy (AFM-MFM). AFM-MFM measurements confirmed a homogenous distribution of HAp and SPION throughout the surface. The magnetically assisted seeding of cells in the scaffold resulted most efficient for the 1% SPION concentration, providing good cell entrapment and adhesion rates. Mesenchymal Stromal Cells (MSCs) seeded onto PCL-HAp-1% SPION showed a good cell proliferation and intrinsic osteogenic potential, indicating no toxic effects of the employed scaffold materials. The performed characterizations and the collected set of data point on the inherent osteogenic potential of the newly developed PCL-HAp-1% SPION scaffolds, endorsing them towards next steps of in vitro and in vivo studies and validations.
Collapse
Affiliation(s)
- Mauro Petretta
- REGENHU Ltd., Z.I. Le Vivier 22, 1690 Villaz-St-Pierre, Switzerland;
- SSD Laboratorio RAMSES, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (I.B.); (B.G.)
| | - Alessandro Gambardella
- SC Scienze e Tecnologie Chirurgiche, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (A.G.); (M.F.)
| | - Giovanna Desando
- SSD Laboratorio RAMSES, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (I.B.); (B.G.)
| | - Carola Cavallo
- SSD Laboratorio RAMSES, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (I.B.); (B.G.)
| | - Isabella Bartolotti
- SSD Laboratorio RAMSES, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (I.B.); (B.G.)
| | - Tatiana Shelyakova
- SC Scienze e Tecnologie Chirurgiche, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (A.G.); (M.F.)
| | - Vitaly Goranov
- Istituto per lo Studio dei Materiali Nanostrutturati, Consiglio Nazionale delle Ricerche, 40129 Bologna, Italy; (V.G.); (M.B.); (V.A.D.)
- BioDevice Systems, Bulharská, 10-Vršovice, 996/20, 10100 Praha, Czech Republic
| | - Marco Brucale
- Istituto per lo Studio dei Materiali Nanostrutturati, Consiglio Nazionale delle Ricerche, 40129 Bologna, Italy; (V.G.); (M.B.); (V.A.D.)
| | - Valentin Alek Dediu
- Istituto per lo Studio dei Materiali Nanostrutturati, Consiglio Nazionale delle Ricerche, 40129 Bologna, Italy; (V.G.); (M.B.); (V.A.D.)
| | - Milena Fini
- SC Scienze e Tecnologie Chirurgiche, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (A.G.); (M.F.)
| | - Brunella Grigolo
- SSD Laboratorio RAMSES, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (I.B.); (B.G.)
| |
Collapse
|
18
|
Friedrich RP, Cicha I, Alexiou C. Iron Oxide Nanoparticles in Regenerative Medicine and Tissue Engineering. NANOMATERIALS 2021; 11:nano11092337. [PMID: 34578651 PMCID: PMC8466586 DOI: 10.3390/nano11092337] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 12/13/2022]
Abstract
In recent years, many promising nanotechnological approaches to biomedical research have been developed in order to increase implementation of regenerative medicine and tissue engineering in clinical practice. In the meantime, the use of nanomaterials for the regeneration of diseased or injured tissues is considered advantageous in most areas of medicine. In particular, for the treatment of cardiovascular, osteochondral and neurological defects, but also for the recovery of functions of other organs such as kidney, liver, pancreas, bladder, urethra and for wound healing, nanomaterials are increasingly being developed that serve as scaffolds, mimic the extracellular matrix and promote adhesion or differentiation of cells. This review focuses on the latest developments in regenerative medicine, in which iron oxide nanoparticles (IONPs) play a crucial role for tissue engineering and cell therapy. IONPs are not only enabling the use of non-invasive observation methods to monitor the therapy, but can also accelerate and enhance regeneration, either thanks to their inherent magnetic properties or by functionalization with bioactive or therapeutic compounds, such as drugs, enzymes and growth factors. In addition, the presence of magnetic fields can direct IONP-labeled cells specifically to the site of action or induce cell differentiation into a specific cell type through mechanotransduction.
