1
|
Schulze M, Henneberg S, Riedel A, Hensel B. Trends and challenges in liquid-preserved boar semen production: From boar to product. Reprod Domest Anim 2024; 59 Suppl 2:e14590. [PMID: 39233595 DOI: 10.1111/rda.14590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/05/2024] [Accepted: 05/03/2024] [Indexed: 09/06/2024]
Abstract
Boar semen production plays a pivotal role in modern swine breeding programmes, influencing the genetic progress and overall efficiency of the pork industry. This review explores the current challenges and emerging trends in liquid-preserved boar semen production, addressing key issues that impact the quality and quantity of boar semen. Advances in new reproductive technologies, boar selection, housing, semen processing, storage and transport, and the need for sustainable practices including the use of artificial intelligence are discussed to provide a comprehensive overview of the field.
Collapse
Affiliation(s)
- Martin Schulze
- Institute for Reproduction of Farm Animals Schönow, Bernau, Germany
| | - Sophie Henneberg
- Institute for Reproduction of Farm Animals Schönow, Bernau, Germany
| | - Anine Riedel
- Institute for Reproduction of Farm Animals Schönow, Bernau, Germany
| | - Britta Hensel
- Institute for Reproduction of Farm Animals Schönow, Bernau, Germany
| |
Collapse
|
2
|
Dantas GDPF, Ferraz FS, Coimbra JLP, Paniago RM, Dantas MSS, Lacerda SMSN, Procópio MS, Gonçalves MF, Furtado MH, Mendes BP, López JL, Krohling AC, Martins EMN, Andrade LM, Ladeira LO, Andrade ÂL, Costa GMJ. The toxicity of superparamagnetic iron oxide nanoparticles induced on the testicular cells: In vitro study. NANOIMPACT 2024; 35:100517. [PMID: 38848992 DOI: 10.1016/j.impact.2024.100517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 04/12/2024] [Accepted: 06/02/2024] [Indexed: 06/09/2024]
Abstract
Superparamagnetic iron oxide nanoparticles (SPIONs) have gained significant attention in biomedical research due to their potential applications. However, little is known about their impact and toxicity on testicular cells. To address this issue, we conducted an in vitro study using primary mouse testicular cells, testis fragments, and sperm to investigate the cytotoxic effects of sodium citrate-coated SPIONs (Cit_SPIONs). Herein, we synthesized and physiochemically characterized the Cit_SPIONs and observed that the sodium citrate diminished the size and improved the stability of nanoparticles in solution during the experimental time. The sodium citrate (measured by thermogravimetry) was biocompatible with testicular cells at the used concentration (3%). Despite these favorable physicochemical properties, the in vitro experiments demonstrated the cytotoxicity of Cit_SPIONs, particularly towards testicular somatic cells and sperm cells. Transmission electron microscopy analysis confirmed that Leydig cells preferentially internalized Cit_SPIONs in the organotypic culture system, which resulted in alterations in their cytoplasmic size. Additionally, we found that Cit_SPIONs exposure had detrimental effects on various parameters of sperm cells, including motility, viability, DNA integrity, mitochondrial activity, lipid peroxidation (LPO), and ROS production. Our findings suggest that testicular somatic cells and sperm cells are highly sensitive and vulnerable to Cit_SPIONs and induced oxidative stress. This study emphasizes the potential toxicity of SPIONs, indicating significant threats to the male reproductive system. Our findings highlight the need for detailed development of iron oxide nanoparticles to enhance reproductive nanosafety.
