1
|
Liu Z, Zhou L, Zhang H, Han J. Cyclodextrin-pillar[ n]arene hybridized macrocyclic systems. Org Biomol Chem 2022; 20:4278-4288. [PMID: 35552579 DOI: 10.1039/d2ob00671e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cyclodextrin (CD) and pillar[n]arene are significant macrocyclic host molecules in supramolecular chemistry, and have either similar or contrasting physicochemical properties, for example, both can provide capable cavities available for recognizing various favorite guest molecules, while they usually possess different solubility in aqueous solutions, and exhibit diverse chiral characteristics. To balance their similarity and differences inherited from each chemical structure and incorporate both advantages, the CD-pillar[n]arene hybrid macrocyclic system was recently developed. In this review, we will focus on the preparation and application of CD-pillar[n]arene hybrid macrocyclic systems. Both noncovalent interactions and covalent bonds were employed in the synthesis strategies of building the hybrid macrocyclic system, which was in the form of host-guest inclusion, self-assembly, conjugated molecules, and polymeric structures. Furthermore, the CD-pillar[n]arene hybrid macrocyclic system has been primarily applied for the removal of organic pollutants from water, induced chirality, as well as photocatalysis due to the integration of both cavities from CD and pillar[n]arene as hybrid hosts and chiral characteristics inherited from their chemical structures.
Collapse
Affiliation(s)
- Zhaona Liu
- Medical School, Xi'an Peihua University, Xi'an 710125, Shaanxi, China.
| | - Le Zhou
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.
| | - Huacheng Zhang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.
| | - Jie Han
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, China.
| |
Collapse
|
2
|
Liu C, Zhou L, Cao S, Zhang H, Han J, Liu Z. Supramolecular systems prepared using terpyridine-containing pillararene. Polym Chem 2022. [DOI: 10.1039/d1py01397a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Recent progresses about the preparation of terpyridine-containing pillararene, as well as the utilization of those building blocks for making external stimulud-responsive supramolecular systems were summarized in this review.
Collapse
Affiliation(s)
- Chang Liu
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Le Zhou
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Shuai Cao
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Huacheng Zhang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Jie Han
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Energy), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zhaona Liu
- Medical School, Xi'an Peihua University, Xi'an 710125, Shaanxi, China
| |
Collapse
|
3
|
Liu X, Sun Y, Chen B, Li Y, Zhu P, Wang P, Yan S, Li Y, Yang F, Gu N. Novel magnetic silk fibroin scaffolds with delayed degradation for potential long-distance vascular repair. Bioact Mater 2022; 7:126-143. [PMID: 34466722 PMCID: PMC8379427 DOI: 10.1016/j.bioactmat.2021.04.036] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 01/09/2023] Open
Abstract
Although with the good biological properties, silk fibroin (SF) is immensely restrained in long-distance vascular defect repair due to its relatively fast degradation and inferior mechanical properties. It is necessary to construct a multifunctional composite scaffold based on SF. In this study, a novel magnetic SF scaffold (MSFCs) was prepared by an improved infiltration method. Compared with SF scaffold (SFC), MSFCs were found to have better crystallinity, magnetocaloric properties, and mechanical strength, which was ascribed to the rational introduction of iron-based magnetic nanoparticles (MNPs). Moreover, in vivo and in vitro experiments demonstrated that the degradation of MSFCs was significantly extended. The mechanism of delayed degradation was correlated with the dual effect that was the newly formed hydrogen bonds between SFC and MNPs and the complexing to tyrosine (Try) to inhibit hydrolase by internal iron atoms. Besides, the β-crystallization of protein in MSFCs was increased with the rise of iron concentration, proving the beneficial effect after MNPS doped. Furthermore, although macrophages could phagocytose the released MNPs, it did not affect their function, and even a reasonable level might cause some cytokines to be upregulated. Finally, in vitro and in vivo studies demonstrated that MSFCs showed excellent biocompatibility and the growth promotion effect on CD34-labeled vascular endothelial cells (VECs). In conclusion, we confirm that the doping of MNPs can significantly reduce the degradation of SFC and thus provide an innovative perspective of multifunctional biocomposites for tissue engineering.
Collapse
Affiliation(s)
- Xin Liu
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science & Medical Engineering, Southeast University, Nanjing, 210096, PR China
| | - Yuxiang Sun
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science & Medical Engineering, Southeast University, Nanjing, 210096, PR China
| | - Bo Chen
- Materials Science and Devices Institute, Suzhou University of Science and Technology, 1 Kerui Road, Suzhou, 215009, PR China
| | - Yan Li
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science & Medical Engineering, Southeast University, Nanjing, 210096, PR China
| | - Peng Zhu
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, 999078, PR China
| | - Peng Wang
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science & Medical Engineering, Southeast University, Nanjing, 210096, PR China
| | - Sen Yan
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science & Medical Engineering, Southeast University, Nanjing, 210096, PR China
| | - Yao Li
- College of Social Sciences, University of Glasgow, Glasgow, G12 8QQ, United Kingdom
| | - Fang Yang
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science & Medical Engineering, Southeast University, Nanjing, 210096, PR China
| | - Ning Gu
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science & Medical Engineering, Southeast University, Nanjing, 210096, PR China
| |
Collapse
|
4
|
Cao S, Liu C, Zhou L, Zhang H, Zhao Y, Liu Z. Bioapplication of cyclodextrin-containing montmorillonite. J Mater Chem B 2021; 9:9241-9261. [PMID: 34698331 DOI: 10.1039/d1tb01719e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Recent progresses in the integration of CDs and montmorillonite, as well as applications of CD-containing montmorillonite hybrid host systems are summarized in this review. Several efficient synthesis strategies, such as ion exchange, metal coordination, supramolecular strategies, polymerizations and organic synthesis methods, have been discussed during the preparation of CDs/montmorillonite hybrid composites. In particular, diverse instrumental techniques were highly recommended for characterizing the as-obtained hybrid systems, including their chemical composition and structures, crystallinity, surface/self-assembled morphologies, as well as other particular physiochemical properties, providing a direct guide for promoting the desired structures and exploring various applications. It should be noted that the introduction of functional groups, as well as the integration of CDs and montmorillonite granted the thus obtained CD-containing montmorillonite hybrid host systems a lot of unique features, providing great opportunities for expanding the practical applications to a series of biological and environmental areas, such as biosensors, sorption and decontamination of bio/environmental hazardous materials, biostudies about aqueous dispersity, stability and biocompatibility, drug loading and target delivery, controlled and sustained drug release, as well as antibacterial.
