1
|
Han J, Mao K, Yang YG, Sun T. Impact of inorganic/organic nanomaterials on the immune system for disease treatment. Biomater Sci 2024; 12:4903-4926. [PMID: 39190428 DOI: 10.1039/d4bm00853g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
The study of nanomaterials' nature, function, and biocompatibility highlights their potential in drug delivery, imaging, diagnostics, and therapeutics. Advancements in nanotechnology have fostered the development and application of diverse nanomaterials. These materials facilitate drug delivery and influence the immune system directly. Yet, understanding of their impact on the immune system is incomplete, underscoring the need to select materials to achieve desired outcomes carefully. In this review, we outline and summarize the distinctive characteristics and effector functions of inorganic nanomaterials and organic materials in inducing immune responses. We highlight the role and advantages of nanomaterial-induced immune responses in the treatment of immune-related diseases. Finally, we briefly discuss the current challenges and future opportunities for disease treatment and clinical translation of these nanomaterials.
Collapse
Affiliation(s)
- Jing Han
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China.
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China
| | - Kuirong Mao
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China.
- International Center of Future Science, Jilin University, Changchun, Jilin, China
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China
| | - Yong-Guang Yang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China.
- International Center of Future Science, Jilin University, Changchun, Jilin, China
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China
- State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, China
| | - Tianmeng Sun
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China.
- International Center of Future Science, Jilin University, Changchun, Jilin, China
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, Jilin, China
- State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
2
|
Zhan Y, Lou H, Shou R, Li A, Shang J, Jin Y, Li L, Zhu L, Lu X, Fan X. Maternal exposure to E 551 during pregnancy leads to genome-wide DNA methylation changes and metabolic disorders in the livers of pregnant mice and their fetuses. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133233. [PMID: 38118196 DOI: 10.1016/j.jhazmat.2023.133233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 12/09/2023] [Accepted: 12/10/2023] [Indexed: 12/22/2023]
Abstract
The widespread use of nanoparticles in the food industry has raised concerns regarding their potential adverse effects on human health, particularly in vulnerable populations, including pregnant mothers and fetuses. However, studies evaluating the reproductive and developmental toxicity of food-grade nanomaterials are limited. This study investigated the potential risks of prenatal dietary exposure to food-grade silica nanoparticles (E 551) on maternal health and fetal growth using conventional toxicological and epigenetic methods. The results showed that prenatal exposure to a high-dose of E 551 induces fetal resorption. Moreover, E 551 significantly accumulates in maternal and fetal livers, triggering a hepatic inflammatory response. At the epigenetic level, global DNA methylation is markedly altered in the maternal and fetal livers. Genome-wide DNA methylation sequencing revealed affected mCG, mCHG, and mCHH methylation landscapes. Subsequent bioinformatic analysis of the differentially methylated genes suggests that E 551 poses a risk of inducing metabolic disorders in maternal and fetal livers. This is further evidenced by impaired glucose tolerance in pregnant mice and altered expression of key metabolism-related genes and proteins in maternal and fetal livers. Collectively, the results of this study highlighted the importance of epigenetics in characterizing the potential toxicity of maternal exposure to food-grade nanomaterials during pregnancy.
Collapse
Affiliation(s)
- Yingqi Zhan
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - He Lou
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Rongshang Shou
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Anyao Li
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiaxin Shang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yanyan Jin
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lu Li
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; National Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314102, China
| | - Lidan Zhu
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaoyan Lu
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310058, China; Jinhua Institute of Zhejiang University, Jinhua, Zhejiang 321016, China.
| | - Xiaohui Fan
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; National Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314102, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310058, China; Jinhua Institute of Zhejiang University, Jinhua, Zhejiang 321016, China.