Collapse
Affiliation(s)
- Graziela de P F Dantas
- Department of Morphology, ICB, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Fausto S Ferraz
- Department of Morphology, ICB, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - John L P Coimbra
- Department of Morphology, ICB, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Roberto M Paniago
- Department of Physics, ICEx, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Maria S S Dantas
- Metallurgical and Materials Engineering Department, EE, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Samyra M S N Lacerda
- Department of Morphology, ICB, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Marcela S Procópio
- Department of Morphology, ICB, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Matheus F Gonçalves
- Department of Morphology, ICB, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Marcelo H Furtado
- Department of Morphology, ICB, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil; Clínica MF Fertilidade Masculina, Belo Horizonte, MG, Brazil
| | | | - Jorge L López
- Center for Biological and Natural Sciences, Federal University of Acre, Rio Branco, Acre, Brazil
| | - Alisson C Krohling
- Centro de Desenvolvimento da Tecnologia Nuclear, CDTN, 31270-901, Belo Horizonte, MG, Brazil
| | - Estefânia M N Martins
- Centro de Desenvolvimento da Tecnologia Nuclear, CDTN, 31270-901, Belo Horizonte, MG, Brazil
| | - Lídia M Andrade
- Department of Morphology, ICB, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil; Department of Physics, ICEx, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Luiz O Ladeira
- Metallurgical and Materials Engineering Department, EE, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ângela L Andrade
- Department of Chemistry, ICEB, Federal University of Ouro Preto, Ouro Preto, MG, Brazil
| | - Guilherme M J Costa
- Department of Morphology, ICB, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
3
|
Morrell JM, Cojkic A, Malaluang P, Ntallaris T, Lindahl J, Hansson I. Antibiotics in semen extenders - a multiplicity of paradoxes. Reprod Fertil Dev 2024; 36:RD23218. [PMID: 38447204 DOI: 10.1071/rd23218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/15/2024] [Indexed: 03/08/2024] Open
Abstract
Addition of antibiotics to semen extenders was taken for granted for many years, from the time that commercial artificial insemination in livestock first began many decades ago. However, there is now a growing realisation that this non-therapeutic utilisation of antibacterial agents is contrary to current recommendations for prudent use that medical and veterinary professionals are advised to follow. Furthermore, antibiotics are not benign, having negative effects on sperm samples, the inseminated female, personnel and potentially the environment. The purpose of this review is three-fold: to highlight the fact that antibiotics are used in semen extenders, with the result that considerable amounts are used globally in animal breeding, to review recent studies on the negative aspects of using antibiotics for this purpose, and to look at possible alternatives. Recent changes in the legislation regarding semen extenders occurred in some, but not all, countries, leaving question marks for semen producers as to whether antibiotics should be added to semen extenders or not.
Collapse
Affiliation(s)
- Jane M Morrell
- Clinical Sciences, Swedish University of Agricultural Sciences (SLU), Box 7054, Uppsala SE-75007, Sweden
| | - Aleksandar Cojkic
- Clinical Sciences, Swedish University of Agricultural Sciences (SLU), Box 7054, Uppsala SE-75007, Sweden
| | - Pongpreecha Malaluang
- Clinical Sciences, Swedish University of Agricultural Sciences (SLU), Box 7054, Uppsala SE-75007, Sweden
| | - Theodoros Ntallaris
- Clinical Sciences, Swedish University of Agricultural Sciences (SLU), Box 7054, Uppsala SE-75007, Sweden
| | - Johanna Lindahl
- Clinical Sciences, Swedish University of Agricultural Sciences (SLU), Box 7054, Uppsala SE-75007, Sweden
| | - Ingrid Hansson
- Animal Biosciences, SLU, Box 7054, Uppsala SE-75007, Sweden
| |
Collapse
|
4
|
Lyngdoh ME, Chettri J, Kharchandy VF, Sheel R, Choudhury AR, Sarkar B, Pattanayak A, Deori S, Abedin SN, Kadirvel G. Synthesis of green zinc-oxide nanoparticles and its dose-dependent beneficial effect on spermatozoa during preservation: sperm functional integrity, fertility and antimicrobial activity. Front Bioeng Biotechnol 2024; 12:1326143. [PMID: 38464542 PMCID: PMC10920225 DOI: 10.3389/fbioe.2024.1326143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 02/07/2024] [Indexed: 03/12/2024] Open
Abstract