Collapse
|
19
|
Kim Y, Lim H, Lee E, Ki G, Seo Y. Synergistic effect of electromagnetic fields and nanomagnetic particles on osteogenesis through calcium channels and p-ERK signaling. J Orthop Res 2021; 39:1633-1646. [PMID: 33150984 PMCID: PMC8451839 DOI: 10.1002/jor.24905] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 10/21/2020] [Accepted: 10/31/2020] [Indexed: 02/04/2023]
Abstract
Electromagnetic fields (EMFs) are widely used in a number of cell therapies and bone disorder treatments, and nanomagnetic particles (NMPs) also promote cell activity. In this study, we investigated the synergistic effects of EMFs and NMPs on the osteogenesis of the human Saos-2 osteoblast cell line and in a rat calvarial defect model. The Saos-2 cells and critical-size calvarial defects of the rats were exposed to EMF (1 mT, 45 Hz, 8 h/day) with or without Fe3 O4 NMPs. Biocompatibility was evaluated with MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) and LDH (lactate dehydrogenase) assays. This analysis showed that NMP and EMF did not induce cell toxicity. Quantitative reverse-transcription polymerase chain reaction indicated that the osteogenesis-related markers were highly expressed in the NMP-incorporated Saos-2 cells after exposure to EMF. Also, the expression of gene-encoding proteins involved in calcium channels was activated and the calcium concentration of the NMP-incorporated + EMF-exposed group was increased compared with the control group. In particular, in the NMP-incorporated + EMF-exposed group, all osteogenic proteins were more abundantly expressed than in the control group. This indicated that the NMP incorporation + EMF exposure induced a signaling pathway through activation of p-ERK and calcium channels. Also, in vivo evaluation revealed that rat calvarial defects treated with EMFs and NMPs had good regeneration results with new bone formation and increased mineral density after 6 weeks. Altogether, these results suggest that NMP treatment or EMF exposure of Saos-2 cells can increase osteogenic activity and NMP incorporation following EMF exposure which is synergistically efficient for osteogenesis.
Collapse
Affiliation(s)
- Yu‐Mi Kim
- Department of Medical Biotechnology (BK21 Plus Team)Dongguk UniversityGoyang‐siKorea
| | - Han‐Moi Lim
- Department of Medical Biotechnology (BK21 Plus Team)Dongguk UniversityGoyang‐siKorea
| | - Eun‐Chul Lee
- Department of Medical Biotechnology (BK21 Plus Team)Dongguk UniversityGoyang‐siKorea
| | - Ga‐Eun Ki
- Department of Medical Biotechnology (BK21 Plus Team)Dongguk UniversityGoyang‐siKorea
| | - Young‐Kwon Seo
- Department of Medical Biotechnology (BK21 Plus Team)Dongguk UniversityGoyang‐siKorea
| |
Collapse
|
20
|
Xu Y, Zheng H, Schumacher D, Liehn EA, Slabu I, Rusu M. Recent Advancements of Specific Functionalized Surfaces of Magnetic Nano- and Microparticles as a Theranostics Source in Biomedicine. ACS Biomater Sci Eng 2021; 7:1914-1932. [PMID: 33856199 DOI: 10.1021/acsbiomaterials.0c01393] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Magnetic nano- and microparticles (MNMPs) belong to a highly versatile class of colloids with actuator and sensor properties that have been broadly studied for their application in theranostics such as molecular imaging and drug delivery. The use of advanced biocompatible, biodegradable polymers and polyelectrolytes as MNMP coating materials is essential to ensure the stability of MNMPs and enable efficient drug release while at the same time preventing cytotoxic effects. In the past years, huge progress has been made in terms of the design of MNMPs. Especially, the understanding of coating formation with respect to control of drug loading and release kinetics on the molecular level has significantly advanced. In this review, recent advancements in the field of MNMP surface engineering and the applicability of MNMPs in research fields of medical imaging, diagnosis, and nanotherapeutics are presented and discussed. Furthermore, in this review the main emphasis is put on the manipulation of biological specimens and cell trafficking, for which MNMPs represent a favorable tool enabling transport processes of drugs through cell membranes. Finally, challenges and future perspectives for applications of MNMPs as theranostic nanomaterials are discussed.