| |
Collapse
|
3
|
Bianchi MG, Chiu M, Taurino G, Bergamaschi E, Turroni F, Mancabelli L, Longhi G, Ventura M, Bussolati O. Amorphous silica nanoparticles and the human gut microbiota: a relationship with multiple implications. J Nanobiotechnology 2024; 22:45. [PMID: 38291460 PMCID: PMC10826219 DOI: 10.1186/s12951-024-02305-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/23/2024] [Indexed: 02/01/2024] Open
Abstract
Amorphous silica nanoparticles (ASNP) are among the nanomaterials that are produced in large quantities. ASNP have been present for a long time in several fast-moving consumer products, several of which imply exposure of the gastrointestinal tract, such as toothpastes, food additives, drug excipients, and carriers. Consolidated use and experimental evidence have consistently pointed to the very low acute toxicity and limited absorption of ASNP. However, slow absorption implies prolonged exposure of the intestinal epithelium to ASNP, with documented effects on intestinal permeability and immune gut homeostasis. These effects could explain the hepatic toxicity observed after oral administration of ASNP in animals. More recently, the role of microbiota in these and other ASNP effects has attracted increasing interest in parallel with the recognition of the role of microbiota in a variety of conditions. Although evidence for nanomaterial effects on microbiota is particularly abundant for materials endowed with bactericidal activities, a growing body of recent experimental data indicates that ASNPs also modify microbiota. The implications of these effects are recounted in this contribution, along with a discussion of the more important open issues and recommendations for future research.
Collapse
Affiliation(s)
- Massimiliano G Bianchi
- Lab. of General Pathology, Dept. of Medicine and Surgery, University of Parma, Parma, Italy.
- Interdepartmental Research Centre "Microbiome Research Hub", University of Parma, Parma, Italy.
| | - Martina Chiu
- Lab. of General Pathology, Dept. of Medicine and Surgery, University of Parma, Parma, Italy
| | - Giuseppe Taurino
- Lab. of General Pathology, Dept. of Medicine and Surgery, University of Parma, Parma, Italy
- Interdepartmental Research Centre "Microbiome Research Hub", University of Parma, Parma, Italy
| | - Enrico Bergamaschi
- Department of Public Health Sciences and Paediatrics, University of Turin, Turin, Italy
| | - Francesca Turroni
- Interdepartmental Research Centre "Microbiome Research Hub", University of Parma, Parma, Italy
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Leonardo Mancabelli
- Interdepartmental Research Centre "Microbiome Research Hub", University of Parma, Parma, Italy
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Giulia Longhi
- Interdepartmental Research Centre "Microbiome Research Hub", University of Parma, Parma, Italy
| | - Marco Ventura
- Interdepartmental Research Centre "Microbiome Research Hub", University of Parma, Parma, Italy
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Ovidio Bussolati
- Lab. of General Pathology, Dept. of Medicine and Surgery, University of Parma, Parma, Italy
- Interdepartmental Research Centre "Microbiome Research Hub", University of Parma, Parma, Italy
| |
Collapse
|
4
|
Bianchi MG, Chiu M, Taurino G, Bergamaschi E, Cubadda F, Macaluso GM, Bussolati O. The TLR4/NFκB-Dependent Inflammatory Response Activated by LPS Is Inhibited in Human Macrophages Pre-Exposed to Amorphous Silica Nanoparticles. NANOMATERIALS 2022; 12:nano12132307. [PMID: 35808143 PMCID: PMC9268534 DOI: 10.3390/nano12132307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/23/2022] [Accepted: 06/30/2022] [Indexed: 11/16/2022]
Abstract
Amorphous silica nanoparticles (ASNP) are present in a variety of products and their biological effects are actively investigated. Although several studies have documented pro-inflammatory effects of ASNP, the possibility that they also modify the response of innate immunity cells to natural activators has not been thoroughly investigated. Here, we study the effects of pyrogenic ASNP on the LPS-dependent activation of human macrophages differentiated from peripheral blood monocytes. In macrophages, 24 h of pre-exposure to non-cytotoxic doses of ASNP markedly inhibited the LPS-dependent induction of pro-inflammatory (TNFα, IL-6) and anti-inflammatory cytokines (IL-10). The inhibitory effect was associated with the suppression of NFκB activation and the increased intracellular sequestration of the TLR4 receptor. The late induction of glutamine synthetase (GS) by LPS was also prevented by pre-exposure to ASNP, while GS silencing did not interfere with cytokine secretion. It is concluded that (i) macrophages exposed to ASNP are less sensitive to LPS-dependent activation and (ii) GS induction by LPS is likely secondary to the stimulation of cytokine secretion. The observed interference with LPS effects may point to a dampening of the acute inflammatory response after exposure to ASNP in humans.