Introduction: The development of an effective extender is important for semen preservation and the artificial insemination (AI) industry. This study demonstrates the beneficial effect of zinc oxide nanoparticles (ZnO-NPs) as an additive to semen extenders to improve semen quality, fertility, and antibacterial activity during liquid preservation in a boar model. Methods: Initially, to find out the safe concentration of ZnO-NPs in sperm cells, a wide range of ZnO-NP concentrations (0, 5, 10, 50, 100, 500, and 1,000 μM) were co-incubated with sperm at 37°C for a cytotoxic study. These NP concentrations were compared to their salt control zinc acetate (ZA) at the same concentrations and to a control group. The effect of the different concentrations of ZnO-NPs on sperm motility, membrane integrity, mitochondrial membrane potential (MMP), and apoptosis was assessed. Accordingly, the non-toxic dose was selected and supplemented in MODENA extender to determine its beneficial effect on the boar semen parameters mentioned and the lipid peroxidation (LPO) levels during liquid preservation at 16°C for 6 days. The non-cytotoxic dosage was subsequently chosen for AI, fertility investigations, and the evaluation of the antibacterial efficacy of ZnO-NPs during preservation hours. An antibacterial study of ZnO-NPs and its salt control at doses of 10 μM and 50 μM was carried out by the colony forming unit (CFU) method. Results and discussion: The cytotoxic study revealed that 5, 10, and 50 μM of ZnO-NPs are safe. Consequently, semen preserved in the MODENA extender, incorporating the non-toxic dose, exhibited 10 and 50 μM ZnO-NPs as the optimal concentrations for beneficial outcomes during liquid preservation at 16°C. ZnO-NPs of 10 μM concentration resulted in a significantly (p < 0.05) improved conception rate of 86.95% compared to the control of 73.13%. ZnO-NPs of 10 and 50 μM concentrations exhibit potent antimicrobial action by reducing the number of colonies formed with days of preservation in comparison to the negative control. The investigation concluded that the incorporation of 10 μM ZnO-NPs led to enhancements in sperm motility, membrane integrity, and MMP, attributed to a reduction in the malondialdehyde (MDA) levels. This improvement was accompanied by a concurrent increase in fertility rates, including farrowing rate and litter size, during the liquid preservation process. Furthermore, ZnO-NPs exhibited an antimicrobial effect, resulting in decreased bacterial growth while preserving boar semen at 16°C for 6 days. These findings suggest that ZnO-NPs could serve as a viable alternative to antibiotics, potentially mitigating antibiotic resistance concerns within the food chain.
Collapse
Affiliation(s)
| | - Jyoti Chettri
- Reproduction Biology Laboratory, ICAR Research Complex for NEH Region, Umiam, India
| | - Vivian F. Kharchandy
- Reproduction Biology Laboratory, ICAR Research Complex for NEH Region, Umiam, India
| | - Rishav Sheel
- ICAR- Indian Institute of Agricultural Biotechnology, Ranchi, India
| | | | - Biplab Sarkar
- ICAR- Indian Institute of Agricultural Biotechnology, Ranchi, India
| | | | - Sourabh Deori
- Reproduction Biology Laboratory, ICAR Research Complex for NEH Region, Umiam, India
| | - Sayed Nabil Abedin
- Reproduction Biology Laboratory, ICAR Research Complex for NEH Region, Umiam, India
| | - G. Kadirvel
- Reproduction Biology Laboratory, ICAR Research Complex for NEH Region, Umiam, India
| |
Collapse
|
5
|
Ďuračka M, Benko F, Chňapek M, Tvrdá E. Strategies for Bacterial Eradication from Human and Animal Semen Samples: Current Options and Future Alternatives. SENSORS (BASEL, SWITZERLAND) 2023; 23:6978. [PMID: 37571761 PMCID: PMC10422635 DOI: 10.3390/s23156978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023]
Abstract
The primary role of semen processing and preservation is to maintain a high proportion of structurally and functionally competent and mature spermatozoa, that may be used for the purposes of artificial reproduction when needed, whilst minimizing any potential causes of sperm deterioration during ex vivo semen handling. Out of a multitude of variables determining the success of sperm preservation, bacterial contamination has been acknowledged with an increased interest because of its often unpredictable and complex effects on semen quality. Whilst antibiotics are usually the most straight-forward option to prevent the bacterial contamination of semen, antimicrobial resistance has become a serious threat requiring widespread attention. As such, besides discussing the consequences of bacteriospermia on the sperm vitality and the risks of antibiotic overuse in andrology, this paper summarizes the currently available evidence on alternative strategies to prevent bacterial contamination of semen prior to, during, and following sperm processing, selection, and preservation. Alternative antibacterial supplements are reviewed, and emphasis is given to modern methods of sperm selection that may be combined by the physical removal of bacteria prior to sperm preservation or by use in assisted reproductive technologies.
