1
|
Tran DB, Le LT, Nguyen DN, Nguyen QT, Nga TTT, Chou WC, Luc HH, Dong CL, Tran PD. A novel method for the synthesis of MoSSe using an (Et 4N) 2[Mo 3S 4Se 3Br 6] complex as the sole precursor. Dalton Trans 2024; 53:15638-15647. [PMID: 39238328 DOI: 10.1039/d4dt02016b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
MoSSe is a semiconducting material with a layered structure similar to MoS2 and MoSe2, which shows potential applications in optoelectronics, solar cells, sensing, and catalysis. Synthesis of this material with a controllable structure and chemical composition represents a great challenge. Herein, we report a new method for the synthesis of MoSSe by employing an [Et4N]2[Mo3S4Se3Br6] complex as the sole precursor. Thermal annealing of this complex under an Ar atmosphere at moderate temperatures ranging from 350 °C to 650 °C resulted in the formation of pure MoSSe. The morphology and structure of MoSSe were characterized using SEM, HRTEM, XRD, Raman spectroscopy, X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS). The effects of annealing temperature on the structure of MoSSe were also examined.
Collapse
Affiliation(s)
- Dang B Tran
- University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, Vietnam.
| | - Ly T Le
- University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, Vietnam.
| | - Duc N Nguyen
- University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, Vietnam.
| | - Quyen T Nguyen
- University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, Vietnam.
| | - Ta Thi Thuy Nga
- Department of Electrophysics, National Yang Ming Chiao Tung University, Hsinchu City 300093, Taiwan
- Research Center for X-ray Science & Department of Physics, Tamkang University, New Taipei City 25137, Taiwan
| | - Wu-Ching Chou
- Department of Electrophysics, National Yang Ming Chiao Tung University, Hsinchu City 300093, Taiwan
| | - Hoang H Luc
- Institute of Natural Sciences, Hanoi National University of Education, 136 Xuan Thuy, Cau Giay, Hanoi, Vietnam
| | - Chung-Li Dong
- Research Center for X-ray Science & Department of Physics, Tamkang University, New Taipei City 25137, Taiwan
| | - Phong D Tran
- University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, Vietnam.
| |
Collapse
|
2
|
Wenelska K, Dymerska A, Mijowska E. Oxygen evolution reaction on MoS 2/C rods-robust and highly active electrocatalyst. NANOTECHNOLOGY 2023; 34:465403. [PMID: 37567163 DOI: 10.1088/1361-6528/acef2f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 08/11/2023] [Indexed: 08/13/2023]
Abstract
Recently, water oxidation or oxygen evolution reaction (OER) in electrocatalysis has attracted huge attention due to its prime role in water splitting, rechargeable metal-air batteries, and fuel cells. Here, we demonstrate a facile and scalable fabrication method of a rod-like structure composed of molybdenum disulfide and carbon (MoS2/C) from parent 2D MoS2. This novel composite, induced via the chemical vapor deposition (CVD) process, exhibits superior oxygen evolution performance (overpotential = 132 mV at 10 mA cm-2and Tafel slope = 55.6 mV dec-1) in an alkaline medium. Additionally, stability tests of the obtained structures at 10 mA cm-2during 10 h followed by 20 mA cm-2during 5 h and 50 mA cm-2during 2.5 h have been performed and clearly prove that MoS2/C can be successfully used as robust noble-metal-free electrocatalysts. The promoted activity of the rods is ascribed to the abundance of active surface (ECSA) of the catalyst induced due to the curvature effect during the reshaping of the composite from 2D precursor (MoS2) in the CVD process. Moreover, the presence of Fe species contributes to the observed excellent OER performance. FeOOH, Fe2O3, and Fe3O4are known to possess favorable electrocatalytic properties, including high catalytic activity and stability, which facilitate the electrocatalytic reaction. Additionally, Fe-based species like Fe7C3and FeMo2S5offer synergistic effects with MoS2, leading to improved catalytic activity and durability due to their unique electronic structure and surface properties. Additionally, turnover frequency (TOF) (58 1/s at the current density of 10 mA cm-2), as a direct indicator of intrinsic activity, indicates the efficiency of this catalyst in OER. Based onex situanalyzes (XPS, XRD, Raman) of the electrocatalyst the possible reaction mechanism is explored and discussed in great detail showing that MoS2, carbon, and iron oxide are the main active species of the reaction.