Collapse
Affiliation(s)
- Massimiliano G. Bianchi
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (M.C.); (G.T.); (G.M.M.); (O.B.)
- Correspondence:
| | - Martina Chiu
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (M.C.); (G.T.); (G.M.M.); (O.B.)
| | - Giuseppe Taurino
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (M.C.); (G.T.); (G.M.M.); (O.B.)
| | - Enrico Bergamaschi
- Department of Public Health Sciences and Pediatrics, University of Turin, 10126 Turin, Italy;
| | - Francesco Cubadda
- Istituto Superiore di Sanità-Italian National Institute of Health, 00161 Rome, Italy;
| | - Guido M. Macaluso
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (M.C.); (G.T.); (G.M.M.); (O.B.)
- Centro di Odontoiatria, University of Parma, 43126 Parma, Italy
| | - Ovidio Bussolati
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (M.C.); (G.T.); (G.M.M.); (O.B.)
- Microbiome Research Hub, University of Parma, 43124 Parma, Italy
| |
Collapse
|
5
|
Lo Giudice C, Yang J, Poncin MA, Adumeau L, Delguste M, Koehler M, Evers K, Dumitru AC, Dawson KA, Alsteens D. Nanophysical Mapping of Inflammasome Activation by Nanoparticles via Specific Cell Surface Recognition Events. ACS NANO 2022; 16:306-316. [PMID: 34957816 DOI: 10.1021/acsnano.1c06301] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Silica nanoparticles (SiNP) trigger a range of innate immune responses in relevant essential organs, such as the liver and the lungs. Inflammatory reactions, including NLRP3 inflammasome activation, have been linked to particulate materials; however, the molecular mechanisms and key actors remain elusive. Although many receptors, including several scavenger receptors, were suggested to participate in SiNP cellular uptake, mechanistic evidence of their role on innate immunity is lacking. Here we present an atomic force microscopy-based approach to physico-mechanically map the specific interaction occurring between nanoparticles and scavenger receptor A1 (SRA1) in vitro on living lung epithelial cells. We find that SiNP recognition by SRA1 on human macrophages plays a key role in mediating NLRP3 inflammasome activation, and we identify cellular mechanical changes as clear indicators of inflammasome activation in human macrophages, greatly advancing our knowledge on the interplay among nanomaterials and innate immunity.