Collapse
Affiliation(s)
- Michal Ďuračka
- AgroBioTech Research Centre, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
| | - Filip Benko
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
- Institute of Biotechnology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
| | - Milan Chňapek
- Institute of Biotechnology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
| | - Eva Tvrdá
- Institute of Biotechnology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
| |
Collapse
|
6
|
Dos Santos RP, Silva AR. Sperm Cooling as an Assisted Reproduction Tool for Wildlife: An Underrated Technology. Biopreserv Biobank 2023; 21:388-396. [PMID: 35856795 DOI: 10.1089/bio.2022.0025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The search for assisted reproduction techniques applied to the conservation and even the genetic improvement of wild species is becoming increasingly common. Regarding conservation of male gametes from wild animals, although current advances are focused on cryopreservation, the development of protocols for sperm refrigeration seems to be underrated, despite its various advantages and applications. Therefore, this review aims to highlight the importance of short-term conservation of sperm from wild mammals, report the development of state-of-the-art refrigeration protocols for both ejaculated and epididymal sperm, and evaluate the challenges and prospects of their application.
Collapse
Affiliation(s)
- Romário Parente Dos Santos
- Laboratory for Animal Germplasm Conservation, Department of Animal Sciences, Federal University of the Semiarid Region, Mossoró, Brazil
| | - Alexandre Rodrigues Silva
- Laboratory for Animal Germplasm Conservation, Department of Animal Sciences, Federal University of the Semiarid Region, Mossoró, Brazil
| |
Collapse
|
7
|
Janosikova M, Petricakova K, Ptacek M, Savvulidi FG, Rychtarova J, Fulka J. New approaches for long-term conservation of rooster spermatozoa. Poult Sci 2022; 102:102386. [PMID: 36599200 PMCID: PMC9817176 DOI: 10.1016/j.psj.2022.102386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 11/16/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
In contrast to the livestock industry, sperm cryopreservation has not yet been successfully established in the poultry industry. This is because poultry sperm cells have a unique shape and membrane fluidity, differing from those of livestock sperm. The objective of this review is to discuss the cellular and molecular characteristics of rooster spermatozoa as a cause for their generally low freezability. Furthermore, here, we discuss novel developments in the field of semen extenders, cryoprotectants, and freezing processes, all with the purpose of increasing the potential of rooster sperm cryopreservation. Currently, it is very important to improve cryopreservation of rooster sperm on a global scale for the protection of gene resources due to the incidence of epidemics such as avian influenza.
