Low-Temperature Synthesis of Monolithic Titanium Carbide/Carbon Composite Aerogel.
NANOMATERIALS 2020;
10:nano10122527. [PMID:
33339289 PMCID:
PMC7767110 DOI:
10.3390/nano10122527]
[Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/11/2020] [Accepted: 12/12/2020] [Indexed: 11/16/2022]
Abstract
Resorcinol-formaldehyde/titanium dioxide composite (RF/TiO2) gel was prepared simultaneously by acid catalysis and then dried to aerogel with supercritical fluid CO2. The carbon/titanium dioxide aerogel was obtained by carbonization and then converted to nanoporous titanium carbide/carbon composite aerogel via 800 °C magnesiothermic catalysis. Meanwhile, the evolution of the samples in different stages was characterized by X-ray diffraction (XRD), an energy-dispersive X-ray (EDX) spectrometer, a scanning electron microscope (SEM), a transmission electron microscope (TEM) and specific surface area analysis (BET). The results showed that the final product was nanoporous TiC/C composite aerogel with a low apparent density of 339.5 mg/cm3 and a high specific surface area of 459.5 m2/g. Comparing to C aerogel, it could also be considered as one type of highly potential material with efficient photothermal conversion. The idea of converting oxide-carbon composite into titanium carbide via the confining template and low-temperature magnesiothermic catalysis may provide new sight to the synthesis of novel nanoscale carbide materials.
Collapse