Collapse
Affiliation(s)
- Cristina Lo Giudice
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve 1348, Belgium
- Max Planck Institute for Medical Research, Heidelberg D-69120, Germany
| | - Jinsung Yang
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve 1348, Belgium
| | - Mégane A Poncin
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve 1348, Belgium
| | - Laurent Adumeau
- Centre for BioNano Interactions, School of Chemistry, University College Dublin, Dublin D04 N2E5, Ireland
| | - Martin Delguste
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve 1348, Belgium
| | - Melanie Koehler
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve 1348, Belgium
| | - Koen Evers
- Centre for BioNano Interactions, School of Chemistry, University College Dublin, Dublin D04 N2E5, Ireland
| | - Andra C Dumitru
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve 1348, Belgium
| | - Kenneth A Dawson
- Centre for BioNano Interactions, School of Chemistry, University College Dublin, Dublin D04 N2E5, Ireland
- Guangdong Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumour Microenvironment, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510261, China
| | - David Alsteens
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve 1348, Belgium
| |
Collapse
|
6
|
Brand W, van Kesteren PCE, Peters RJB, Oomen AG. Issues currently complicating the risk assessment of synthetic amorphous silica (SAS) nanoparticles after oral exposure. Nanotoxicology 2021; 15:905-933. [PMID: 34074217 DOI: 10.1080/17435390.2021.1931724] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Synthetic amorphous silica (SAS) is applied in food products as food additive E 551. It consists of constituent amorphous silicon dioxide (SiO2) nanoparticles that form aggregates and agglomerates. We reviewed recent oral toxicity studies with SAS. Some of those report tissue concentrations of silicon (Si). The results of those studies were compared with recently determined tissue concentrations of Si (and Si-particles) in human postmortem tissues. We noticed inconsistent results of the various toxicity studies regarding toxicity and reported tissue concentrations, which hamper the risk assessment of SAS. A broad range of Si concentrations is reported in control animals in toxicity studies. The Si concentrations found in human postmortem tissues fall within this range. On the other hand, the mean concentration found in human liver is higher than the reported concentrations causing liver effects in some animal toxicity studies after oral exposure to SAS. Also higher liver concentrations are observed in other, negative animal studies. Those inconsistencies could be caused by the presence of other Si-containing chemical substances or particles (which potentially also includes background SAS) and/or different sample preparation and analytical techniques that were used. Other factors which could explain the inconsistencies in outcome between the toxicity studies are the distinct SAS used and different dosing regimes, such as way of administration (dietary, via drinking water, oral gavage), dispersion of SAS and dose. More research is needed to address these issues and to perform a proper risk assessment for SAS in food. The current review will help to progress research on the toxicity of SAS and the associated risk assessment.
Collapse
Affiliation(s)
- Walter Brand
- National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Petra C E van Kesteren
- National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Ruud J B Peters
- Wageningen Food Safety Research (WFSR), Wageningen, The Netherlands
| | - Agnes G Oomen
- National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| |
Collapse
|
7
|
Serum Lowers Bioactivity and Uptake of Synthetic Amorphous Silica by Alveolar Macrophages in a Particle Specific Manner. NANOMATERIALS 2021; 11:nano11030628. [PMID: 33802450 PMCID: PMC7999370 DOI: 10.3390/nano11030628] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 02/20/2021] [Accepted: 02/26/2021] [Indexed: 12/02/2022]
Abstract
Various cell types are compromised by synthetic amorphous silica (SAS) if they are exposed to SAS under protein-free conditions in vitro. Addition of serum protein can mitigate most SAS effects, but it is not clear whether this is solely caused by protein corona formation and/or altered particle uptake. Because sensitive and reliable mass spectrometric measurements of SiO2 NP are cumbersome, quantitative uptake studies of SAS at the cellular level are largely missing. In this study, we combined the comparison of SAS effects on alveolar macrophages in the presence and absence of foetal calf serum with mass spectrometric measurement of 28Si in alkaline cell lysates. Effects on the release of lactate dehydrogenase, glucuronidase, TNFα and H2O2 of precipitated (SIPERNAT® 50, SIPERNAT® 160) and fumed SAS (AEROSIL® OX50, AEROSIL® 380 F) were lowered close to control level by foetal calf serum (FCS) added to the medium. Using a quantitative high resolution ICP-MS measurement combined with electron microscopy, we found that FCS reduced the uptake of particle mass by 9.9% (SIPERNAT® 50) up to 83.8% (AEROSIL® OX50). Additionally, larger particle agglomerates were less frequent in cells in the presence of FCS. Plotting values for lactate dehydrogenase (LDH), glucuronidase (GLU) or tumour necrosis factor alpha (TNFα) against the mean cellular dose showed the reduction of bioactivity with a particle sedimentation bias. As a whole, the mitigating effects of FCS on precipitated and fumed SAS on alveolar macrophages are caused by a reduction of bioactivity and by a lowered internalization, and both effects occur in a particle specific manner. The method to quantify nanosized SiO2 in cells is a valuable tool for future in vitro studies.
Collapse
|