1
|
Sun W, Chai X, Zhang Y, Yu T, Wang Y, Zhao W, Liu Y, Yin D, Zhang C. Combination Using Magnetic Iron Oxide Nanoparticles and Magnetic Field for Cancer Therapy. CHEM REC 2024; 24:e202400179. [PMID: 39607378 DOI: 10.1002/tcr.202400179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/13/2024] [Indexed: 11/29/2024]
Abstract
Iron oxide nanoparticles (MNPs) demonstrate notable benefits in magnetic induction, attributed to their distinctive physical and chemical attributes. Emerging cancer treatment utilizing magnetic fields have also gathered increasing attention in the biomedical field. However, the defects of difficult dispersion and poor biocompatibility of MNPs seriously hinder their application. In order to overcome its inherent defects and maximize the therapeutic potential of MNPs, various functionalized MNPs have been developed, and numerous combined treatment methods based on MNPs have been widely studied. In this review, we compare and analyze the common nanoparticles based on MNPs with different sizes, shapes, and functional modifications. Additionally, we introduced the therapeutic mechanisms of the strategies, such as magnetically controlled targeting, magnetic hyperthermia, and magneto-mechanical effect, which based on the unique magnetic induction capabilities of MNPs. Finally, main challenges of MNPs as smart nanomaterials were also discussed. This review seeks to offer a thorough overview of MNPs in biomedicine and a new sight for their application in tumor treatment.
Collapse
Affiliation(s)
- Wenjun Sun
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710100, PR China
| | - Xiaoxia Chai
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710100, PR China
| | - Yuan Zhang
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710100, PR China
| | - Tongyao Yu
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710100, PR China
| | - Yuhua Wang
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710100, PR China
| | - Wenzhe Zhao
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710100, PR China
| | - Yanhua Liu
- Department of Medical Oncology, Xuzhou Central Hospital, Xuzhou, 221009, China
| | - Dachuan Yin
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710100, PR China
| | - Chenyan Zhang
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710100, PR China
- Research & Development Institute of, Northwestern Polytechnical University in Shenzhen, Shenzhen, 518063, China
| |
Collapse
|
2
|
Zhang TG, Miao CY. Iron Oxide Nanoparticles as Promising Antibacterial Agents of New Generation. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1311. [PMID: 39120416 PMCID: PMC11314400 DOI: 10.3390/nano14151311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/27/2024] [Accepted: 08/01/2024] [Indexed: 08/10/2024]
Abstract
Antimicrobial resistance (AMR) is growing into a major public health crisis worldwide. The reducing alternatives to conventional agents starve for novel antimicrobial agents. Due to their unique magnetic properties and excellent biocompatibility, iron oxide nanoparticles (IONPs) are the most preferable nanomaterials in biomedicine, including antibacterial therapy, primarily through reactive oxygen species (ROS) production. IONP characteristics, including their size, shape, surface charge, and superparamagnetism, influence their biodistribution and antibacterial activity. External magnetic fields, foreign metal doping, and surface, size, and shape modification improve the antibacterial effect of IONPs. Despite a few disadvantages, IONPs are expected to be promising antibacterial agents of a new generation.
Collapse
Affiliation(s)
- Tian-Guang Zhang
- Department of Pharmacology, Second Military Medical University/Naval Medical University, Shanghai 200433, China
| | - Chao-Yu Miao
- Department of Pharmacology, Second Military Medical University/Naval Medical University, Shanghai 200433, China
| |
Collapse
|
3
|
Tasnim NT, Ferdous N, Rumon MMH, Shakil MS. The Promise of Metal-Doped Iron Oxide Nanoparticles as Antimicrobial Agent. ACS OMEGA 2024; 9:16-32. [PMID: 38222657 PMCID: PMC10785672 DOI: 10.1021/acsomega.3c06323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/26/2023] [Accepted: 11/29/2023] [Indexed: 01/16/2024]
Abstract
Antibiotic resistance (AMR) is one of the pressing global public health concerns and projections indicate a potential 10 million fatalities by the year 2050. The decreasing effectiveness of commercially available antibiotics due to the drug resistance phenomenon has spurred research efforts to develop potent and safe antimicrobial agents. Iron oxide nanoparticles (IONPs), especially when doped with metals, have emerged as a promising avenue for combating microbial infections. Like IONPs, the antimicrobial activities of doped-IONPs are also linked to their surface charge, size, and shape. Doping metals on nanoparticles can alter the size and magnetic properties by reducing the energy band gap and combining electronic charges with spins. Furthermore, smaller metal-doped nanoparticles tend to exhibit enhanced antimicrobial activity due to their higher surface-to-volume ratio, facilitating greater interaction with bacterial cells. Moreover, metal doping can also lead to increased charge density in magnetic nanoparticles and thereby elevate reactive oxygen species (ROS) generation. These ROS play a vital role to disrupt bacterial cell membrane, proteins, or nucleic acids. In this review, we compared the antimicrobial activities of different doped-IONPs, elucidated their mechanism(s), and put forth opinions for improved biocompatibility.
Collapse
Affiliation(s)
- Nazifa Tabassum Tasnim
- Department of Mathematics and Natural Sciences, Brac University, 66 Mohakhali, Dhaka 1212, Bangladesh
| | - Nushrat Ferdous
- Department of Mathematics and Natural Sciences, Brac University, 66 Mohakhali, Dhaka 1212, Bangladesh
| | - Md Mahamudul Hasan Rumon
- Department of Mathematics and Natural Sciences, Brac University, 66 Mohakhali, Dhaka 1212, Bangladesh
| | - Md Salman Shakil
- Department of Mathematics and Natural Sciences, Brac University, 66 Mohakhali, Dhaka 1212, Bangladesh
| |
Collapse
|
4
|
Volpini C, Bloise N, Dominoni M, Barra F, Vellone VG, Minzioni P, Gardella B, Ferrero S, Visai L. The nano-revolution in the diagnosis and treatment of endometriosis. NANOSCALE 2023; 15:17313-17325. [PMID: 37874212 DOI: 10.1039/d3nr03527a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Endometriosis is a painful gynecological disease with a high prevalence, affecting millions of women worldwide. Innovative, non-invasive treatments, and new patient follow-up strategies are needed to deal with the harmful social and economic effects. In this scenario, considering the recent, very promising results already reported in the literature, a commitment to new research in the field of nanomedicine is urgently needed. Study findings clearly show the potential of this approach in both the diagnostic and therapeutic phases of endometriosis. Here, we offer a brief review of the recent exciting and effective applications of nanomedicine in both the diagnosis and therapy of endometriosis. Special emphasis will be placed on the emerging theranostic application of nanoproducts, and the combination of phototherapy and nanotechnology as new therapeutic modalities for endometriosis. The review will also provide interested readers with a guide to the selection process and parameters to consider when designing research into this type of approach.