Collapse
Affiliation(s)
- Martina Janosikova
- Department of Animal Sciences, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 165 00 Praha, Suchdol, Czech Republic,Corresponding author:
| | - Kristyna Petricakova
- Department of Animal Sciences, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 165 00 Praha, Suchdol, Czech Republic
| | - Martin Ptacek
- Department of Animal Sciences, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 165 00 Praha, Suchdol, Czech Republic
| | - Filipp Georgijevic Savvulidi
- Department of Animal Sciences, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 165 00 Praha, Suchdol, Czech Republic
| | - Jana Rychtarova
- Department of Biology of Reproduction, Institute of Animal Science, 104 00 Praha, Uhříněves, Czech Republic
| | - Josef Fulka
- Department of Biology of Reproduction, Institute of Animal Science, 104 00 Praha, Uhříněves, Czech Republic
| |
Collapse
|
8
|
Tvrdá E, Ďuračka M, Benko F, Lukáč N. Bacteriospermia - A formidable player in male subfertility. Open Life Sci 2022; 17:1001-1029. [PMID: 36060647 PMCID: PMC9386612 DOI: 10.1515/biol-2022-0097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/29/2022] [Accepted: 05/18/2022] [Indexed: 11/24/2022] Open
Abstract
Bacterial colonization of male reproductive tissues, cells, and fluids, and the subsequent impact of bacteria on the sperm architecture, activity, and fertilizing potential, has recently gained increased attention from the medical and scientific community. Current evidence strongly emphasizes the fact that the presence of bacteria in semen may have dire consequences on the resulting male fertility. Nevertheless, the molecular basis underlying bacteriospermia-associated suboptimal semen quality is sophisticated, multifactorial, and still needs further understanding. Bacterial adhesion and subsequent sperm agglutination and immobilization represent the most direct pathway of sperm-bacterial interactions. Furthermore, the release of bacterial toxins and leukocytic infiltration, associated with a massive outburst of reactive oxygen species, have been repeatedly associated with sperm dysfunction in bacteria-infested semen. This review serves as a summary of the present knowledge on bacteriospermia-associated male subfertility. Furthermore, we strived to outline the currently available methods for assessing bacterial profiles in semen and to outline the most promising strategies for the prevention and/or management of bacteriospermia in practice.
Collapse
Affiliation(s)
- Eva Tvrdá
- Department of Animal Physiology, Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, Nitra-Chrenová, 949 76, Slovakia
| | - Michal Ďuračka
- Department of Animal Physiology, Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, Nitra-Chrenová, 949 76, Slovakia
| | - Filip Benko
- Department of Animal Physiology, Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, Nitra-Chrenová, 949 76, Slovakia
| | - Norbert Lukáč
- Department of Animal Physiology, Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, Nitra-Chrenová, 949 76, Slovakia
| |
Collapse
|
9
|
Kumar M, Gupta G, Varghese T, Srivastava PP, Gupta S. Preparation and characterization of glucose-conjugated super-paramagnetic iron oxide nanoparticles (G-SPIONs) for removal of Edwardsiella tarda and Aeromonas hydrophila from water. Microsc Res Tech 2022; 85:1768-1783. [PMID: 35038205 DOI: 10.1002/jemt.24037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 11/09/2022]
Abstract
The present research was conducted to prepare efficient G-SPIONs by co-precipitation to remove Edwardsiella tarda and Aeromonas hydrophila from the aqueous solution. The synthesized G-SPIONs were characterized by UV-Vis spectrophotometer, DLS, FEG-TEM, FT-IR, XRD, and VSM analysis. The results showed that the synthesized G-SPIONs had super-paramagnetic properties (58.31 emu/g) and spherical shape (16 ± 3 nm). The antibacterial activity was assessed in sterilized distilled water at different G-SPIONs concentrations viz. 0, 1.5, 3, 6, 12, 24, 48, 120, and 240 mg/L against E. tarda and A. hydrophila with various bacterial loads viz. 1 × 103 , 1 × 104 , 1 × 105 , 1 × 106 , and 1 × 107 CFU/ml at different time intervals 15, 30, 45, and 60 min. At a lower bacterial load of E. tarda and A. hydrophila 1 × 103 -1 × 104 CFU/ml, 100% bacterial load was removed by 15 min exposure with NPs concentration 6-48 mg/L and 1.5-6 mg/L, respectively. Cent percent bacterial removal was observed in both the bacterial species even at higher bacterial load (1 × 105 -1 × 107 CFU/ml) by increasing exposure time (15-60 min) and nanoparticle concentration as well (24-240 mg/L). At an initial bacterial load of E. tarda and A. hydrophila (1 × 103 -1 × 107 CFU/ml), the EC50 ranged between 0.01-6.51 mg/L and 0.02-3.84 mg/L, respectively, after 15-60 min exposure. Thus, it is concluded that the antibacterial effect of G-SPIONs depends on concentration and exposure time. Hence, G-SPIONs can be used as an antibacterial/biocidal agent to treat Edwardsiellosis and Aeromonosis disease in aquaculture.
