1
|
Bano N, Gupta A, Amir M, Zaheer MR, Roohi R. Malignance-restriction activity exhibited by bioactive compounds of selected actinobacteria as silver nanoparticles against A549 lung cancer cell lines. Cell Biochem Funct 2024; 42:e3988. [PMID: 38532684 DOI: 10.1002/cbf.3988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/08/2024] [Accepted: 03/10/2024] [Indexed: 03/28/2024]
Abstract
This article deals with the antibacterial and anticancer potential of secondary metabolites produced by actinomycetes also reported as actinobacteria, Microbacterium proteolyticum (MN560041), and Streptomycetes rochei, where preliminary studies were done with the well diffusion method. These actinobacteria's silver nanoparticles were synthesized and characterized using transmission electron microscopy (TEM) and UV-Visible spectroscopy. Anticancer was measured using the MTT test, reactive oxygen species (ROS) generation measured with DCFDA, mitochondrial membrane potential (MMP) measurement, and DAPI fluorescence intensity activity was measured in treated and non-treated cancerous cells. The IC50 value for 5-FU (a), LA2(O) (b), LA2(R) (c), LA2(ON) (d), and LA2(RN) (e) was obtained at 3.91 μg/mL (52.73% cell viability), 56.12 μg/mL (52.35% cell viability), 44.90 μg/mL (52.3% cell viability), 3.45 μg/mL (50.25% cell viability), and 8.05 μg/mL (48.72% cell viability), respectively. TEM micrographs revealed discrete, well-separated AgNPs particles of size 7.88 ± 2 to 12.86 ± 0.24 nm. Gas chromatography-mass spectrometry was also performed to detect the compounds in bioactive metabolites where n-hexadecanoic acid was obtained as the most significant one. MTT test showed a substantial decline in A549 cell viability (up to 48.72%), 2.75-fold increase in ROS generation was noticed in comparison to untreated A549 lung cancer cells when measured with DCFDA. A total of 0.31-fold decrease in MMP and 1.74-fold increase in DAPI fluorescence intensity compared to untreated A549 lung cancer cells suggests that the synthesized nanoparticles promote apoptosis in cancerous cells. Our findings suggests that the secondary metabolites of M. proteolyticum and S. rochei in nanoparticle form can be used as a significant compound against lung cancers.
Collapse
Affiliation(s)
- Naushin Bano
- Department of Bioengineering, Integral University, Lucknow, Uttar Pradesh, India
| | - Anamika Gupta
- Department of Chemistry, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Mohammad Amir
- Department of Bioengineering, Integral University, Lucknow, Uttar Pradesh, India
| | - Mohd Rehan Zaheer
- Department of Chemistry, R.M.P.S.P. Girls Post Graduate College, Basti, Uttar Pradesh, India
| | - Roohi Roohi
- Department of Bioengineering, Integral University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
2
|
Quan MX, Wu Y, Liu QY, Bu ZQ, Lu JY, Huang WT. Multimorphological Remoldable Silver Nanomaterials from Multimode and Multianalyte Colorimetric Sensing to Molecular Information Technology. ACS APPLIED MATERIALS & INTERFACES 2023; 15:38693-38706. [PMID: 37542464 DOI: 10.1021/acsami.3c06735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/07/2023]
Abstract
Inspired by life's interaction networks, ongoing efforts are to increase complexity and responsiveness of multicomponent interactions in the system for sensing, programmable control, or information processing. Although exquisite preparation of single uniform-morphology nanomaterials has been extremely explored, the potential value of facile and one-pot preparation of multimorphology nanomaterials has been seriously ignored. Here, multimorphological silver nanomaterials (M-AgN) prepared by one pot can form interaction networks with various analytes, which can be successfully realized from multimode and multianalyte colorimetric sensing to molecular information technology (logic computing and security). The interaction of M-AgN with multianalytes not only induces multisignal responses (including color, absorbance, and wavelength shift) for sensing metal ions (Cr3+, Hg2+, and Ni2+) but also can controllably reshape its four morphologies (nanodots, nanoparticles, nanorods, and nanotriangles). By abstracting binary relationships between analytes and response signals, multicoding parallel logic operations (including simple logic gates and cascaded circuits) can be performed. In addition, taking advantage of natural concealment and molecular response characteristics of M-AgN nanosystems can also realize molecular information encoding, encryption, and hiding. This research not only promotes the construction and application of multinano interaction systems based on multimorphology and multicomponent nanoset but also provides a new imagination for the integration of sensing, logic, and informatization.
Collapse
Affiliation(s)
- Min Xia Quan
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha 410081, P. R. China
| | - Ying Wu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha 410081, P. R. China
| | - Qing Yu Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha 410081, P. R. China
| | - Zhen Qi Bu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha 410081, P. R. China
| | - Jiao Yang Lu
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Academician Workstation, Changsha Medical University, Changsha 410219, PR China
| | - Wei Tao Huang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha 410081, P. R. China
| |
Collapse
|
3
|
Musino D, Devcic J, Lelong C, Luche S, Rivard C, Dalzon B, Landrot G, Rabilloud T, Capron I. Impact of Physico-Chemical Properties of Cellulose Nanocrystal/Silver Nanoparticle Hybrid Suspensions on Their Biocidal and Toxicological Effects. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1862. [PMID: 34361248 PMCID: PMC8308223 DOI: 10.3390/nano11071862] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/08/2021] [Accepted: 07/16/2021] [Indexed: 12/11/2022]
Abstract
There is a demand for nanoparticles that are environmentally acceptable, but simultaneously efficient and low cost. We prepared silver nanoparticles (AgNPs) grafted on a native bio-based substrate (cellulose nanocrystals, CNCs) with high biocidal activity and no toxicological impact. AgNPs of 10 nm are nucleated on CNCs in aqueous suspension with content from 0.4 to 24.7 wt%. XANES experiments show that varying the NaBH4/AgNO3 molar ratio affects the AgNP oxidation state, while maintaining an fcc structure. AgNPs transition from 10 nm spherical NPs to 300 nm triangular-shaped AgNPrisms induced by H2O2 post-treatment. The 48 h biocidal activity of the hybrid tested on B. Subtilis is intensified with the increase of AgNP content irrespective of the Ag+/Ag0 ratio in AgNPs, while the AgNSphere-AgNPrism transition induces a significant reduction of biocidal activity. A very low minimum inhibitory concentration of 0.016 mg AgNP/mL is determined. A new long-term biocidal activity test (up to 168 h) proved efficiency favorable to the smaller AgNPs. Finally, it is shown that AgNPs have no impact on the phagocytic capacity of mammalian cells.