Collapse
Affiliation(s)
- Cristina Volpini
- Molecular Medicine Department (DMM), Centre for Health Technologies (CHT), UdR INSTM, University of Pavia, Pavia, Italy.
- Medicina Clinica-Specialistica, UOR5 Laboratorio di Nanotecnologie, ICS Maugeri, IRCCS, Pavia, Italy
- Interuniversity Center for the promotion of the 3Rs principles in teaching and research (Centro 3R), University of Pavia Unit, Italy
| | - Nora Bloise
- Molecular Medicine Department (DMM), Centre for Health Technologies (CHT), UdR INSTM, University of Pavia, Pavia, Italy.
- Medicina Clinica-Specialistica, UOR5 Laboratorio di Nanotecnologie, ICS Maugeri, IRCCS, Pavia, Italy
- Interuniversity Center for the promotion of the 3Rs principles in teaching and research (Centro 3R), University of Pavia Unit, Italy
| | - Mattia Dominoni
- Department of Clinical, Surgical, Diagnostic and Paediatric Sciences, University of Pavia, Pavia, Italy.
- Department of Obstetrics and Gynecology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Fabio Barra
- Academic Unit of Obstetrics and Gynecology, IRCCS Ospedale Policlinico San Martino, Genova, Italy.
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | - Valerio Gaetano Vellone
- Anatomia Patologica Universitaria, IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Dipartimento di Scienze Chirurgiche e Diagnostiche Integrate (DISC), Università di Genova, Italy
| | - Paolo Minzioni
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, 27100 Pavia, Italy
| | - Barbara Gardella
- Department of Clinical, Surgical, Diagnostic and Paediatric Sciences, University of Pavia, Pavia, Italy.
- Department of Obstetrics and Gynecology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Simone Ferrero
- Academic Unit of Obstetrics and Gynecology, IRCCS Ospedale Policlinico San Martino, Genova, Italy.
- DINOGMI, University of Genova, Italy
| | - Livia Visai
- Molecular Medicine Department (DMM), Centre for Health Technologies (CHT), UdR INSTM, University of Pavia, Pavia, Italy.
- Medicina Clinica-Specialistica, UOR5 Laboratorio di Nanotecnologie, ICS Maugeri, IRCCS, Pavia, Italy
- Interuniversity Center for the promotion of the 3Rs principles in teaching and research (Centro 3R), University of Pavia Unit, Italy
| |
Collapse
|
5
|
Semkina A, Nikitin A, Ivanova A, Chmelyuk N, Sviridenkova N, Lazareva P, Abakumov M. 3,4-Dihydroxiphenylacetic Acid-Based Universal Coating Technique for Magnetic Nanoparticles Stabilization for Biomedical Applications. J Funct Biomater 2023; 14:461. [PMID: 37754875 PMCID: PMC10531619 DOI: 10.3390/jfb14090461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/01/2023] [Accepted: 09/04/2023] [Indexed: 09/28/2023] Open
Abstract
Magnetic nanoparticles based on iron oxide attract researchers' attention due to a wide range of possible applications in biomedicine. As synthesized, most of the magnetic nanoparticles do not form the stable colloidal solutions that are required for the evaluation of their interactions with cells or their efficacy on animal models. For further application in biomedicine, magnetic nanoparticles must be further modified with biocompatible coating. Both the size and shape of magnetic nanoparticles and the chemical composition of the coating have an effect on magnetic nanoparticles' interactions with living objects. Thus, a universal method for magnetic nanoparticles' stabilization in water solutions is needed, regardless of how magnetic nanoparticles were initially synthesized. In this paper, we propose the versatile and highly reproducible ligand exchange technique of coating with 3,4-dihydroxiphenylacetic acid (DOPAC), based on the formation of Fe-O bonds with hydroxyl groups of DOPAC leading to the hydrophilization of the magnetic nanoparticles' surfaces following phase transfer from organic solutions to water. The proposed technique allows for obtaining stable water-colloidal solutions of magnetic nanoparticles with sizes from 21 to 307 nm synthesized by thermal decomposition or coprecipitation techniques. Those stabilized by DOPAC nanoparticles were shown to be efficient in the magnetomechanical actuation of DNA duplexes, drug delivery of doxorubicin to cancer cells, and targeted delivery by conjugation with antibodies. Moreover, the diversity of possible biomedical applications of the resulting nanoparticles was presented. This finding is important in terms of nanoparticle design for various biomedical applications and will reduce nanomedicines manufacturing time, along with difficulties related to comparative studies of magnetic nanoparticles with different magnetic core characteristics.
Collapse
Affiliation(s)
- Alevtina Semkina
- Department of Medical Nanobiotechnology, N.I. Pirogov Russian National Research Medical University, 117997 Moscow, Russia; (A.S.); (A.N.); (A.I.); (N.C.); (P.L.)
- Department of Basic and Applied Neurobiology, Serbsky National Medical Research Center for Psychiatry and Narcology, 119991 Moscow, Russia
| | - Aleksey Nikitin
- Department of Medical Nanobiotechnology, N.I. Pirogov Russian National Research Medical University, 117997 Moscow, Russia; (A.S.); (A.N.); (A.I.); (N.C.); (P.L.)
