1
|
Syrek K, Kotarba S, Zych M, Pisarek M, Uchacz T, Sobańska K, Pięta Ł, Sulka GD. Surface Engineering of Anodic WO 3 Layers by In Situ Doping for Light-Assisted Water Splitting. ACS APPLIED MATERIALS & INTERFACES 2024; 16:36752-36762. [PMID: 38968082 PMCID: PMC11261572 DOI: 10.1021/acsami.4c02927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/21/2024] [Accepted: 06/26/2024] [Indexed: 07/07/2024]
Abstract
This study presents a novel approach to fabricating anodic Co-F-WO3 layers via a single-step electrochemical synthesis, utilizing cobalt fluoride as a dopant source in the electrolyte. The proposed in situ doping technique capitalizes on the high electronegativity of fluorine, ensuring the stability of CoF2 throughout the synthesis process. The nanoporous layer formation, resulting from anodic oxide dissolution in the presence of fluoride ions, is expected to facilitate the effective incorporation of cobalt compounds into the film. The research explores the impact of dopant concentration in the electrolyte, conducting a comprehensive characterization of the resulting materials, including morphology, composition, optical, electrochemical, and photoelectrochemical properties. The successful doping of WO3 was confirmed by energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), Raman spectroscopy, photoluminescence measurements, X-ray photoelectron spectroscopy (XPS), and Mott-Schottky analysis. Optical studies reveal lower absorption in Co-doped materials, with a slight shift in band gap energies. Photoelectrochemical (PEC) analysis demonstrates improved PEC activity for Co-doped layers, with the observed shift in photocurrent onset potential attributed to both cobalt and fluoride ions catalytic effects. The study includes an in-depth discussion of the observed phenomena and their implications for applications in solar water splitting, emphasizing the potential of the anodic Co-F-WO3 layers as efficient photoelectrodes. In addition, the research presents a comprehensive exploration of the electrochemical synthesis and characterization of anodic Co-F-WO3, emphasizing their photocatalytic properties for the oxygen evolution reaction (OER). It was found that Co-doped WO3 materials exhibited higher PEC activity, with a maximum 5-fold enhancement compared to pristine materials. Furthermore, the studies demonstrated that these photoanodes can be effectively reused for PEC water-splitting experiments.
Collapse
Affiliation(s)
- Karolina Syrek
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Sebastian Kotarba
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Marta Zych
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Marcin Pisarek
- Laboratory
of Surface Analysis, Institute of Physical
Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Tomasz Uchacz
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Kamila Sobańska
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Łukasz Pięta
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | | |
Collapse
|
2
|
Zhou J, Cheng H, Cheng J, Wang L, Xu H. The Emergence of High-Performance Conjugated Polymer/Inorganic Semiconductor Hybrid Photoelectrodes for Solar-Driven Photoelectrochemical Water Splitting. SMALL METHODS 2024; 8:e2300418. [PMID: 37421184 DOI: 10.1002/smtd.202300418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/15/2023] [Indexed: 07/10/2023]
Abstract
Solar-driven photoelectrochemical (PEC) energy conversion holds great potential in converting solar energy into storable and transportable chemicals or fuels, providing a viable route toward a carbon-neutral society. Conjugated polymers are rapidly emerging as a new class of materials for PEC water splitting. They exhibit many intriguing properties including tunable electronic structures through molecular engineering, excellent light harvesting capability with high absorption coefficients, and facile fabrication of large-area thin films via solution processing. Recent advances have indicated that integrating rationally designed conjugated polymers with inorganic semiconductors is a promising strategy for fabricating efficient and stable hybrid photoelectrodes for high-efficiency PEC water splitting. This review introduces the history of developing conjugated polymers for PEC water splitting. Notable examples of utilizing conjugated polymers to broaden the light absorption range, improve stability, and enhance the charge separation efficiency of hybrid photoelectrodes are highlighted. Furthermore, key challenges and future research opportunities for further improvements are also presented. This review provides an up-to-date overview of fabricating stable and high-efficiency PEC devices by integrating conjugated polymers with state-of-the-art semiconductors and would have significant implications for the broad solar-to-chemical energy conversion research.