Collapse
Affiliation(s)
- Karolina Wenelska
- West Pomeranian University of Technology, Szczecin Faculty of Chemical Technology and Engineering, Department of Nanomaterials Physicochemistry, Piastow Ave. 42, 71-065 Szczecin, Poland
| | - Anna Dymerska
- West Pomeranian University of Technology, Szczecin Faculty of Chemical Technology and Engineering, Department of Nanomaterials Physicochemistry, Piastow Ave. 42, 71-065 Szczecin, Poland
| | - Ewa Mijowska
- West Pomeranian University of Technology, Szczecin Faculty of Chemical Technology and Engineering, Department of Nanomaterials Physicochemistry, Piastow Ave. 42, 71-065 Szczecin, Poland
| |
Collapse
|
3
|
Zhang M, Grasset F, Masubuchi Y, Shimada T, Nguyen TKN, Dumait N, Renaud A, Cordier S, Berthebaud D, Halet JF, Uchikoshi T. Enhanced NH 3 Sensing Performance of Mo Cluster-MoS 2 Nanocomposite Thin Films via the Sulfurization of Mo 6 Cluster Iodides Precursor. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:478. [PMID: 36770439 PMCID: PMC9921185 DOI: 10.3390/nano13030478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
The high-performance defect-rich MoS2 dominated by sulfur vacancies as well as Mo-rich environments have been extensively studied in many fields, such as nitrogen reduction reactions, hydrogen evolution reactions, as well as sensing devices for NH3, which are attributed to the under-coordinated Mo atoms playing a significant role as catalytic sites in the defect area. In this study, the Mo cluster-MoS2 composite was creatively synthesized through a one-step sulfurization process via H2/H2S gas flow. The Mo6 cluster iodides (MIs) coated on the fluorine-doped tin oxide (FTO) glass substrate via the electrophoretic deposition method (i.e., MI@FTO) were used as a precursor to form a thin-film nanocomposite. Investigations into the structure, reaction mechanism, and NH3 gas sensing performance were carried out in detail. The results indicated that during the gas flowing, the decomposed Mo6 cluster iodides played the role of template and precursor, forming complicated Mo cluster compounds and eventually producing MoS2. These Mo cluster-MoS2 thin-film nanocomposites were fabricated and applied as gas sensors for the first time. It turns out that after the sulfurization process, the response of MI@FTO for NH3 gas increased three times while showing conversion from p-type to n-type semiconductor, which enhances their possibilities for future device applications.
Collapse
Affiliation(s)
- Meiqi Zhang
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060-8628, Japan
- Research Center for Functional Materials, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba 305-0047, Japan
- CNRS–Saint-Gobain–NIMS, IRL3629, Laboratory for Innovative Key Materials and Structures (LINK), National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Fabien Grasset
- CNRS–Saint-Gobain–NIMS, IRL3629, Laboratory for Innovative Key Materials and Structures (LINK), National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
- Univ Rennes, CNRS, Institut des Sciences Chimiques de Rennes (ISCR)–UMR 6226, F-35000 Rennes, France
| | - Yuji Masubuchi
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060-8628, Japan
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060-8628, Japan
| | - Toshihiro Shimada
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060-8628, Japan
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060-8628, Japan
| | - Thi Kim Ngan Nguyen
- CNRS–Saint-Gobain–NIMS, IRL3629, Laboratory for Innovative Key Materials and Structures (LINK), National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
- International Center for Young Scientists, ICYS-SENGEN, Global Networking Division, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba 305-0047, Japan
| | - Noée Dumait
- Univ Rennes, CNRS, Institut des Sciences Chimiques de Rennes (ISCR)–UMR 6226, F-35000 Rennes, France
| | - Adèle Renaud
- Univ Rennes, CNRS, Institut des Sciences Chimiques de Rennes (ISCR)–UMR 6226, F-35000 Rennes, France
| | - Stéphane Cordier
- Univ Rennes, CNRS, Institut des Sciences Chimiques de Rennes (ISCR)–UMR 6226, F-35000 Rennes, France
| | - David Berthebaud
- CNRS–Saint-Gobain–NIMS, IRL3629, Laboratory for Innovative Key Materials and Structures (LINK), National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Jean-François Halet
- CNRS–Saint-Gobain–NIMS, IRL3629, Laboratory for Innovative Key Materials and Structures (LINK), National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Tetsuo Uchikoshi
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060-8628, Japan
- Research Center for Functional Materials, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba 305-0047, Japan
- CNRS–Saint-Gobain–NIMS, IRL3629, Laboratory for Innovative Key Materials and Structures (LINK), National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| |
