1
|
Huwaidi A, Robert G, Kumari B, Bass AD, Cloutier P, Guérin B, Sanche L, Wagner JR. Electron-Induced Damage by UV Photolysis of DNA Attached to Gold Nanoparticles. Chem Res Toxicol 2024; 37:419-428. [PMID: 38314730 DOI: 10.1021/acs.chemrestox.3c00370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Photolysis of DNA attached to gold nanoparticles (AuNPs) with ultraviolet (UV) photons induces DNA damage. The release of nucleobases (Cyt, Gua, Ade, and Thy) from DNA was the major reaction (99%) with an approximately equal release of pyrimidines and purines. This reaction contributes to the formation of abasic sites in DNA. In addition, liquid chromatography-mass spectrometry/MS (LC-MS/MS) analysis revealed the formation of reduction products of pyrimidines (5,6-dihydrothymidine and 5,6-dihydro-2'-deoxyuridine) and eight 2',3'- and 2',5'-dideoxynucleosides. In contrast, there was no evidence of the formation of 5-hydroxymethyluracil and 8-oxo-7,8-dihydroguanine, which are common oxidation products of thymine and guanine, respectively. Using appropriate filters, the main photochemical reactions were found to involve photoelectrons ejected from AuNPs by UV photons. The contribution of "hot" conduction band electrons with energies below the photoemission threshold was minor. The mechanism for the release of free nucleobases by photoelectrons is proposed to take place by the initial formation of transient molecular anions of the nucleobases, followed by dissociative electron attachment at the C1'-N glycosidic bond connecting the nucleobase to the sugar-phosphate backbone. This mechanism is consistent with the reactivity of secondary electrons ejected by X-ray irradiation of AuNPs attached to DNA, as well as the reactions of various nucleic acid derivatives irradiated with monoenergetic very-low-energy electrons (∼2 eV). These studies should help us to understand the chemistry of nanoparticles that are exposed to UV light and that are used as scaffolds and catalysts in molecular biology, curative agents in photodynamic therapy, and components of sunscreens and cosmetics.
Collapse
Affiliation(s)
- Alaa Huwaidi
- Département de Médecine Nucléaire et Radiobiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, Québec J1H 5N4, Canada
| | - Gabriel Robert
- Département de Médecine Nucléaire et Radiobiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, Québec J1H 5N4, Canada
| | - Bhavini Kumari
- Département de Médecine Nucléaire et Radiobiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, Québec J1H 5N4, Canada
| | - Andrew D Bass
- Département de Médecine Nucléaire et Radiobiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, Québec J1H 5N4, Canada
| | - Pierre Cloutier
- Département de Médecine Nucléaire et Radiobiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, Québec J1H 5N4, Canada
| | - Brigitte Guérin
- Département de Médecine Nucléaire et Radiobiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, Québec J1H 5N4, Canada
| | - Léon Sanche
- Département de Médecine Nucléaire et Radiobiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, Québec J1H 5N4, Canada
| | - J Richard Wagner
- Département de Médecine Nucléaire et Radiobiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, Québec J1H 5N4, Canada
| |
Collapse
|
2
|
Vanadium doped OMS-2 catalysts for one-pot synthesis of imine from benzyl alcohol and aniline: Effects of vanadium content and precursor. CATAL COMMUN 2022. [DOI: 10.1016/j.catcom.2022.106540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
4
|
Luo J, Shan F, Yang S, Zhou Y, Liang C. Boosting the catalytic behavior and stability of a gold catalyst with structure regulated by ceria. RSC Adv 2022; 12:1384-1392. [PMID: 35425170 PMCID: PMC8978899 DOI: 10.1039/d1ra07686h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/13/2021] [Indexed: 11/29/2022] Open
Abstract
In this work, a series of colloidal gold nanoparticles with controllable sizes were anchored on carbon nanotubes (CNT) for the aerobic oxidation of benzyl alcohol. The intrinsic influence of Au particles on the catalytic behavior was unraveled based on different nanoscale-gold systems. The Au/CNT-A sample with smaller Au sizes deserved a faster reaction rate, mainly resulting from the higher dispersion degree (23.5%) of Au with the available exposed sites contributed by small gold particles. However, monometallic Au/CNT samples lacked long-term stability. CeO2 was herein decorated to regulate the chemical and surface structure of the Au/CNT. An appropriate CeO2 content tuned the sizes and chemical states of Au by electron delivery with better metal dispersion. Small CeO2 crystals that were preferentially neighboring the Au particles facilitated the generation of Au-CeO2 interfaces, and benefited the continuous supplementation of oxygen species. The collaborative functions between the size effect and surface chemistry accounted for the higher benzaldehyde yield and sustainably stepped-up reaction rates by Au-Ce5/CNT with 5 wt% CeO2.