- Laboratory of Biomedical Nanomaterials, National University of Science and Technology (MISIS), 119049 Moscow, Russia
- Department of General and Inorganic Chemistry, Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia;
| | - Anna Ivanova
- Department of Medical Nanobiotechnology, N.I. Pirogov Russian National Research Medical University, 117997 Moscow, Russia; (A.S.); (A.N.); (A.I.); (N.C.); (P.L.)
- Laboratory of Biomedical Nanomaterials, National University of Science and Technology (MISIS), 119049 Moscow, Russia
| | - Nelly Chmelyuk
- Department of Medical Nanobiotechnology, N.I. Pirogov Russian National Research Medical University, 117997 Moscow, Russia; (A.S.); (A.N.); (A.I.); (N.C.); (P.L.)
- Laboratory of Biomedical Nanomaterials, National University of Science and Technology (MISIS), 119049 Moscow, Russia
| | - Natalia Sviridenkova
- Department of General and Inorganic Chemistry, Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia;
| | - Polina Lazareva
- Department of Medical Nanobiotechnology, N.I. Pirogov Russian National Research Medical University, 117997 Moscow, Russia; (A.S.); (A.N.); (A.I.); (N.C.); (P.L.)
| | - Maxim Abakumov
- Department of Medical Nanobiotechnology, N.I. Pirogov Russian National Research Medical University, 117997 Moscow, Russia; (A.S.); (A.N.); (A.I.); (N.C.); (P.L.)
- Laboratory of Biomedical Nanomaterials, National University of Science and Technology (MISIS), 119049 Moscow, Russia
| |
Collapse
|
6
|
Thong PQ, Thu Huong LT, Tu ND, My Nhung HT, Khanh L, Manh DH, Nam PH, Phuc NX, Alonso J, Qiao J, Sridhar S, Thu HP, Phan MH, Kim Thanh NT. Multifunctional nanocarriers of Fe 3O 4@PLA-PEG/curcumin for MRI, magnetic hyperthermia and drug delivery. Nanomedicine (Lond) 2022; 17:1677-1693. [PMID: 36621896 DOI: 10.2217/nnm-2022-0070] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Background: Despite medicinal advances, cancer is still a big problem requiring better diagnostic and treatment tools. Magnetic nanoparticle (MNP)-based nanosystems for multiple-purpose applications were developed for these unmet needs. Methods: This study fabricated novel trifunctional MNPs of Fe3O4@PLA-PEG for drug release, MRI and magnetic fluid hyperthermia. Result: The MNPs provided a significant loading of curcumin (∼11%) with controllable release ability, a high specific absorption rate of 82.2 W/g and significantly increased transverse relaxivity (r2 = 364.75 mM-1 s-1). The in vivo study confirmed that the MNPs enhanced MRI contrast in tumor observation and low-field magnetic fluid hyperthermia could effectively reduce the tumor size in mice bearing sarcoma 180. Conclusion: The nanocarrier has potential for drug release, cancer treatment monitoring and therapy.
Collapse
Affiliation(s)
- Phan Quoc Thong
- Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, 11355, Vietnam.,University of Khanh Hoa, 1 Nguyen Chanh, Nha Trang, 57100, Vietnam
| | - Le Thi Thu Huong
- Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, 11355, Vietnam.,Faculty of Natural Resources and Environment, Vietnam National University of Agriculture, Trau Quy, Gia Lam, Hanoi, 12400, Vietnam
| | - Nguyen Dac Tu
- Hanoi University of Science, Vietnam National University, 334 Nguyen Trai, Hanoi, 11400, Vietnam
| | - Hoang Thi My Nhung
- Hanoi University of Science, Vietnam National University, 334 Nguyen Trai, Hanoi, 11400, Vietnam
| | - Lam Khanh
- 108 Military Central Hospital, 1 Tran Hung Dao, Hanoi, 11000, Vietnam
| | - Do Hung Manh
- Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, 11355, Vietnam
| | - Pham Hong Nam
- Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, 11355, Vietnam.,Graduate University of Science & Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, 12400, Vietnam
| | - Nguyen Xuan Phuc
- Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, 11355, Vietnam.,Duy Tan University, 3 Quang Trung, Danang, 50300, Vietnam
| | - Javier Alonso
- Department of CITIMAC, Universidad de Cantabria, Santander, 39005, Spain.,Department of Physics, University of South Florida, Tampa, FL 33620, USA
| | - Ju Qiao
- Department of Physics, Bioengineering & Chemical Engineering, Northeastern University, Boston, MA 02115, USA
| | - Srinivas Sridhar
- Department of Physics, Bioengineering & Chemical Engineering, Northeastern University, Boston, MA 02115, USA
| | - Ha Phuong Thu
- Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, 11355, Vietnam
| | - Manh Huong Phan
- Department of Physics, University of South Florida, Tampa, FL 33620, USA
| | - Nguyen Thi Kim Thanh
- Biophysics Group, Department of Physics and Astronomy, University College London, Gower Street, WC1E 6BT, London.,UCL Healthcare Biomagnetics & Nanomaterials Laboratories, 21 Albemarle Street, London W1S 4BS, UK
| |
Collapse
|
7
|
Muzzi B, Albino M, Gabbani A, Omelyanchik A, Kozenkova E, Petrecca M, Innocenti C, Balica E, Lavacchi A, Scavone F, Anceschi C, Petrucci G, Ibarra A, Laurenzana A, Pineider F, Rodionova V, Sangregorio C. Star-Shaped Magnetic-Plasmonic Au@Fe 3O 4 Nano-Heterostructures for Photothermal Therapy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:29087-29098. [PMID: 35708301 PMCID: PMC9247976 DOI: 10.1021/acsami.2c04865] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/03/2022] [Indexed: 05/19/2023]
Abstract
Here, we synthesize a Au@Fe3O4 core@shell system with a highly uniform unprecedented star-like shell morphology with combined plasmonic and magnetic properties. An advanced electron microscopy characterization allows assessing the multifaceted nature of the Au core and its role in the growth of the peculiar epitaxial star-like shell with excellent crystallinity and homogeneity. Magnetometry and magneto-optical spectroscopy revealed a pure magnetite shell, with a superior saturation magnetization compared to similar Au@Fe3O4 heterostructures reported in the literature, which is ascribed to the star-like morphology, as well as to the large thickness of the shell. Of note, Au@Fe3O4 nanostar-loaded cancer cells displayed magneto-mechanical stress under a low frequency external alternating magnetic field (few tens of Hz). On the other hand, such a uniform, homogeneous, and thick magnetite shell enables the shift of the plasmonic resonance of the Au core to 640 nm, which is the largest red shift achievable in Au@Fe3O4 homogeneous core@shell systems, prompting application in photothermal therapy and optical imaging in the first biologically transparent window. Preliminary experiments performing irradiation of a stable water suspension of the nanostar and Au@Fe3O4-loaded cancer cell culture suspension at 658 nm confirmed their optical response and their suitability for photothermal therapy. The outstanding features of the prepared system can be thus potentially exploited as a multifunctional platform for magnetic-plasmonic applications.