Collapse
|
4
|
He X, Zhu Q, Li J, Lin L. Defect-Rich MoS2/CoS2 Supported on In Situ Formed Graphene Layers for Efficient Overall Water Splitting. Catal Letters 2023. [DOI: 10.1007/s10562-023-04275-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
5
|
Romanov RI, Fominski DV, Demin MV, Gritskevich MD, Doroshina NV, Volkov VS, Fominski VY. Tribological Properties of WS 2 Thin Films Containing Graphite-like Carbon and Ni Interlayers. MATERIALS (BASEL, SWITZERLAND) 2022; 16:282. [PMID: 36614621 PMCID: PMC9822394 DOI: 10.3390/ma16010282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
The development and production of thin-film coatings having very low friction is an urgent problem of materials science. One of the most promising solutions is the fabrication of special nanocomposites containing transition-metal dichalcogenides and various carbon-based nanophases. This study aims to explore the influence of graphite-like carbon (g-C) and Ni interface layers on the tribological properties of thin WS2 films. Nanocrystalline WS2 films were created by reactive pulsed laser deposition (PLD) in H2S at 500 °C. Between the two WS2 nanolayers, g-C and Ni nanofilms were fabricated by PLD at 700 and 22 °C, respectively. Tribotesting was carried out in a nitrogen-enriched atmosphere by the reciprocal sliding of a steel counterbody under a relatively low load of 1 N. For single-layer WS2 films, the friction coefficient was ~0.04. The application of g-C films did not noticeably improve the tribological properties of WS2-based films. However, the application of thin films of g-C and Ni reduced the friction coefficient to 0.013, thus, approaching superlubricity. The island morphology of the Ni nanofilm ensured WS2 retention and altered the contact area between the counterbody and the film surface. The catalytic properties of nickel facilitated the introduction of S and H atoms into g-C. The sliding of WS2 nanoplates against an amorphous g-C(S, H) nanolayer caused a lower coefficient of friction than the relative sliding of WS2 nanoplates. The detected behavior of the prepared thin films suggests a new strategy of designing antifriction coatings for practical applications and highlights the ample opportunities of laser techniques in the formation of promising thin-film coatings.
Collapse
Affiliation(s)
- Roman I. Romanov
- National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Kashirskoe sh., 31, Moscow 115409, Russia
| | - Dmitry V. Fominski
- National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Kashirskoe sh., 31, Moscow 115409, Russia
| | - Maxim V. Demin
- Immanuel Kant Baltic Federal University, A. Nevskogo St 14, Kaliningrad 236016, Russia
| | - Mariya D. Gritskevich
- National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Kashirskoe sh., 31, Moscow 115409, Russia
| | - Natalia V. Doroshina
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology (MIPT), Dolgoprudny 141701, Russia
| | - Valentyn S. Volkov
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology (MIPT), Dolgoprudny 141701, Russia
| | - Vyacheslav Yu. Fominski
- National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Kashirskoe sh., 31, Moscow 115409, Russia
| |
Collapse
|
6
|
Bondarev A, Ponomarev I, Muydinov R, Polcar T. Friend or Foe? Revising the Role of Oxygen in the Tribological Performance of Solid Lubricant MoS 2. ACS APPLIED MATERIALS & INTERFACES 2022; 14:55051-55061. [PMID: 36468182 PMCID: PMC9756294 DOI: 10.1021/acsami.2c15706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Molybdenum disulfide (MoS2) is a solid lubricant used in various forms, such as a dry lubricant by itself or as a component of a more complex coating. In both these forms, the effect of oxygen contamination on the sliding properties of the MoS2 coatings is traditionally considered detrimental, resulting in expensive technological processes to produce pure MoS2. Here, it is shown that the high oxygen content does not necessarily hinder the solid lubricant properties and may even result in a lower friction and wear when compared to pure MoS2. Mo-S-O coatings were fabricated by unbalanced magnetron sputtering and tribologically tested under vacuum conditions. Oxygen caused amorphization of the as-deposited coatings but did not prevent the triboactivated formation of an ultra-thin crystalline MoS2 tribolayer with the incorporated oxygen. Such an imperfect tribolayer was found to reduce the coefficient of friction to 0.02, a value lower than that of pure MoS2. Moreover, owing to the higher density and hardness of oxygen-containing films, the wear rate was also found to be lower. Molecular dynamics simulations performed using a newly developed Mo-S-O force field confirmed that such an imperfect tribolayer can mitigate friction in a manner comparable to that of MoS2.