Collapse
Affiliation(s)
- Jie Zhou
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Hao Cheng
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Jun Cheng
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Lei Wang
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Hangxun Xu
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
3
|
Bojinov M, Penkova Y, Betova I, Karastoyanov V. Anodic Oxidation of Tungsten under Illumination-Multi-Method Characterization and Modeling at the Molecular Level. Molecules 2023; 28:7387. [PMID: 37959806 PMCID: PMC10649260 DOI: 10.3390/molecules28217387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/28/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Tungsten oxide has received considerable attention as photo-anode in photo-assisted water splitting due to its considerable advantages such as significant light absorption in the visible region, good catalytic properties, and stability in acidic and oxidative conditions. The present paper is a first step in a detailed study of the mechanism of porous WO3 growth via anodic oxidation. In-situ electrochemical impedance spectroscopy (EIS) and intensity modulated photocurrent spectroscopy (IMPS) during oxidation of W illuminated with UV and visible light are employed to study the ionic and electronic processes in slightly acidic sulfate-fluoride electrolytes and a range of potentials 4-10 V. The respective responses are discussed in terms of the influence of fluoride addition on ionic and electronic process rates. A kinetic model is proposed and parameterized via regression of experimental data to the EIS and IMPS transfer functions.
Collapse
Affiliation(s)
- Martin Bojinov
- Department of Physical Chemistry, University of Chemical Technology and Metallurgy, 1756 Sofia, Bulgaria;
| | - Yoanna Penkova
- Institute of Electrochemistry and Energy Systems, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria (I.B.)
| | - Iva Betova
- Institute of Electrochemistry and Energy Systems, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria (I.B.)
| | - Vasil Karastoyanov
- Department of Physical Chemistry, University of Chemical Technology and Metallurgy, 1756 Sofia, Bulgaria;
| |
Collapse
|
4
|
Bolan S, Wijesekara H, Ireshika A, Zhang T, Pu M, Petruzzelli G, Pedron F, Hou D, Wang L, Zhou S, Zhao H, Siddique KHM, Wang H, Rinklebe J, Kirkham MB, Bolan N. Tungsten contamination, behavior and remediation in complex environmental settings. ENVIRONMENT INTERNATIONAL 2023; 181:108276. [PMID: 39492254 DOI: 10.1016/j.envint.2023.108276] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 11/05/2024]
Abstract
Tungsten (W) is a rare element and present in the earth's crust mainly as iron, aluminium, and calcium minerals including wolframite and scheelite. This review aims to offer an overview on the current knowledge on W pollution in complex environmental settlings, including terrestrial and aquatic ecosystems, linking to its natural and anthropogenic sources, behavior in soil and water, environmental and human health hazards, and remediation strategies. Tungsten is used in many alloys mainly as wafers, which have wide industrial applications, such as incandescent light bulb filaments, X-ray tubes, arc welding electrodes, radiation shielding, and industrial catalysts. The rigidity and high density of W enable it to be suitable for defence applications replacing lead. In soil, W metal is oxidised to the tungstate anion and occurs in oxidation states from - 2 to + 6, with the most prevalent oxidation state of + 6. However, recently, people have been alerted to the risk posed by W alloys and its particulates, which can cause cancer and have other detrimental health effects in animals and humans. The population is subject to W pollution in the workplace by breathing, ingestion, and dermal contact. Remediation of W-polluted soil and aquatic environments can be accomplished via stabilization or solubilization. Stabilization of W in soil and groundwater using immobilizing agents inhibits the bioavailability of W, thereby preventing the contaminant from reaching the food chain, while solubilization of W in soil involving mobilizing materials accelerates the elimination of W via soil washing and root absorption. Future research opportunities covering risk-based remediation of W pollution in these complex settings are presented.