Collapse
Affiliation(s)
- Munish Kumar
- Fish Nutrition, Biochemistry and Physiology Division, ICAR-Central Institute of Fisheries Education, Mumbai, India
| | - Gyandeep Gupta
- Fish Nutrition, Biochemistry and Physiology Division, ICAR-Central Institute of Fisheries Education, Mumbai, India
| | - Tincy Varghese
- Fish Nutrition, Biochemistry and Physiology Division, ICAR-Central Institute of Fisheries Education, Mumbai, India
| | | | - Subodh Gupta
- Fish Nutrition, Biochemistry and Physiology Division, ICAR-Central Institute of Fisheries Education, Mumbai, India
| |
Collapse
|
10
|
Malaluang P, Wilén E, Lindahl J, Hansson I, Morrell JM. Antimicrobial Resistance in Equine Reproduction. Animals (Basel) 2021; 11:3035. [PMID: 34827768 PMCID: PMC8614435 DOI: 10.3390/ani11113035] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/14/2021] [Accepted: 10/20/2021] [Indexed: 12/02/2022] Open
Abstract
Bacteria develop resistance to antibiotics following low-level "background" exposure to antimicrobial agents as well as from exposure at therapeutic levels during treatment for bacterial infections. In this review, we look specifically at antimicrobial resistance (AMR) in the equine reproductive tract and its possible origin, focusing particularly on antibiotics in semen extenders used in preparing semen doses for artificial insemination. Our review of the literature indicated that AMR in the equine uterus and vagina were reported worldwide in the last 20 years, in locations as diverse as Europe, India, and the United States. Bacteria colonizing the mucosa of the reproductive tract are transferred to semen during collection; further contamination of the semen may occur during processing, despite strict attention to hygiene at critical control points. These bacteria compete with spermatozoa for nutrients in the semen extender, producing metabolic byproducts and toxins that have a detrimental effect on sperm quality. Potential pathogens such as Klebsiella pneumoniae, Escherichia coli, and Pseudomonas aeruginosa may occasionally cause fertility issues in inseminated mares. Antibiotics are added during semen processing, according to legislation, to impede the growth of these microorganisms but may have a detrimental effect on sperm quality, depending on the antimicrobial agent and concentration used. However, this addition of antibiotics is counter to current recommendations on the prudent use of antibiotics, which recommend that antibiotics should be used only for therapeutic purposes and after establishing bacterial sensitivity. There is some evidence of resistance among bacteria found in semen samples. Potential alternatives to the addition of antibiotics are considered, especially physical removal separation of spermatozoa from bacteria. Suggestions for further research with colloid centrifugation are provided.
Collapse
Affiliation(s)
- Pongpreecha Malaluang
- Clinical Sciences, Swedish University of Agricultural Sciences (SLU), Box 7054, SE-75007 Uppsala, Sweden; (P.M.); (E.W.); (J.L.)
| | - Elin Wilén
- Clinical Sciences, Swedish University of Agricultural Sciences (SLU), Box 7054, SE-75007 Uppsala, Sweden; (P.M.); (E.W.); (J.L.)
| | - Johanna Lindahl
- Clinical Sciences, Swedish University of Agricultural Sciences (SLU), Box 7054, SE-75007 Uppsala, Sweden; (P.M.); (E.W.); (J.L.)