Collapse
Affiliation(s)
- Andrey Bondarev
- Department
of Control Engineering, Faculty of Electrical Engineering, Czech Technical University in Prague, Technicka 2, 16627 Prague 6, Czech Republic
| | - Ilia Ponomarev
- Department
of Control Engineering, Faculty of Electrical Engineering, Czech Technical University in Prague, Technicka 2, 16627 Prague 6, Czech Republic
| | - Ruslan Muydinov
- Institute
of High-Frequency and Semiconductor System Technologies, Technical University Berlin, Einsteinufer 25, 10587 Berlin, Germany
| | - Tomas Polcar
- Department
of Control Engineering, Faculty of Electrical Engineering, Czech Technical University in Prague, Technicka 2, 16627 Prague 6, Czech Republic
| |
Collapse
|
7
|
Dodda A, Jayachandran D, Pannone A, Trainor N, Stepanoff SP, Steves MA, Radhakrishnan SS, Bachu S, Ordonez CW, Shallenberger JR, Redwing JM, Knappenberger KL, Wolfe DE, Das S. Active pixel sensor matrix based on monolayer MoS 2 phototransistor array. NATURE MATERIALS 2022; 21:1379-1387. [PMID: 36396961 DOI: 10.1038/s41563-022-01398-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
In-sensor processing, which can reduce the energy and hardware burden for many machine vision applications, is currently lacking in state-of-the-art active pixel sensor (APS) technology. Photosensitive and semiconducting two-dimensional (2D) materials can bridge this technology gap by integrating image capture (sense) and image processing (compute) capabilities in a single device. Here, we introduce a 2D APS technology based on a monolayer MoS2 phototransistor array, where each pixel uses a single programmable phototransistor, leading to a substantial reduction in footprint (900 pixels in ∼0.09 cm2) and energy consumption (100s of fJ per pixel). By exploiting gate-tunable persistent photoconductivity, we achieve a responsivity of ∼3.6 × 107 A W-1, specific detectivity of ∼5.6 × 1013 Jones, spectral uniformity, a high dynamic range of ∼80 dB and in-sensor de-noising capabilities. Further, we demonstrate near-ideal yield and uniformity in photoresponse across the 2D APS array.
Collapse
Affiliation(s)
- Akhil Dodda
- Engineering Science and Mechanics, Penn State University, University Park, PA, USA
| | - Darsith Jayachandran
- Engineering Science and Mechanics, Penn State University, University Park, PA, USA
| | - Andrew Pannone
- Engineering Science and Mechanics, Penn State University, University Park, PA, USA
| | - Nicholas Trainor
- Materials Science and Engineering, Penn State University, University Park, PA, USA
- Materials Research Institute, Penn State University, University Park, PA, USA
| | - Sergei P Stepanoff
- Materials Science and Engineering, Penn State University, University Park, PA, USA
| | - Megan A Steves
- Department of Chemistry, Penn State University, University Park, PA, USA
| | | | - Saiphaneendra Bachu
- Materials Science and Engineering, Penn State University, University Park, PA, USA
| | - Claudio W Ordonez
- Department of Chemistry, Penn State University, University Park, PA, USA
| | | | - Joan M Redwing
- Materials Science and Engineering, Penn State University, University Park, PA, USA
- Materials Research Institute, Penn State University, University Park, PA, USA
| | | | - Douglas E Wolfe
- Engineering Science and Mechanics, Penn State University, University Park, PA, USA
- Materials Science and Engineering, Penn State University, University Park, PA, USA
- Applied Research Laboratory, Penn State University, University Park, PA, USA
| | - Saptarshi Das
- Engineering Science and Mechanics, Penn State University, University Park, PA, USA.