Collapse
Affiliation(s)
- Shiv Bolan
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, Western Australia 6009, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, Western Australia 6009, Australia; Healthy Environments And Lives (HEAL) National Research Network, Australia
| | - Hasintha Wijesekara
- Department of Natural Resources, Faculty of Applied Sciences, Sabaragamuwa University of Sri Lanka, Belihuloya 70140, Sri Lanka
| | - Achali Ireshika
- Department of Natural Resources, Faculty of Applied Sciences, Sabaragamuwa University of Sri Lanka, Belihuloya 70140, Sri Lanka
| | - Tao Zhang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention-control and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, People's Republic of China
| | - Mingjun Pu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention-control and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, People's Republic of China
| | - Gianniantonio Petruzzelli
- Institute of Research on Terrestrial Ecosystem, National Council of Research, Via Moruzzi 1, 56124 Pisa, Italy
| | - Francesca Pedron
- Institute of Research on Terrestrial Ecosystem, National Council of Research, Via Moruzzi 1, 56124 Pisa, Italy
| | - Deyi Hou
- School of Environment, Tsinghua University, Beijing 100084, People's Republic of China
| | - Liuwei Wang
- School of Environment, Tsinghua University, Beijing 100084, People's Republic of China
| | - Sarah Zhou
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, Western Australia 6009, Australia
| | - Hoachen Zhao
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, Western Australia 6009, Australia
| | - Kadambot H M Siddique
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, Western Australia 6009, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, Western Australia 6009, Australia
| | - Hailong Wang
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong 528000, People's Republic of China; Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A&F University, Hangzhou, Zhejiang 311300, People's Republic of China
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany.
| | - M B Kirkham
- Department of Agronomy, Throckmorton Plant Sciences Center, Kansas State University, Manhattan, KS, United States
| | - Nanthi Bolan
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, Western Australia 6009, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, Western Australia 6009, Australia; Healthy Environments And Lives (HEAL) National Research Network, Australia.
| |
Collapse
|
5
|
Pineda-Domínguez PM, Boll T, Nogan J, Heilmaier M, Hurtado-Macías A, Ramos M. The Piezoresponse in WO 3 Thin Films Due to N 2-Filled Nanovoids Enrichment by Atom Probe Tomography. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1387. [PMID: 36837019 PMCID: PMC9960742 DOI: 10.3390/ma16041387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/02/2023] [Accepted: 02/04/2023] [Indexed: 06/18/2023]
Abstract
Tungsten trioxide (WO3) is a versatile n-type semiconductor with outstanding chromogenic properties highly used to fabricate sensors and electrochromic devices. We present a comprehensive experimental study related to piezoresponse with piezoelectric coefficient d33 = 35 pmV-1 on WO3 thin films ~200 nm deposited using RF-sputtering onto alumina (Al2O3) substrate with post-deposit annealing treatment of 400 °C in a 3% H2/N2-forming gas environment. X-ray diffraction (XRD) confirms a mixture of orthorhombic and tetragonal phases of WO3 with domains with different polarization orientations and hysteresis behavior as observed by piezoresponse force microscopy (PFM). Furthermore, using atom probe tomography (APT), the microstructure reveals the formation of N2-filled nanovoids that acts as strain centers producing a local deformation of the WO3 lattice into a non-centrosymmetric structure, which is related to piezoresponse observations.
Collapse
Affiliation(s)
- Pamela M. Pineda-Domínguez
- Departamento de Física y Matemáticas, Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez, Avenida del Charro 450 N, Cd. Juárez, Chihuahua 32310, Mexico
| | - Torben Boll
- Institut für Angewandte Materialien-Werkstoffkunde (IAM-WK), Karlsruhe Institute of Technology, Engelbert-Arnold-Strasse 4, 76131 Karlsruhe, Germany
- Karlsruhe Nano Micro Facility (KNMFi), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- Institute for Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - John Nogan
- Center for Integrated Nanotechnologies, 1101 Eubank Bldg. SE, Albuquerque, NM 87110, USA
| | - Martin Heilmaier
- Institut für Angewandte Materialien-Werkstoffkunde (IAM-WK), Karlsruhe Institute of Technology, Engelbert-Arnold-Strasse 4, 76131 Karlsruhe, Germany
| | - Abel Hurtado-Macías