- Department of Biosciences, International Livestock Research Institute, P.O. Box 30709, Nairobi 00100, Kenya
- Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, 75123 Uppsala, Sweden
| | - Ingrid Hansson
- Biomedical Science and Veterinary Public Health, Swedish University of Agricultural Sciences (SLU), Box 7036, SE-75007 Uppsala, Sweden;
| | - Jane M. Morrell
- Clinical Sciences, Swedish University of Agricultural Sciences (SLU), Box 7054, SE-75007 Uppsala, Sweden; (P.M.); (E.W.); (J.L.)
| |
Collapse
|
11
|
Tsakmakidis IA, Samaras T, Anastasiadou S, Basioura A, Ntemka A, Michos I, Simeonidis K, Karagiannis I, Tsousis G, Angelakeris M, Boscos CM. Toxic and Microbiological Effects of Iron Oxide and Silver Nanoparticles as Additives on Extended Ram Semen. Animals (Basel) 2021; 11:ani11041011. [PMID: 33916752 PMCID: PMC8066584 DOI: 10.3390/ani11041011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/23/2021] [Accepted: 03/30/2021] [Indexed: 12/11/2022] Open
Abstract
The aim of the study was to investigate the effect of iron oxide (Fe) and silver (Ag) nanoparticles (NPs) on ram semen. A skim milk extender without antibiotics was used as a diluent of 21 ejaculates (8 rams; 2-3 ejaculates/ram). The groups of control (C; semen without NPs), Fe NPs (3.072 mg Fe3O4/mL semen), and Ag NPs (2.048 mg Ag-Fe/mL semen) were incubated (15 °C; 30 min), and then a magnetic field was used for NPs' removal. Standard microbiological procedures were performed for all groups. Post-treated samples were stored (15 °C) for 24 h, and sperm variables (kinetics by computer assisted sperm analysis (CASA); viability; morphology; HOST; DNA integrity) were evaluated at 6 and 24 h. Semen data were analyzed by a mixed model for repeated measures and microbiological data with Student's t-test for paired samples. At 6 h of storage, VCL and rapid movement-spermatozoa, and at 24 h, total/progressive motility and amplitude of lateral head displacement (ALH) were significantly decreased in group Ag compared to control. In group Fe, progressive/rapid movement-spermatozoa were significantly lower compared to control after 24 h of storage. Only in group Ag was a significant reduction of total bacterial count revealed. In conclusion, the examined Fe NPs demonstrated slight antibacterial effect, while the examined Ag NPs provided higher antibacterial properties accompanied by cytotoxicity.
Collapse
Affiliation(s)
- Ioannis A. Tsakmakidis
- School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54627 Thessaloniki, Greece; (S.A.); (A.B.); (A.N.); (I.M.); (I.K.); (G.T.); (C.M.B.)
- Correspondence: ; Tel.: +30-2310-994-467
| | - Theodoros Samaras
- School of Physics, Faculty of Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (T.S.); (K.S.); (M.A.)
| | - Sofia Anastasiadou
- School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54627 Thessaloniki, Greece; (S.A.); (A.B.); (A.N.); (I.M.); (I.K.); (G.T.); (C.M.B.)
| | - Athina Basioura
- School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54627 Thessaloniki, Greece; (S.A.); (A.B.); (A.N.); (I.M.); (I.K.); (G.T.); (C.M.B.)
| | - Aikaterini Ntemka
- School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54627 Thessaloniki, Greece; (S.A.); (A.B.); (A.N.); (I.M.); (I.K.); (G.T.); (C.M.B.)
| | - Ilias Michos
- School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54627 Thessaloniki, Greece; (S.A.); (A.B.); (A.N.); (I.M.); (I.K.); (G.T.); (C.M.B.)
| | - Konstantinos Simeonidis
- School of Physics, Faculty of Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (T.S.); (K.S.); (M.A.)
| | - Isidoros Karagiannis
- School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54627 Thessaloniki, Greece; (S.A.); (A.B.); (A.N.); (I.M.); (I.K.); (G.T.); (C.M.B.)
| | - Georgios Tsousis
- School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54627 Thessaloniki, Greece; (S.A.); (A.B.); (A.N.); (I.M.); (I.K.); (G.T.); (C.M.B.)
| | - Mavroeidis Angelakeris
- School of Physics, Faculty of Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (T.S.); (K.S.); (M.A.)