Collapse
Affiliation(s)
- Dafne Musino
- INRAE, Institut National de Recherche Pour L’agriculture, L’alimentation et L’environnement, BIA, Biopolymères Interactions et Assemblages, 44316 Nantes, France;
| | - Julie Devcic
- Laboratoire de Chimie et Biologie des Métaux, University Grenoble Alpes, CNRS, CEA, IRIG, CBM, UMR5249, 38000 Grenoble, France; (J.D.); (C.L.); (S.L.); (B.D.)
| | - Cécile Lelong
- Laboratoire de Chimie et Biologie des Métaux, University Grenoble Alpes, CNRS, CEA, IRIG, CBM, UMR5249, 38000 Grenoble, France; (J.D.); (C.L.); (S.L.); (B.D.)
| | - Sylvie Luche
- Laboratoire de Chimie et Biologie des Métaux, University Grenoble Alpes, CNRS, CEA, IRIG, CBM, UMR5249, 38000 Grenoble, France; (J.D.); (C.L.); (S.L.); (B.D.)
| | - Camille Rivard
- SOLEIL Synchrotron, L’Orme des Merisiers, Gif-sur-Yvette, 91192 Saint-Aubin, France; (C.R.); (G.L.)
- INRAE, Institut National de Recherche Pour L’agriculture, L’alimentation et L’environnement, BIA, TRANSFORM, 44316 Nantes, France
| | - Bastien Dalzon
- Laboratoire de Chimie et Biologie des Métaux, University Grenoble Alpes, CNRS, CEA, IRIG, CBM, UMR5249, 38000 Grenoble, France; (J.D.); (C.L.); (S.L.); (B.D.)
| | - Gautier Landrot
- SOLEIL Synchrotron, L’Orme des Merisiers, Gif-sur-Yvette, 91192 Saint-Aubin, France; (C.R.); (G.L.)
| | - Thierry Rabilloud
- Laboratoire de Chimie et Biologie des Métaux, University Grenoble Alpes, CNRS, CEA, IRIG, CBM, UMR5249, 38000 Grenoble, France; (J.D.); (C.L.); (S.L.); (B.D.)
| | - Isabelle Capron
- INRAE, Institut National de Recherche Pour L’agriculture, L’alimentation et L’environnement, BIA, Biopolymères Interactions et Assemblages, 44316 Nantes, France;
| |
Collapse
|
4
|
Musino D, Rivard C, Landrot G, Novales B, Rabilloud T, Capron I. Hydroxyl groups on cellulose nanocrystal surfaces form nucleation points for silver nanoparticles of varying shapes and sizes. J Colloid Interface Sci 2020; 584:360-371. [PMID: 33080498 DOI: 10.1016/j.jcis.2020.09.082] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/15/2020] [Accepted: 09/21/2020] [Indexed: 12/21/2022]
Abstract
In this study, we investigate the interactions between the cellulose surface and Ag nanoparticles (AgNPs) for the purpose of manufacturing hybrid nanomaterials using bacterial cellulose nanocrystals (BCNs) as a model substrate. We focus on the role of the BCN surface chemistry on the AgNP nucleation obtained by chemical reduction of Ag+ ions. Homogeneous hybrid suspensions of BCN/AgNP are produced, regardless of whether the BCNs are quasi-neutral, negatively (TBCNs) or positively charged (ABCNs). The characterization of BCN/AgNP hybrids identifies the -OH surface groups as nucleation points for AgNPs, of about 20 nm revealing that surface charges only improve the accessibility to OH groups. X-ray Absorption technics (XANES and EXAFS) revealed a high metallic Ag0 content ranging from 88% to 97%. Moreover, the grafting of hydrophobic molecules on a BCN surface (HBCNs) does not prevent AgNP nucleation, illustrating the versatility of our method and the possibility to obtain bifunctional NPs. A H2O2 redox post-treatment on the hybrid induces an increase in AgNPs size, up to 90 nm as well as a shape variation (i.e., triangular). In contrast, H2O2 induces no size/shape variation for aggregated hybrids, emphasizing that the accessibility to -OH groups ensures the nucleation of bigger Ag nano-objects.
Collapse
Affiliation(s)
| | - Camille Rivard
- SOLEIL Synchrotron, L'Orme des Merisiers, Gif-sur-Yvette, 91192 Saint-Aubin, France; INRAE, TRANSFORM, 44316 Nantes, France.
| | - Gautier Landrot
- SOLEIL Synchrotron, L'Orme des Merisiers, Gif-sur-Yvette, 91192 Saint-Aubin, France.
| | | | - Thierry Rabilloud
- Univ. Grenoble Alpes, CNRS, CEA, IRIG, SYMMES, Laboratoire de Chimie et Biologie des Métaux, 38000 Grenoble, France.
| | | |
Collapse
|