Collapse
Affiliation(s)
- Beatrice Muzzi
- Institute
of Chemistry of Organometallic Compounds − C.N.R., 50019 Sesto Fiorentino
(FI), Italy
- Department
of Biotechnology, Chemistry and Pharmacy, University of Siena 1240, I-53100 Siena, Italy
| | - Martin Albino
- Institute
of Chemistry of Organometallic Compounds − C.N.R., 50019 Sesto Fiorentino
(FI), Italy
- Department
of Chemistry ‘Ugo Schiff’ & INSTM, University of Florence, 50019 Sesto Fiorentino (FI), Italy
| | - Alessio Gabbani
- Institute
of Chemistry of Organometallic Compounds − C.N.R., 50019 Sesto Fiorentino
(FI), Italy
- Department
of Chemistry and Industrial Chemistry & INSTM, University of Pisa, 56126 Pisa, Italy
| | - Alexander Omelyanchik
- Institute
of Physics, Mathematics and Information Technology, Immanuel Kant Baltic Federal University, 236008 Kaliningrad, Russia
| | - Elena Kozenkova
- Institute
of Physics, Mathematics and Information Technology, Immanuel Kant Baltic Federal University, 236008 Kaliningrad, Russia
| | - Michele Petrecca
- Department
of Chemistry ‘Ugo Schiff’ & INSTM, University of Florence, 50019 Sesto Fiorentino (FI), Italy
| | - Claudia Innocenti
- Institute
of Chemistry of Organometallic Compounds − C.N.R., 50019 Sesto Fiorentino
(FI), Italy
| | - Elena Balica
- Department
of Chemistry ‘Ugo Schiff’ & INSTM, University of Florence, 50019 Sesto Fiorentino (FI), Italy
| | - Alessandro Lavacchi
- Institute
of Chemistry of Organometallic Compounds − C.N.R., 50019 Sesto Fiorentino
(FI), Italy
| | - Francesca Scavone
- Department
of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Firenze, Italy
| | - Cecilia Anceschi
- Department
of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Firenze, Italy
| | - Gaia Petrucci
- Department
of Chemistry and Industrial Chemistry & INSTM, University of Pisa, 56126 Pisa, Italy
| | - Alfonso Ibarra
- Laboratorio
de Microscopias Avanzadas (LMA), Universidad
de Zaragoza, 50018 Zaragoza, Spain
| | - Anna Laurenzana
- Department
of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Firenze, Italy
| | - Francesco Pineider
- Department
of Chemistry and Industrial Chemistry & INSTM, University of Pisa, 56126 Pisa, Italy
| | - Valeria Rodionova
- Institute
of Physics, Mathematics and Information Technology, Immanuel Kant Baltic Federal University, 236008 Kaliningrad, Russia
| | - Claudio Sangregorio
- Institute
of Chemistry of Organometallic Compounds − C.N.R., 50019 Sesto Fiorentino
(FI), Italy
- Department
of Chemistry ‘Ugo Schiff’ & INSTM, University of Florence, 50019 Sesto Fiorentino (FI), Italy
| |
Collapse
|
8
|
Pylypchuk IV, Suo H, Chucheepchuenkamol C, Jedicke N, Lindén PA, Lindström ME, Manns MP, Sevastyanova O, Yevsa T. High-Molecular-Weight Fractions of Spruce and Eucalyptus Lignin as a Perspective Nanoparticle-Based Platform for a Therapy Delivery in Liver Cancer. Front Bioeng Biotechnol 2022; 9:817768. [PMID: 35198551 PMCID: PMC8860172 DOI: 10.3389/fbioe.2021.817768] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 12/23/2021] [Indexed: 12/16/2022] Open
Abstract
The natural polymer, lignin, possesses unique biodegradable and biocompatible properties, making it highly attractive for the generation of nanoparticles for targeted cancer therapy. In this study, we investigated spruce and eucalyptus lignin nanoparticles (designated as S-and E-LNPs, respectively). Both LNP types were generated from high-molecular-weight (Mw) kraft lignin obtained as insoluble residues after a five-step solvent fractionation approach, which included ethyl acetate, ethanol, methanol, and acetone. The resulting S-and E-LNPs ranged in size from 16 to 60 nm with uniform spherical shape regardless of the type of lignin. The preparation of LNPs from an acetone-insoluble lignin fraction is attractive because of the use of high-Mw lignin that is otherwise not suitable for most polymeric applications, its potential scalability, and the consistent size of the LNPs, which was independent of increased lignin concentrations. Due to the potential of LNPs to serve as delivery platforms in liver cancer treatment, we tested, for the first time, the efficacy of newly generated E-LNPs and S-LNPs in two types of primary liver cancer, hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA), in vitro. Both S-LNPs and E-LNPs inhibited the proliferation of HCC cells in a dose-dependent manner and did not affect CCA cell line growth. The inhibitory effect toward HCC was more pronounced in the E-LNP-treated group and was comparable to the standard therapy, sorafenib. Also, E-LNPs induced late apoptosis and necroptosis while inhibiting the HCC cell line. This study demonstrated that an elevated number of carbohydrates on the surface of the LNPs, as shown by NMR, seem to play an important role in mediating the interaction between LNPs and eukaryotic cells. The latter effect was most pronounced in E-LNPs. The novel S- and E-LNPs generated in this work are promising materials for biomedicine with advantageous properties such as small particle size and tailored surface functionality, making them an attractive and potentially biodegradable delivery tool for combination therapy in liver cancer, which still has to be verified in vivo using HCC and CCA models.
