Obara P, Tomasik J. Active Control of Stiffness of Tensegrity Plate-like Structures Built with Simplex Modules.
MATERIALS 2021;
14:ma14247888. [PMID:
34947481 PMCID:
PMC8706320 DOI:
10.3390/ma14247888]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/15/2021] [Accepted: 12/17/2021] [Indexed: 11/16/2022]
Abstract
The aim of this study is to prove that it is possible to control the static behavior of tensegrity plate-like structures. This possibility is very important, particularly in the case of deployable structures. Here, we analyze the impact the support conditions of the structure have on the existence of specific characteristics, such as self-stress states and infinitesimal mechanisms, and, consequently, on the active control. Plates built with Simplex modules are considered. Firstly, the presence of the specific characteristics is examined, and a classification is carried out. Next, the influence of the level of self-stress state on the behavior of structures is analyzed. A geometrically non-linear model, implemented in an original program, written in the Mathematica environment, is used. The results confirm the feasibility of the active control of stiffness of tensegrity plate-like structures characterized by the presence of infinitesimal mechanisms. In the case when mechanisms do not exist, structures are insensitive to the initial prestress level. It is possible to control the occurrence of mechanisms by changing the support conditions of the structure. Based on the obtained results, tensegrity is very promising structural concept, applicable in many areas, when conventional solutions are insufficient.
Collapse