- Materials Science and Engineering, Penn State University, University Park, PA, USA.
- Materials Research Institute, Penn State University, University Park, PA, USA.
- Applied Research Laboratory, Penn State University, University Park, PA, USA.
- Electrical Engineering and Computer Science, Penn State University, University Park, PA, USA.
| |
Collapse
|
8
|
Fioravanti F, Martínez S, Delgado S, García G, Rodriguez JL, Tejera EP, Lacconi GI. Effect of MoS2 in doped-reduced graphene oxide composites. Enhanced electrocatalysis for HER. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
9
|
Boron Oxide Enhancing Stability of MoS 2 Anode Materials for Lithium-Ion Batteries. MATERIALS 2022; 15:ma15062034. [PMID: 35329486 PMCID: PMC8949652 DOI: 10.3390/ma15062034] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/04/2022] [Accepted: 03/09/2022] [Indexed: 02/04/2023]
Abstract
Molybdenum disulfide (MoS2) is the most well-known transition metal chalcogenide for lithium storage applications because of its simple preparation process, superior optical, physical, and electrical properties, and high stability. However, recent research has shown that bare MoS2 nanosheet (NS) can be reformed to the bulk structure, and sulfur atoms can be dissolved in electrolytes or form polymeric structures, thereby preventing lithium insertion/desertion and reducing cycling performance. To enhance the electrochemical performance of the MoS2 NSs, B2O3 nanoparticles were decorated on the surface of MoS2 NSs via a sintering technique. The structure of B2O3 decorated MoS2 changed slightly with the formation of a lattice spacing of ~7.37 Å. The characterization of materials confirmed the formation of B2O3 crystals at 30% weight percentage of H3BO3 starting materials. In particular, the MoS2_B3 sample showed a stable capacity of ~500 mAh·g−1 after the first cycle. The cycling test delivered a high reversible specific capacity of ~82% of the second cycle after 100 cycles. Furthermore, the rate performance also showed a remarkable recovery capacity of ~98%. These results suggest that the use of B2O3 decorations could be a viable method for improving the stability of anode materials in lithium storage applications.
Collapse
|
10
|
Matveev AT, Konopatsky AS, Leybo DV, Volkov IN, Kovalskii AM, Varlamova LA, Sorokin PB, Fang X, Kulinich SA, Shtansky DV. Amorphous MoS xO y/ h-BN xO y Nanohybrids: Synthesis and Dye Photodegradation. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3232. [PMID: 34947581 PMCID: PMC8703645 DOI: 10.3390/nano11123232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/22/2021] [Accepted: 11/24/2021] [Indexed: 11/16/2022]
Abstract
Molybdenum sulfide is a very promising catalyst for the photodegradation of organic pollutants in water. Its photocatalytic activity arises from unsaturated sulfur bonds, and it increases with the introduction of structural defects and/or oxygen substitutions. Amorphous molybdenum sulfide (a-MoSxOy) with oxygen substitutions has many active sites, which create favorable conditions for enhanced catalytic activity. Here we present a new approach to the synthesis of a-MoSxOy and demonstrate its high activity in the photodegradation of the dye methylene blue (MB). The MoSxOy was deposited on hexagonal boron oxynitride (h-BNO) nanoflakes by reacting h-BNO, MoCl5, and H2S in dimethylformamide (DMF) at 250 °C. Both X-ray diffraction analysis and high-resolution TEM show the absence of crystalline order in a-MoSxOy. Based on the results of Raman and X-ray photoelectron spectroscopy, as well as analysis by the density functional theory (DFT) method, a chain structure of a-MoSxOy was proposed, consisting of MoS3 clusters with partial substitution of sulfur by oxygen. When a third of the sulfur atoms are replaced with oxygen, the band gap of a-MoSxOy is approximately 1.36 eV, and the valence and conduction bands are 0.74 eV and -0.62 eV, respectively (relative to a standard hydrogen electrode), which satisfies the conditions of photoinduced splitting of water. When illuminated with a mercury lamp, a-MoSxOy/h-BNxOy nanohybrids have a specific mass activity in MB photodegradation of approximately 5.51 mmol g-1 h-1, which is at least four times higher than so far reported values for nonmetal catalysts. The photocatalyst has been shown to be very stable and can be reused.