Collapse
Affiliation(s)
- Yichen Xu
- Department of Intensive Care Medicine, University Hospital, RWTH Aachen, Pauwelstr. 30, 52074 Aachen, Germany
| | - Huabo Zheng
- Department of Cardiology, Pulmonology, Angiology, and Intensive Care, University Hospital, RWTH Aachen, Pauwelstr. 30, 52074 Aachen, Germany
| | - David Schumacher
- Department of Anesthesiology, University Hospital, RWTH Aachen, 52074 Aachen, Germany
| | - Elisa Anamaria Liehn
- Department of Intensive Care Medicine, University Hospital, RWTH Aachen, Pauwelstr. 30, 52074 Aachen, Germany.,Department of Cardiology, Pulmonology, Angiology, and Intensive Care, University Hospital, RWTH Aachen, Pauwelstr. 30, 52074 Aachen, Germany.,Department of Pathology, Institute of Pathology "Victor Babes", Splaiul Independentei nr. 99-101, Sector 5, 050096 Bucharest, Romania
| | - Ioana Slabu
- Institute of Applied Medical Engineering, Helmholtz Institute, Medical Faculty, RWTH Aachen, Pauwelstr. 20, 52074 Aachen, Germany
| | - Mihaela Rusu
- Department of Pathology, Institute of Pathology "Victor Babes", Splaiul Independentei nr. 99-101, Sector 5, 050096 Bucharest, Romania.,Institute for Molecular Cardiovascular Research (IMCAR), University Hospital, RWTH Aachen, Pauwelstr. 30, 52074 Aachen, Germany
| |
Collapse
|
21
|
Yang H, Liu WC, Liu X, Li Y, Lin C, Lin YM, Wang AN, Nguyen TT, Lin YC, Chung RJ. Study on proanthocyanidins crosslinked collagen membrane for guided bone tissue regeneration. J Appl Biomater Funct Mater 2021; 19:22808000211005379. [PMID: 33781122 DOI: 10.1177/22808000211005379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The goal of this study is to understand the ability of a newly developed barrier membrane to enhance bone tissue regeneration. Here in this study we present the in vitro characterization of the barrier membrane made from type I collagen and crosslinked by oligomeric proanthocyanidins (OPCs). The effects of the membrane (P-C film) on cell cycle, proliferation, alkaline phosphatase activity, and mineralization were evaluated using the human osteoblast cell line MG-63, while the barrier ability was examined using MG-63 cells, as well as the human skin fibroblast cell line WS-1. The pore size is one of the factors that plays a key role in tissue regeneration, therefore, we evaluated the pore size of the membrane using a capillary flow porometer. Our results showed that the mean pore size of the P-C film was approximately 7-9 µm, the size known to inhibit cell migration across the membrane. The P-C film also demonstrated excellent cell viability and good biocompatibility, since the cell number increased with time, with MG-63 cells proliferating faster on the P-C film than in the cell culture flask. Furthermore, the P-C film promoted osteoblast differentiation, resulting in higher alkaline phosphatase activity and mineralization. Therefore, our results suggest that this P-C film has a great potential to be used in guided bone regeneration during periodontal regeneration and bone tissue engineering.
Collapse
Affiliation(s)
- Hongfa Yang
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, Jilin, China
| | - Wai-Ching Liu
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei, Taiwan
| | - Xinrui Liu
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, Jilin, China
| | - Yunqian Li
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, Jilin, China
| | - Chingpo Lin
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, Jilin, China
| | - Yu-Min Lin
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei, Taiwan
| | - An-Ni Wang
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei, Taiwan
| | - Thu-Trang Nguyen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei, Taiwan
| | - Yu-Chien Lin
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei, Taiwan
| | - Ren-Jei Chung
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei, Taiwan
| |
Collapse
|
22
|
Shende P, Shah P. Carbohydrate-based magnetic nanocomposites for effective cancer treatment. Int J Biol Macromol 2021; 175:281-293. [PMID: 33571584 DOI: 10.1016/j.ijbiomac.2021.02.044] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/25/2021] [Accepted: 02/05/2021] [Indexed: 12/15/2022]
Abstract
The treatment of cancer includes several conventional therapies like surgery, radiation, chemotherapy, etc. but mostly associated with limitations like off-targeted action, fatigue and organ toxicity. The emergence of nanotechnology-enabled drug delivery systems shows revolutionary development to overcome the limitations of such therapies. Magnetic nanocomposites are the new area of research that consists of nanoscale magnetic materials for triggering the release of active in response to an external magnetic field. For targeted drug delivery and enhancing the biocompatibility, effective functionalization of magnetic nanocomposites is required. Therefore, several biological molecules like carbohydrate polymers, proteins, nucleic acids, antibodies, etc. are used. This review article focuses on the insights of advances in the development of carbohydrate-based magnetic nanocomposites for safe and effective cancer treatment. Carbohydrate-based magnetic nanocomposites offer significant advantages like greater stability, higher biocompatibility and lower toxicity with better physicochemical properties such as higher magnetic moments and anisotropy, larger heating properties, etc. Magnetic nanocomposites explore in almost all the areas of cancer therapeutics for drug delivery carrier, as antineoplastic and MRI contrast agents and in photothermal, photodynamic and in combinational therapies for the development of safer nanocarriers. Such progressive trend of carbohydrate-based magnetic nanocomposites will encourage the researchers for better site-specific delivery with higher safety profile in cancer therapy.