| | - Constantin M. Boscos
- School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54627 Thessaloniki, Greece; (S.A.); (A.B.); (A.N.); (I.M.); (I.K.); (G.T.); (C.M.B.)
| |
Collapse
|
12
|
Yousef MS, Abdelhamid HN, Hidalgo M, Fathy R, Gómez-Gascón L, Dorado J. Antimicrobial activity of silver-carbon nanoparticles on the bacterial flora of bull semen. Theriogenology 2020; 161:219-227. [PMID: 33340755 DOI: 10.1016/j.theriogenology.2020.12.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/10/2020] [Accepted: 12/05/2020] [Indexed: 12/16/2022]
Abstract
The spermicidal effects of silver nanoparticles (AgNPs) hinder its application in the field of artificial insemination. In this study, silver-carbon NPs (Ag@C NPs) was synthesized and applied as an alternative antibiotic agent for bull semen extender. Ag@C NPs were characterized using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), atomic absorption flame spectroscopy, transmission electron microscope (TEM), and high-resolution TEM (HR-TEM). Data analysis revealed the successful synthesis of Ag@C NPs with a particle size of 1-5 nm (average particle size of 2.5 nm) embedded into carbon. The antimicrobial activity of Ag@C NPs was tested against bacteriospermia of fresh semen collected from five fertile bulls (three ejaculates/bull). Escherichia coli (E. Coli), Staphylococcus aureus (S. aureus), and Pseudomonas aeruginosa (P. aeruginosa) were isolated from fresh semen samples and identified by culture, staining, and conventional biochemical tests. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of Ag@C NPs against bacteriospermia was determined at 5 and 37 °C. Ag@C NPs showed efficient antimicrobial activity (MIC: 3.125-12.5 μg/mL) against the tested strains and strong bactericidal effect on S. aureus, and P. aeruginosa (MBC: 3.125 μg/mL), with no detrimental effect (P ˃ 0.05) on the percentage of sperm motility (70.71 ± 4.82; 74.65 ± 4.46), plasma membrane integrity (68.39 ± 4.31; 72.38 ± 4.91), acrosome integrity (88.40 ± 13.21; 86.77 ± 14.23), and normal sperm morphology (86.85 ± 7.43; 87.82 ± 8.15) at concentrations of 15 and 30 μg/mL, respectively, after a cold storage of 48 h. However, Ag@C NPs showed a detrimental effect on sperm parameters in a dose dependent manner at concentrations ≥60 μg/mL. Ag@C NPs showed no adverse effect on the sperm's ultrastructure with limited sperm internalization at MIC. In conclusion, Ag@C NPs could be used as an alternative antibiotic agent for bull semen extender without a significant cytotoxic effect on the sperm during cold storage. However, further investigations for their effects on embryo production and female genitalia are still required.
Collapse
Affiliation(s)
- M S Yousef
- Veterinary Reproduction Group, Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, University of Cordoba, 14071, Cordoba, Spain; Department of Theriogenology, Faculty of Veterinary Medicine, Assiut University, Egypt
| | - Hani Nasser Abdelhamid
- Advanced Multifunctional Materials Laboratory, Department of Chemistry, Faculty of Science, Assiut University, Egypt.
| | - M Hidalgo
- Veterinary Reproduction Group, Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, University of Cordoba, 14071, Cordoba, Spain
| | - R Fathy
- Department of Microbiology and Immunology, Faculty of Medicine, Assiut University, Egypt
| | - L Gómez-Gascón
- Department of Animal Health, University of Cordoba, 14071, Cordoba, International Excellence Agrifood Campus, CeiA3, Spain
| | - J Dorado
- Veterinary Reproduction Group, Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, University of Cordoba, 14071, Cordoba, Spain.
| |
Collapse
|
13
|
Frenzilli G. Nanotechnology for Environmental and Biomedical Research. NANOMATERIALS 2020; 10:nano10112220. [PMID: 33171579 PMCID: PMC7695177 DOI: 10.3390/nano10112220] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 10/28/2020] [Accepted: 11/05/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Giada Frenzilli
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| |
Collapse
|