Collapse
Affiliation(s)
- Ievgen V Pylypchuk
- Division of Wood Chemistry and Pulp Technology, Department of Fiber and Polymer Technology, School of Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden.,Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, Sweden
| | - Huizhen Suo
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Chanakarn Chucheepchuenkamol
- Division of Wood Chemistry and Pulp Technology, Department of Fiber and Polymer Technology, School of Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden.,Department of Science Service, Ministry of Higher Education, Science, Research and Innovation, Ratchathewi, Thailand
| | - Nils Jedicke
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Pär A Lindén
- Wallenberg Wood Science Center, Department of Fiber and Polymer Technology, School of Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Mikael E Lindström
- Division of Wood Chemistry and Pulp Technology, Department of Fiber and Polymer Technology, School of Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden.,Wallenberg Wood Science Center, Department of Fiber and Polymer Technology, School of Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Michael P Manns
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Olena Sevastyanova
- Division of Wood Chemistry and Pulp Technology, Department of Fiber and Polymer Technology, School of Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden.,Wallenberg Wood Science Center, Department of Fiber and Polymer Technology, School of Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Tetyana Yevsa
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
9
|
Chatterjee S, Liang F. Current Perspective in Cancer Theranostics Based on Gold Nanoparticles. Anticancer Agents Med Chem 2022; 22:2354-2357. [PMID: 35196973 DOI: 10.2174/1871520622666220222141609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 01/05/2022] [Accepted: 01/05/2022] [Indexed: 11/22/2022]
Abstract
The growth of nanotechnology has revolutionized the diagnosis and treatment of diseases, with high precision and effectiveness. Nanoparticles (NPs) represent a major point of attention in the scientific field, with an increasing number of studies revealing promising results. The unique physicochemical properties, biocompatibility, and highly developed chemical properties of gold nanoparticles (AuNPs) have promoted breakthroughs in the cancer community, focusing on the therapeutic and diagnostic applications of cancer diagnosis and treatment. This perspective aims to summarize the latest research on multifunctional AuNPs as therapeutic diagnostic agents in cancer diagnosis and treatment. Several nanostructured hybrid AuNPs have been reviewed and their applications in imaging, targeting, therapy, and delivery have been discussed.
Collapse
Affiliation(s)
- Sobhan Chatterjee
- The State Key Laboratory of Refractories and Metallurgy, School of Chemistry & Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Feng Liang
- The State Key Laboratory of Refractories and Metallurgy, School of Chemistry & Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| |
Collapse
|
10
|
Chang ZX, Li CH, Chang YC, Huang CYF, Chan MH, Hsiao M. Novel monodisperse FePt nanocomposites for T2-weighted magnetic resonance imaging: biomedical theranostics applications. NANOSCALE ADVANCES 2022; 4:377-386. [PMID: 36132698 PMCID: PMC9419603 DOI: 10.1039/d1na00613d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/19/2021] [Indexed: 06/07/2023]
Abstract
Given the high incidence and mortality of cancer, current research is focused on designing efficient diagnostic methods. At present, clinical diagnoses are made based on X-ray, computed tomography, magnetic resonance imaging (MRI), ultrasound, and fiber optic endoscopy. MRI is a powerful diagnostic tool because it is non-invasive, has a high spatial resolution, uses non-ionizing radiation, and has good soft-tissue contrast. However, the long relaxation time of water protons may result in the inability to distinguish different tissues. To overcome this drawback of MRI, magnetic resonance contrast agents can enhance the contrast, improve the sensitivity of MRI-based diagnoses, increase the success rate of surgery, and reduce tumor recurrence. This review focuses on using iron-platinum (FePt) nanoparticles (NPs) in T2-weighted MRI to detect tumor location based on dark-field changes. In addition, existing methods for optimizing and improving FePt NPs are reviewed, and the MRI applications of FePt NPs are discussed. FePT NPs are expected to strengthen MRI resolution, thereby helping to inhibit tumor development.
Collapse
Affiliation(s)
- Zhi-Xuan Chang
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University Taipei 112 Taiwan
| | - Chien-Hsiu Li
- Genomics Research Center, Academia Sinica Taipei 115 Taiwan
| | - Yu-Chan Chang
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University Taipei 112 Taiwan
| | - Chi-Ying F Huang
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University Taipei 112 Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University Taipei 112 Taiwan
| | | | - Michael Hsiao
- Genomics Research Center, Academia Sinica Taipei 115 Taiwan
- Department of Biochemistry College of Medicine, Kaohsiung Medical University Kaohsiung 807 Taiwan
| |
Collapse
|
11
|
Immobilized Au nanoparticles on chitosan-biguanidine modified Fe3O4 nanoparticles and investigation of its anti-human lung cancer activity. JOURNAL OF SAUDI CHEMICAL SOCIETY 2022. [DOI: 10.1016/j.jscs.2021.101391] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
12
|
Rasouli M, Fallah N, Bekeschus S. Combining Nanotechnology and Gas Plasma as an Emerging Platform for Cancer Therapy: Mechanism and Therapeutic Implication. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:2990326. [PMID: 34745414 PMCID: PMC8566074 DOI: 10.1155/2021/2990326] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/28/2021] [Accepted: 09/30/2021] [Indexed: 02/07/2023]
Abstract
Nanomedicine and plasma medicine are innovative and multidisciplinary research fields aiming to employ nanotechnology and gas plasma to improve health-related treatments. Especially cancer treatment has been in the focus of both approaches because clinical response rates with traditional methods that remain improvable for many types of tumor entities. Here, we discuss the recent progress of nanotechnology and gas plasma independently as well as in the concomitant modality of nanoplasma as multimodal platforms with unique capabilities for addressing various therapeutic issues in oncological research. The main features, delivery vehicles, and nexus between reactivity and therapeutic outcomes of nanoparticles and the processes, efficacy, and mechanisms of gas plasma are examined. Especially that the unique feature of gas plasma technology, the local and temporally controlled deposition of a plethora of reactive oxygen, and nitrogen species released simultaneously might be a suitable additive treatment to the use of systemic nanotechnology therapy approaches. Finally, we focus on the convergence of plasma and nanotechnology to provide a suitable strategy that may lead to the required therapeutic outcomes.