Collapse
Affiliation(s)
- Pravin Shende
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, India.
| | - Priyank Shah
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, India
| |
Collapse
|
23
|
Ghosh M, Mandal S, Dutta S, Paladhi A, Ray S, Hira SK, Pradhan SK. Synthesis of drug conjugated magnetic nanocomposite with enhanced hypoglycemic effects. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 120:111697. [PMID: 33545856 DOI: 10.1016/j.msec.2020.111697] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/25/2020] [Accepted: 10/30/2020] [Indexed: 10/23/2022]
Abstract
In the present study, a magnetic nanocomposite (magnetite Fe3O4 and hematite Fe2O3) has been successfully synthesized by the sol-gel method and coated with polyvinyl alcohol (PVA) followed by conjugation of anti-diabetic drug metformin. Detailed structural and microstructural characterization of the nanocomposite (NP) and drug conjugated nanocomposite (NP-DC) are analyzed by the Rietveld refinement of respective XRD patterns, FTIR analysis, UV-Vis spectroscopy, SEM and TEM results. SEM and TEM image analyses reveal the spherical morphology and average size of NP, PVA coated nanoparticles (NP-PVA) and NP-DC samples, indicating a suitable size to be a nanocarrier. The biocompatibility of NP and NP-DC was carried out in NIH/3T3 and J774A. 1 cells. The enhanced activity of the drug, when conjugated with nanocomposite, is confirmed after the treatment of both the pure drug and NP-DC sample on the 18 h fasted normoglycemic and hyperglycemic mice. The blood glucose level of the mice is effectively decreased with the same concentration of the pure drug and NP-DC sample. It proves the increased activity of the NP-DC sample, as only 5 wt% drug is present that shows the same efficiency as the pure drug. This study suggests excellent biocompatibility and cytocompatibility of NP and NP-DC besides the critical property as a hypoglycemic agent. It is the first time approach of conjugating metformin with a magnetic nanocomposite for a significant increment of its hypoglycemic activity, which is very important to reduce the side effect of metformin for its prolonged use.
Collapse
Affiliation(s)
- Moupiya Ghosh
- Department of Physics, The University of Burdwan, Golapbag, Burdwan 713104, India
| | - Samir Mandal
- Department of Chemistry, Kazi Nazrul University, Kalla, Asansol 713340, India
| | - Sumana Dutta
- Department of Zoology, Durgapur Govt. College, Durgapur, Paschim Burdwan 713104, India
| | - Ankush Paladhi
- Department of Zoology, The University of Burdwan, Golapbag, Burdwan 713104, India
| | - Sanjib Ray
- Department of Zoology, The University of Burdwan, Golapbag, Burdwan 713104, India
| | - Sumit Kumar Hira
- Department of Zoology, The University of Burdwan, Golapbag, Burdwan 713104, India
| | - S K Pradhan
- Department of Physics, The University of Burdwan, Golapbag, Burdwan 713104, India.