Collapse
Affiliation(s)
- Jingjie Luo
- Laboratory of Advanced Materials & Catalytic Engineering (AMCE), School of Chemical Engineering, Dalian University of Technology Panjin 124221 China +86-411-84986353 +86-411-84986353
| | - Fengxiang Shan
- Laboratory of Advanced Materials & Catalytic Engineering (AMCE), School of Chemical Engineering, Dalian University of Technology Panjin 124221 China +86-411-84986353 +86-411-84986353
| | - Sihan Yang
- Laboratory of Advanced Materials & Catalytic Engineering (AMCE), School of Chemical Engineering, Dalian University of Technology Panjin 124221 China +86-411-84986353 +86-411-84986353
| | - Yixue Zhou
- Laboratory of Advanced Materials & Catalytic Engineering (AMCE), School of Chemical Engineering, Dalian University of Technology Panjin 124221 China +86-411-84986353 +86-411-84986353
| | - Changhai Liang
- Laboratory of Advanced Materials & Catalytic Engineering (AMCE), School of Chemical Engineering, Dalian University of Technology Panjin 124221 China +86-411-84986353 +86-411-84986353
| |
Collapse
|
5
|
Manuel AP, Shankar K. Hot Electrons in TiO 2-Noble Metal Nano-Heterojunctions: Fundamental Science and Applications in Photocatalysis. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1249. [PMID: 34068571 PMCID: PMC8151081 DOI: 10.3390/nano11051249] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/03/2021] [Accepted: 05/05/2021] [Indexed: 01/06/2023]
Abstract
Plasmonic photocatalysis enables innovation by harnessing photonic energy across a broad swathe of the solar spectrum to drive chemical reactions. This review provides a comprehensive summary of the latest developments and issues for advanced research in plasmonic hot electron driven photocatalytic technologies focusing on TiO2-noble metal nanoparticle heterojunctions. In-depth discussions on fundamental hot electron phenomena in plasmonic photocatalysis is the focal point of this review. We summarize hot electron dynamics, elaborate on techniques to probe and measure said phenomena, and provide perspective on potential applications-photocatalytic degradation of organic pollutants, CO2 photoreduction, and photoelectrochemical water splitting-that benefit from this technology. A contentious and hitherto unexplained phenomenon is the wavelength dependence of plasmonic photocatalysis. Many published reports on noble metal-metal oxide nanostructures show action spectra where quantum yields closely follow the absorption corresponding to higher energy interband transitions, while an equal number also show quantum efficiencies that follow the optical response corresponding to the localized surface plasmon resonance (LSPR). We have provided a working hypothesis for the first time to reconcile these contradictory results and explain why photocatalytic action in certain plasmonic systems is mediated by interband transitions and in others by hot electrons produced by the decay of particle plasmons.
Collapse
Affiliation(s)
- Ajay P. Manuel
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada;
| | - Karthik Shankar
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada;
- Future Energy Systems Research Institute, University of Alberta, Edmonton, AB T6G 1K4, Canada
| |
Collapse
|
6
|
Zhang Z, Hao X, Hao S, Yu X, Wang Y, Li J. Preparation of 2D WO3 nanomaterials and their catalytic performance during the synthesis of imines under visible light irradiation. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111427] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|