Collapse
Affiliation(s)
- Milad Rasouli
- Plasma Medicine Group, Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Jalale-Al-Ahmad Ave, 1411713137 Tehran, Iran
- Department of Physics and Institute for Plasma Research, Kharazmi University, 49 Dr. Mofatteh Ave, Tehran 15614, Iran
| | - Nadia Fallah
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, 49 Dr. Mofatteh Ave, 31979-37551 Tehran, Iran
| | - Sander Bekeschus
- ZIK Plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
| |
Collapse
|
13
|
Influence of Carboxylic Modification Using Polyacrylic Acid on Characteristics of Fe3O4 Nanoparticles with Cluster Structure. Processes (Basel) 2021. [DOI: 10.3390/pr9101795] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Fe3O4 nanoparticles with cluster structure are superparamagnetic particles with applicability in various high-tech fields. In this study, the influence of surface modification with polyacrylic acid (PAA), a polymeric precursor, on the characteristics of Fe3O4 nanoparticles was investigated. The particles were synthesized by the polyol method and surface modified with various amounts of PAA. The surficial, structural, optical, and magnetic properties of the PAA-modified Fe3O4 nanoparticles were analyzed, confirming that negatively charged carboxyl groups were formed on the particle surface, and the particle dispersibility was enhanced by surface modification. This arises from an increase in the electrostatic repulsive force due to the surface functional groups. Functionalization promoted dissociation of the cluster particles, which became more pronounced as the PAA content increased. The optical parameters changed with the PAA content. Analysis of the magnetic properties showed that the saturation magnetization decreased as the PAA content increased. Overall, PAA modification induces structural changes of the Fe3O4 nanoparticles that enhance the dispersibility and influence the characteristics of the particles.
Collapse
|
14
|
Peters LJF, Jans A, Bartneck M, van der Vorst EPC. Immunomodulatory Nanomedicine for the Treatment of Atherosclerosis. J Clin Med 2021; 10:3185. [PMID: 34300351 PMCID: PMC8306310 DOI: 10.3390/jcm10143185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/09/2021] [Accepted: 07/16/2021] [Indexed: 12/19/2022] Open
Abstract
Atherosclerosis is the main underlying cause of cardiovascular diseases (CVDs), which remain the number one contributor to mortality worldwide. Although current therapies can slow down disease progression, no treatment is available that can fully cure or reverse atherosclerosis. Nanomedicine, which is the application of nanotechnology in medicine, is an emerging field in the treatment of many pathologies, including CVDs. It enables the production of drugs that interact with cellular receptors, and allows for controlling cellular processes after entering these cells. Nanomedicine aims to repair, control and monitor biological and physiological systems via nanoparticles (NPs), which have been shown to be efficient drug carriers. In this review we will, after a general introduction, highlight the advantages and limitations of the use of such nano-based medicine, the potential applications and targeting strategies via NPs. For example, we will provide a detailed discussion on NPs that can target relevant cellular receptors, such as integrins, or cellular processes related to atherogenesis, such as vascular smooth muscle cell proliferation. Furthermore, we will underline the (ongoing) clinical trials focusing on NPs in CVDs, which might bring new insights into this research field.
Collapse
Affiliation(s)
- Linsey J. F. Peters
- Interdisciplinary Center for Clinical Research (IZKF), RWTH Aachen University, 52074 Aachen, Germany;
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, 52074 Aachen, Germany
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, 6229 ER Maastricht, The Netherlands
| | - Alexander Jans
- Department of Medicine III, University Hospital Aachen, 52074 Aachen, Germany; (A.J.); (M.B.)
| | - Matthias Bartneck
- Department of Medicine III, University Hospital Aachen, 52074 Aachen, Germany; (A.J.); (M.B.)
| | - Emiel P. C. van der Vorst
- Interdisciplinary Center for Clinical Research (IZKF), RWTH Aachen University, 52074 Aachen, Germany;
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, 52074 Aachen, Germany
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, 6229 ER Maastricht, The Netherlands
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, 80336 Munich, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, 80336 Munich, Germany
| |
Collapse
|
15
|
Elahi N, Rizwan M. Progress and prospects of magnetic iron oxide nanoparticles in biomedical applications: A review. Artif Organs 2021; 45:1272-1299. [PMID: 34245037 DOI: 10.1111/aor.14027] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/09/2021] [Accepted: 06/14/2021] [Indexed: 12/26/2022]
Abstract
Nanoscience has been considered as one of the most substantial research in modern science. The utilization of nanoparticle (NP) materials provides numerous advantages in biomedical applications due to their unique properties. Among various types of nanoparticles, the magnetic nanoparticles (MNPs) of iron oxide possess intrinsic features, which have been efficiently exploited for biomedical purposes including drug delivery, magnetic resonance imaging, Magnetic-activated cell sorting, nanobiosensors, hyperthermia, and tissue engineering and regenerative medicine. The size and shape of nanostructures are the main factors affecting the physicochemical features of superparamagnetic iron oxide nanoparticles, which play an important role in the improvement of MNP properties, and can be controlled by appropriate synthesis strategies. On the other hand, the proper modification and functionalization of the surface of iron oxide nanoparticles have significant effects on the improvement of physicochemical and mechanical features, biocompatibility, stability, and surface activity of MNPs. This review focuses on popular methods of fabrication, beneficial surface coatings with regard to the main required features for their biomedical use, as well as new applications.