Collapse
Affiliation(s)
- Andrei T. Matveev
- Laboratory of Inorganic Nanomaterials, National University of Science and Technology “MISIS”, Leninskiy Prospect 4, 119049 Moscow, Russia; (A.S.K.); (D.V.L.); (I.N.V.); (A.M.K.); (L.A.V.); (P.B.S.); (D.V.S.)
| | - Anton S. Konopatsky
- Laboratory of Inorganic Nanomaterials, National University of Science and Technology “MISIS”, Leninskiy Prospect 4, 119049 Moscow, Russia; (A.S.K.); (D.V.L.); (I.N.V.); (A.M.K.); (L.A.V.); (P.B.S.); (D.V.S.)
| | - Denis V. Leybo
- Laboratory of Inorganic Nanomaterials, National University of Science and Technology “MISIS”, Leninskiy Prospect 4, 119049 Moscow, Russia; (A.S.K.); (D.V.L.); (I.N.V.); (A.M.K.); (L.A.V.); (P.B.S.); (D.V.S.)
| | - Ilia N. Volkov
- Laboratory of Inorganic Nanomaterials, National University of Science and Technology “MISIS”, Leninskiy Prospect 4, 119049 Moscow, Russia; (A.S.K.); (D.V.L.); (I.N.V.); (A.M.K.); (L.A.V.); (P.B.S.); (D.V.S.)
| | - Andrey M. Kovalskii
- Laboratory of Inorganic Nanomaterials, National University of Science and Technology “MISIS”, Leninskiy Prospect 4, 119049 Moscow, Russia; (A.S.K.); (D.V.L.); (I.N.V.); (A.M.K.); (L.A.V.); (P.B.S.); (D.V.S.)
| | - Liubov A. Varlamova
- Laboratory of Inorganic Nanomaterials, National University of Science and Technology “MISIS”, Leninskiy Prospect 4, 119049 Moscow, Russia; (A.S.K.); (D.V.L.); (I.N.V.); (A.M.K.); (L.A.V.); (P.B.S.); (D.V.S.)
| | - Pavel B. Sorokin
- Laboratory of Inorganic Nanomaterials, National University of Science and Technology “MISIS”, Leninskiy Prospect 4, 119049 Moscow, Russia; (A.S.K.); (D.V.L.); (I.N.V.); (A.M.K.); (L.A.V.); (P.B.S.); (D.V.S.)
| | - Xiaosheng Fang
- Department of Materials Science, Fudan University, Shanghai 200433, China;
| | - Sergei A. Kulinich
- Research Institute of Science and Technology, Tokai University, Hiratsuka 259-1292, Kanagawa, Japan
- School of Engineering, Far Eastern Federal University, 690041 Vladivostok, Russia
| | - Dmitry V. Shtansky
- Laboratory of Inorganic Nanomaterials, National University of Science and Technology “MISIS”, Leninskiy Prospect 4, 119049 Moscow, Russia; (A.S.K.); (D.V.L.); (I.N.V.); (A.M.K.); (L.A.V.); (P.B.S.); (D.V.S.)
| |
Collapse
|
11
|
Application of Pulsed Laser Deposition in the Preparation of a Promising MoS x/WSe 2/C(В) Photocathode for Photo-Assisted Electrochemical Hydrogen Evolution. NANOMATERIALS 2021; 11:nano11061461. [PMID: 34072952 PMCID: PMC8228423 DOI: 10.3390/nano11061461] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/27/2021] [Accepted: 05/30/2021] [Indexed: 11/17/2022]
Abstract
We studied the possibility of using pulsed laser deposition (PLD) for the formation of a MoSx/WSe2 heterostructure on a dielectric substrate. The heterostructure can be employed for effective solar water splitting to produce hydrogen. The sapphire substrate with the conducting C(B) film (rear contact) helped increase the formation temperature of the WSe2 film to obtain the film consisting of 2H-WSe2 near-perfect nanocrystals. The WSe2 film was obtained by off-axis PLD in Ar gas. The laser plume from a WSe2 target was directed along the substrate surface. The preferential scattering of selenium on Ar molecules contributed to the effective saturation of the WSe2 film with chalcogen. Nano-structural WSe2 film were coated by reactive PLD with a nanofilm of catalytically active amorphous MoSx~4. It was established that the mutual arrangement of energy bands in the WSe2 and MoSx~4 films facilitated the separation of electrons and holes at the interface and electrons moved to the catalytically active MoSx~4. The current density during light-assisted hydrogen evolution was above ~3 mA/cm2 (at zero potential), whilst the onset potential reached 400 mV under irradiation with an intensity of 100 mW/cm2 in an acidic solution. Factors that may affect the HER performance of MoSx~4/WSe2/C(В) structure are discussed.