| |
Collapse
|
24
|
Gelmi A, Schutt CE. Stimuli-Responsive Biomaterials: Scaffolds for Stem Cell Control. Adv Healthc Mater 2021; 10:e2001125. [PMID: 32996270 PMCID: PMC11468740 DOI: 10.1002/adhm.202001125] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/18/2020] [Indexed: 12/28/2022]
Abstract
Stem cell fate is closely intertwined with microenvironmental and endogenous cues within the body. Recapitulating this dynamic environment ex vivo can be achieved through engineered biomaterials which can respond to exogenous stimulation (including light, electrical stimulation, ultrasound, and magnetic fields) to deliver temporal and spatial cues to stem cells. These stimuli-responsive biomaterials can be integrated into scaffolds to investigate stem cell response in vitro and in vivo, and offer many pathways of cellular manipulation: biochemical cues, scaffold property changes, drug release, mechanical stress, and electrical signaling. The aim of this review is to assess and discuss the current state of exogenous stimuli-responsive biomaterials, and their application in multipotent stem cell control. Future perspectives in utilizing these biomaterials for personalized tissue engineering and directing organoid models are also discussed.
Collapse
Affiliation(s)
- Amy Gelmi
- School of ScienceCollege of Science, Engineering and HealthRMIT UniversityMelbourneVIC3001Australia
| | - Carolyn E. Schutt
- Department of Biomedical EngineeringKnight Cancer Institute Cancer Early Detection Advanced Research Center (CEDAR)Oregon Health and Science UniversityPortlandOR97201USA
| |
Collapse
|
25
|
Song M, Kim J, Shin H, Kim Y, Jang H, Park Y, Kim SJ. Development of Magnetic Torque Stimulation (MTS) Utilizing Rotating Uniform Magnetic Field for Mechanical Activation of Cardiac Cells. NANOMATERIALS 2020; 10:nano10091684. [PMID: 32867131 PMCID: PMC7557977 DOI: 10.3390/nano10091684] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/21/2020] [Accepted: 08/24/2020] [Indexed: 12/13/2022]
Abstract
Regulation of cell signaling through physical stimulation is an emerging topic in biomedicine. Background: While recent advances in biophysical technologies show capabilities for spatiotemporal stimulation, interfacing those tools with biological systems for intact signal transfer and noncontact stimulation remains challenging. Here, we describe the use of a magnetic torque stimulation (MTS) system combined with engineered magnetic particles to apply forces on the surface of individual cells. MTS utilizes an externally rotating magnetic field to induce a spin on magnetic particles and generate torsional force to stimulate mechanotransduction pathways in two types of human heart cells—cardiomyocytes and cardiac fibroblasts. Methods: The MTS system operates in a noncontact mode with two magnets separated (60 mm) from each other and generates a torque of up to 15 pN µm across the entire area of a 35-mm cell culture dish. The MTS system can mechanically stimulate both types of human heart cells, inducing maturation and hypertrophy. Results: Our findings show that application of the MTS system under hypoxic conditions induces not only nuclear localization of mechanoresponsive YAP proteins in human heart cells but also overexpression of hypertrophy markers, including β-myosin heavy chain (βMHC), cardiotrophin-1 (CT-1), microRNA-21 (miR-21), and transforming growth factor beta-1 (TGFβ-1). Conclusions: These results have important implications for the applicability of the MTS system to diverse in vitro studies that require remote and noninvasive mechanical regulation.
Collapse
Affiliation(s)
- Myeongjin Song
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Korea; (M.S.); (J.K.); (Y.K.); (H.J.)
| | - Jongseong Kim
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Korea; (M.S.); (J.K.); (Y.K.); (H.J.)
| | - Hyundo Shin
- Department of Mechanical Engineering, Yonsei University, Seoul 03722, Korea;
| | - Yekwang Kim
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Korea; (M.S.); (J.K.); (Y.K.); (H.J.)
| | - Hwanseok Jang
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Korea; (M.S.); (J.K.); (Y.K.); (H.J.)
| | - Yongdoo Park
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Korea; (M.S.); (J.K.); (Y.K.); (H.J.)
- Correspondence: (Y.P.); (S.-J.K.); Tel.: +82-2-2286-1460 (Y.P.)
| | - Seung-Jong Kim
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Korea; (M.S.); (J.K.); (Y.K.); (H.J.)
- Correspondence: (Y.P.); (S.-J.K.); Tel.: +82-2-2286-1460 (Y.P.)
| |
Collapse
|