Collapse
Affiliation(s)
- Narges Elahi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advance Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran.,Department of Medical Nanotechnology, School of Advance Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Muhammad Rizwan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
16
|
Efremova MV, Spasova M, Heidelmann M, Grebennikov IS, Li ZA, Garanina AS, Tcareva IO, Savchenko AG, Farle M, Klyachko NL, Majouga AG, Wiedwald U. Room temperature synthesized solid solution AuFe nanoparticles and their transformation into Au/Fe Janus nanocrystals. NANOSCALE 2021; 13:10402-10413. [PMID: 34096958 DOI: 10.1039/d1nr00383f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Solid solution AuFe nanoparticles were synthesized for the first time under ambient conditions by an adapted method previously established for the Fe3O4-Au core-shell morphology. These AuFe particles preserved the fcc structure of Au incorporated with paramagnetic Fe atoms. The metastable AuFe can be segregated by transformation into Janus Au/Fe particles with bcc Fe and fcc Au upon annealing. The ferromagnetic Fe was epitaxially grown on low index fcc Au planes. This preparation route delivers new perspective materials for magnetoplasmonics and biomedical applications and suggests the reconsideration of existing protocols for magnetite-gold core-shell synthesis.
Collapse
Affiliation(s)
- Maria V Efremova
- Department of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russian Federation
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
An L, Tao Q, Wu Y, Wang N, Liu Y, Wang F, Zhang L, Shi A, Zhou X, Yu S, Zhang J. Synthesis of SPIO Nanoparticles and the Subsequent Applications in Stem Cell Labeling for Parkinson's Disease. NANOSCALE RESEARCH LETTERS 2021; 16:107. [PMID: 34128153 PMCID: PMC8203769 DOI: 10.1186/s11671-021-03540-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 04/28/2021] [Indexed: 06/12/2023]
Abstract
Parkinson's disease (PD) is characterized by the progressive loss of dopaminergic neurons in the midbrain, and the stem cell transplantation method provides a promising strategy for the treatment. In these studies, tracking the biological behaviors of the transplanted cells in vivo is essential for a basic understanding of stem cell function and evaluation of clinical effectiveness. In the present study, we developed a novel ultrasmall superparamagnetic iron oxide nanoparticles coating with the polyacrylic acid (PAA) and methoxypolyethylene glycol amine (PEG) by thermal decomposition method and a two-step modification. The USPIO-PAA/PEG NPs have a uniform diameter of 10.07 ± 0.55 nm and proper absorption peak of the corresponding ligands, as showed by TEM and FTIR. MTT showed that the survival of cells incubated with USPIO-PAA/PEG NPs remained above 96%. The synthesized USPIO-PAA/PEG had a good relaxation rate of 84.65 s-1 Mm-1, indicating that they could be efficiently uptake and traced by MRI. Furthermore, the primary human adipose-derived stem cells (HADSCs) were characterized, labeled with USPIO-PAA/PEG and transplanted into the striatum of 6-hydroxydopamine (6-OHDA)-induced PD rat models. The labeled cells could be traced by MRI for up to 3 weeks after the transplantation surgery; moreover, transplantation with the labeled HADSCs significantly attenuated apomorphine-induced rotations in PD models and increased the number of the dopaminergic neurons in the substania nigra. Overall, the development of USPIO-PAA/PEG NPs provides a promising tool for in vivo tracing technique of cell therapy and identifies a novel strategy to track stem cells with therapeutic potential in PD.
Collapse
Affiliation(s)
- Li An
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, No. 88 Keling Road, Suzhou New District, Suzhou, 215163, China
| | - Qing Tao
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yue Wu
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, No. 88 Keling Road, Suzhou New District, Suzhou, 215163, China
| | - Nana Wang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, No. 88 Keling Road, Suzhou New District, Suzhou, 215163, China
| | - Yan Liu
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, No. 88 Keling Road, Suzhou New District, Suzhou, 215163, China
- Zhengzhou Institute of Engineering and Technology Affiliated with SIBET, Zhengzhou, 450001, China
| | - Feifei Wang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, No. 88 Keling Road, Suzhou New District, Suzhou, 215163, China
- Zhengzhou Institute of Engineering and Technology Affiliated with SIBET, Zhengzhou, 450001, China
| | - Lixing Zhang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, No. 88 Keling Road, Suzhou New District, Suzhou, 215163, China
- Zhengzhou Institute of Engineering and Technology Affiliated with SIBET, Zhengzhou, 450001, China
| | - Aihua Shi
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, No. 88 Keling Road, Suzhou New District, Suzhou, 215163, China
- Zhengzhou Institute of Engineering and Technology Affiliated with SIBET, Zhengzhou, 450001, China
| | - Xiumin Zhou
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Shuang Yu
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, No. 88 Keling Road, Suzhou New District, Suzhou, 215163, China.
| | - Jingzhong Zhang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, No. 88 Keling Road, Suzhou New District, Suzhou, 215163, China.
- Zhengzhou Institute of Engineering and Technology Affiliated with SIBET, Zhengzhou, 450001, China.