Collapse
|
12
|
Fominski V, Fominski D, Romanov R, Gritskevich M, Demin M, Shvets P, Maksimova K, Goikhman A. Specific Features of Reactive Pulsed Laser Deposition of Solid Lubricating Nanocomposite Mo-S-C-H Thin-Film Coatings. NANOMATERIALS 2020; 10:nano10122456. [PMID: 33302538 PMCID: PMC7764125 DOI: 10.3390/nano10122456] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/04/2020] [Accepted: 12/06/2020] [Indexed: 01/24/2023]
Abstract
This work investigates the structure and chemical states of thin-film coatings obtained by pulsed laser codeposition of Mo and C in a reactive gas (H2S). The coatings were analysed for their prospective use as solid lubricating coatings for friction units operating in extreme conditions. Pulsed laser ablation of molybdenum and graphite targets was accompanied by the effective interaction of the deposited Mo and C layers with the reactive gas and the chemical states of Mo- and C-containing nanophases were interdependent. This had a negative effect on the tribological properties of Mo–S–C–H nanocomposite coatings obtained at H2S pressures of 9 and 18 Pa, which were optimal for obtaining MoS2 and MoS3 coatings, respectively. The best tribological properties were found for the Mo–S–C–H_5.5 coating formed at an H2S pressure of 5.5 Pa. At this pressure, the x = S/Mo ratio in the MoSx nanophase was slightly less than 2, and the a-C(S,H) nanophase contained ~8 at.% S and ~16 at.% H. The a-C(S,H) nanophase with this composition provided a low coefficient of friction (~0.03) at low ambient humidity and 22 °C. The nanophase composition in Mo–S–C–H_5.5 coating demonstrated fairly good antifriction properties and increased wear resistance even at −100 °C. For wet friction conditions, Mo–S–C–H nanocomposite coatings did not have significant advantages in reducing friction compared to the MoS2 and MoS3 coatings formed by reactive pulsed laser deposition.
Collapse
Affiliation(s)
- Vyacheslav Fominski
- National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Kashirskoe sh., 31, 115409 Moscow, Russia; (D.F.); (R.R.); (M.G.)
- Correspondence:
| | - Dmitry Fominski
- National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Kashirskoe sh., 31, 115409 Moscow, Russia; (D.F.); (R.R.); (M.G.)
| | - Roman Romanov
- National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Kashirskoe sh., 31, 115409 Moscow, Russia; (D.F.); (R.R.); (M.G.)
| | - Mariya Gritskevich
- National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Kashirskoe sh., 31, 115409 Moscow, Russia; (D.F.); (R.R.); (M.G.)
| | - Maxim Demin
- Immanuel Kant Baltic Federal University, A. Nevskogo St 14, 236016 Kaliningrad, Russia; (M.D.); (P.S.); (K.M.); (A.G.)
| | - Petr Shvets
- Immanuel Kant Baltic Federal University, A. Nevskogo St 14, 236016 Kaliningrad, Russia; (M.D.); (P.S.); (K.M.); (A.G.)
| | - Ksenia Maksimova
- Immanuel Kant Baltic Federal University, A. Nevskogo St 14, 236016 Kaliningrad, Russia; (M.D.); (P.S.); (K.M.); (A.G.)
| | - Alexander Goikhman
- Immanuel Kant Baltic Federal University, A. Nevskogo St 14, 236016 Kaliningrad, Russia; (M.D.); (P.S.); (K.M.); (A.G.)
| |
Collapse
|