Collapse
Affiliation(s)
- Shuai Cao
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.
| | - Chang Liu
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.
| | - Le Zhou
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.
| | - Huacheng Zhang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.
| | - Yuxin Zhao
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.
| | - Zhaona Liu
- Medical School, Xi'an Peihua University, Xi'an 710125, Shaanxi, China.
| |
Collapse
|
5
|
Chao S, Shen Z, Pei Y, Pei Z. Covalently bridged pillararene-based oligomers: from construction to applications. Chem Commun (Camb) 2021; 57:10983-10997. [PMID: 34604891 DOI: 10.1039/d1cc04547d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Covalently bridged pillararene-based oligomers (CBPOs) are formed by covalent bonding of pillararene monomers, and they play a critical role in expanding the multi-disciplinary application of pillararenes due to their excellent molecular complexing ability, specially designed geometry and multifunctional linking groups. This article provides a comprehensive review of the synthesis and applications of CBPOs. The design and synthetic strategies of a series of CBPOs (dimers, trimers, tetramers and others) are first introduced. Many CBPOs with multi-cavities and unique geometry are very attractive and efficient building blocks for constructing novel smart supramolecular polymers (SPs) with different topological structures through host-guest interactions. We describe the methods of constructing various SPs based on CBPOs in detail. Furthermore, the extensive applications of CBPOs and CBPO-based SPs in recognition and detection of ions and organic small molecules, selective adsorption and separation, artificial light-harvesting systems, catalysis, drug delivery systems, and others are systematically introduced. Finally, the future challenges and perspectives for CBPOs are also highlighted.
Collapse
Affiliation(s)
- Shuang Chao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, P. R. China.
| | - Ziyan Shen
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, P. R. China.
| | - Yuxin Pei
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, P. R. China.
| | - Zhichao Pei
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, P. R. China.
| |
Collapse
|
6
|
Zhang H, Liu Z, Xin F, Zhao Y. Metal-ligated pillararene materials: From chemosensors to multidimensional self-assembled architectures. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213425] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
7
|
Zhang H, Li C. Pillararene-functionalised graphene nanomaterials. RSC Adv 2020; 10:18502-18511. [PMID: 35517199 PMCID: PMC9053726 DOI: 10.1039/d0ra02964e] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 04/23/2020] [Indexed: 01/02/2023] Open
Abstract
Pillararene-modified graphene materials integrate the advantages of both graphene and pillararenes; e.g., the cavity of pillararenes can recognise suitably sized electron-deficient and hydrophobic guest molecules via host–guest interactions, while the graphene composite is able to exhibit unique physiochemical properties including inertness, nanoscale, electrical and thermal structural properties. Those novel organic–inorganic hybrid composites can be efficiently prepared via both covalent and noncovalent bonds by classic organic reactions and supramolecular interactions, respectively. Pillararene-functionalised graphene materials have been used in various applications, such as electrochemical sensing guest molecules, performing as the platform for fluorescent probes, carrying out fluorescence quenching as the sensor, biosensing toxic molecules in cells, Raman and fluorescence bioimaging of cancer cells, photoacoustic and ultrasound imaging, as well as storage materials and reactors in energy fields. The current research progress on diverse pillararene derivative functionalised graphene materials, including different synthesis strategies and various applications, is reviewed.![]()
Collapse
Affiliation(s)
- Huacheng Zhang
- School of Chemical Engineering and Technology
- Xi'an Jiaotong University
- Xi'an
- China
| | - Chao Li
- Department of Laboratory
- Shandong University Hospital
- Jinan 250100
- China
| |
Collapse
|
8
|
Zhang H, Han J. The synthesis and applications of porphyrin-containing pillararenes. Org Biomol Chem 2020; 18:4894-4905. [DOI: 10.1039/d0ob00763c] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recent progress regarding the combination of porphyrins and pillararenes into hybrid compounds and supramolecular systems is summarized in this review.
Collapse
Affiliation(s)
- Huacheng Zhang
- School of Chemical Engineering and Technology
- Xi'an Jiaotong University
- Xi'an
- China
| | - Jie Han
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Energy)
- College of Chemistry
- Nankai University
- Tianjin 300071
- China
| |
Collapse
|