- Tianjin Guokeyigong Science and Technology Development Company Limited, Tianjin, 300399, China.
| |
Collapse
|
18
|
Tarkistani MAM, Komalla V, Kayser V. Recent Advances in the Use of Iron-Gold Hybrid Nanoparticles for Biomedical Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1227. [PMID: 34066549 PMCID: PMC8148580 DOI: 10.3390/nano11051227] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/26/2021] [Accepted: 04/28/2021] [Indexed: 12/26/2022]
Abstract
Recently, there has been an increased interest in iron-gold-based hybrid nanostructures, due to their combined outstanding optical and magnetic properties resulting from the usage of two separate metals. The synthesis of these nanoparticles involves thermal decomposition and modification of their surfaces using a variety of different methods, which are discussed in this review. In addition, different forms such as core-shell, dumbbell, flower, octahedral, star, rod, and Janus-shaped hybrids are discussed, and their unique properties are highlighted. Studies on combining optical response in the near-infrared window and magnetic properties of iron-gold-based hybrid nanoparticles as multifunctional nanoprobes for drug delivery, magnetic-photothermal heating as well as contrast agents during magnetic and optical imaging and magnetically-assisted optical biosensing to detect traces of targeted analytes inside the body has been reviewed.
Collapse
Affiliation(s)
| | | | - Veysel Kayser
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia; (M.A.M.T.); (V.K.)
| |
Collapse
|
19
|
Efremova MV, Bodea SV, Sigmund F, Semkina A, Westmeyer GG, Abakumov MA. Genetically Encoded Self-Assembling Iron Oxide Nanoparticles as a Possible Platform for Cancer-Cell Tracking. Pharmaceutics 2021; 13:pharmaceutics13030397. [PMID: 33809789 PMCID: PMC8002387 DOI: 10.3390/pharmaceutics13030397] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/09/2021] [Accepted: 03/12/2021] [Indexed: 01/15/2023] Open
Abstract
The study of growth and possible metastasis in animal models of tumors would benefit from reliable cell labels for noninvasive whole-organism imaging techniques such as magnetic resonance imaging. Genetically encoded cell-tracking reporters have the advantage that they are contrast-selective for viable cells with intact protein expression machinery. Besides, these reporters do not suffer from dilution during cell division. Encapsulins, which are bacterial protein nanocompartments, can serve as genetically controlled labels for multimodal detection of cells. Such nanocompartments can host various guest molecules inside their lumen. These include, for example, fluorescent proteins or enzymes with ferroxidase activity leading to biomineralization of iron oxide inside the encapsulin nanoshell. The aim of this work was to implement heterologous expression of encapsulin systems from Quasibacillus thermotolerans using the fluorescent reporter protein mScarlet-I and ferroxidase IMEF in the human hepatocellular carcinoma cell line HepG2. The successful expression of self-assembled encapsulin nanocompartments with functional cargo proteins was confirmed by fluorescence microscopy and transmission electron microscopy. Also, coexpression of encapsulin nanoshells, ferroxidase cargo, and iron transporter led to an increase in T2-weighted contrast in magnetic resonance imaging of HepG2 cells. The results demonstrate that the encapsulin cargo system from Q. thermotolerans may be suitable for multimodal imaging of cancer cells and could contribute to further in vitro and in vivo studies.
Collapse
Affiliation(s)
- Maria V. Efremova
- Department of Chemistry & TUM School of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany; (S.-V.B.); (F.S.); (G.G.W.)
- Institute for Synthetic Biomedicine, Helmholtz Center Munich, 85764 Neuherberg, Germany
- Correspondence: (M.V.E.); (M.A.A.); Tel.: +74-95-638-4465 (M.A.A.)
| | - Silviu-Vasile Bodea
- Department of Chemistry & TUM School of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany; (S.-V.B.); (F.S.); (G.G.W.)
- Institute for Synthetic Biomedicine, Helmholtz Center Munich, 85764 Neuherberg, Germany
| | - Felix Sigmund
- Department of Chemistry & TUM School of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany; (S.-V.B.); (F.S.); (G.G.W.)
- Institute for Synthetic Biomedicine, Helmholtz Center Munich, 85764 Neuherberg, Germany
| | - Alevtina Semkina
- Department of Medical Nanobiotechnology, Pirogov Russian National Research Medical University, 117997 Moscow, Russia;
- V.P. Serbskiy National Medical Research Center of Psychiatry and Narcology, 119034 Moscow, Russia
| | - Gil G. Westmeyer
- Department of Chemistry & TUM School of Medicine, Technical University of Munich (TUM), 81675 Munich, Germany; (S.-V.B.); (F.S.); (G.G.W.)
- Institute for Synthetic Biomedicine, Helmholtz Center Munich, 85764 Neuherberg, Germany
| | - Maxim A. Abakumov
- Department of Medical Nanobiotechnology, Pirogov Russian National Research Medical University, 117997 Moscow, Russia;
- Laboratory “Biomedical Nanomaterials”, National University of Science and Technology “MISiS”, 119049 Moscow, Russia
- Correspondence: (M.V.E.); (M.A.A.); Tel.: +74-95-638-4465 (M.A.A.)
| |
Collapse
|
20
|
Green Synthesis of Co-Zn Spinel Ferrite Nanoparticles: Magnetic and Intrinsic Antimicrobial Properties. MATERIALS 2020; 13:ma13215014. [PMID: 33172161 PMCID: PMC7664412 DOI: 10.3390/ma13215014] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/31/2020] [Accepted: 11/03/2020] [Indexed: 12/12/2022]
Abstract
Spinel ferrite magnetic nanoparticles have attracted considerable attention because of their high and flexible magnetic properties and biocompatibility. In this work, a set of magnetic nanoparticles of cobalt ferrite doped with zinc was synthesized via the eco-friendly sol-gel auto-combustion method. Obtained particles displayed a room-temperature ferromagnetic behavior with tuned by chemical composition values of saturation magnetization and coercivity. The maximal values of saturation magnetization ~74 Am2/kg were found in cobalt ferrite nanoparticles with a 15–35% molar fraction of cobalt replaced by zinc ions. At the same time, the coercivity exhibited a gradually diminishing trend from ~140 to ~5 mT whereas the concentration of zinc was increased from 0 to 100%. Consequently, nanoparticles produced by the proposed method possess highly adjustable magnetic properties to satisfy the requirement of a wide range of possible applications. Further prepared nanoparticles were tested with bacterial culture to display the influence of chemical composition and magnetic structure on nanoparticles-bacterial cell interaction.
Collapse
|