- Laboratorio Nacional de Nanotecnología, Centro de Investigación en Materiales Avanzados S.C., Miguel de Cervantes 120, Complejo Industrial Chihuahua, Chihuahua 31109, Mexico
| | - Manuel Ramos
- Departamento de Física y Matemáticas, Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez, Avenida del Charro 450 N, Cd. Juárez, Chihuahua 32310, Mexico
| |
Collapse
|
6
|
Li Y, Tang S, Sheng H, Li C, Li H, Dong B, Cao L. Multiple roles for LaFeO 3 in enhancing the Photoelectrochemical performance of WO 3. J Colloid Interface Sci 2023; 629:598-609. [PMID: 36179579 DOI: 10.1016/j.jcis.2022.09.090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/11/2022] [Accepted: 09/18/2022] [Indexed: 10/14/2022]
Abstract
For photoelectrochemical (PEC) water splitting, constructing heterojunctions and loading co-catalysts are effective means to realizing sufficient light absorption, effective photogenerated carrier separation and fast charge transport. However, during implementation, the PEC performance of the catalyst is affected by both parasitic light absorption and reflection and the change in energy band structure due to the creation of new interfaces. Herein, in order to minimize the effect of recombination of photogenerated electron-hole pairs on the catalyst PEC performance due to the nascent interface arising from the co-catalyst compounding, WO3 and Ni/Co co-doped LaFeO3 (LFO) are constructed as heterojunctions, in which NiCo-LFO acts both as a part of the heterojunction to enhance photogenerated carrier separation and a co-catalyst to enhance the conductivity and modulate the surface state density at the catalyst-electrolyte interface. The current density of NiCo-LFO/WO3 reaches 3.92 mA cm-2, which is more than 7 times that of LFO/WO3. This work provides a reference for the efficient water splitting of B-site doped, especially the co-doped perovskite oxide as multifunctional roles integrated with conventional photoelectrodes.
Collapse
Affiliation(s)
- Yanxin Li
- School of Materials Science and Engineering, Ocean University of China, 238 Songling Road, Qingdao 266100 PR China
| | - Shimiao Tang
- School of Materials Science and Engineering, Ocean University of China, 238 Songling Road, Qingdao 266100 PR China
| | - Hongbin Sheng
- School of Materials Science and Engineering, Ocean University of China, 238 Songling Road, Qingdao 266100 PR China
| | - Can Li
- Institute of Optoelectronic Materials and Devices, College of Optical and Electronic Technology, China Jiliang University, 256 Xueyuan Street, Hangzhou, Zhejiang 310000, PR China.
| | - Haiyan Li
- School of Materials Science and Engineering, Ocean University of China, 238 Songling Road, Qingdao 266100 PR China
| | - Bohua Dong
- School of Materials Science and Engineering, Ocean University of China, 238 Songling Road, Qingdao 266100 PR China.
| | - Lixin Cao
- School of Materials Science and Engineering, Ocean University of China, 238 Songling Road, Qingdao 266100 PR China.
| |
Collapse
|
7
|
Investigation of Photoelectrochemical Performance under the Piezoelectric Effect Based on Different Zinc Oxide Morphologies. INORGANICS 2022. [DOI: 10.3390/inorganics11010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Recently, the piezoelectric effect has been widely used in photoelectrochemical (PEC) water splitting, and the morphology of the piezoelectric material is a critical factor affecting the piezo-photoelectrochemical water splitting performance. Herein, we explored the mechanism of the piezo-photoelectrochemical performance of zinc oxide (ZnO) that is affected by the morphology. Firstly, three different ZnO nanostructures (nanosheets, nanorods, and nanospheres) were synthesized by the electrodeposition, hydrothermal, and sol-gel methods, respectively. Then, the measurements of PEC water splitting performance under the piezoelectric effect revealed a 3-fold increase for the ZnO nanosheets, a 1.4-fold increase for the nanorods, and a 1.2-fold increase for the nanospheres compared to no piezoelectric effect. Finally, finite element simulation showed that nanosheets generated the highest piezoelectric potential (0.6 V), followed by nanorods (0.2 V), and nanospheres the lowest (0.04 V). Thus, among the three morphologies, the ZnO nanosheets exhibited a great improvement in PEC performance under the piezoelectric effect. The great improvement is due to the non-axial vertical homogeneous growth of the ZnO nanosheets, subjecting them to the highest effective deformation stress, which enables the ZnO nanosheets to produce the highest piezoelectric potential to accelerate the carrier separation and limit the recombination of photoelectrons and holes. This work serves as a guide for developing various photoelectrodes that are used in piezo-photoelectrochemical water splitting.
Collapse
|
8
|
Preparation and Photocatalytic/Photoelectrochemical Investigation of 2D ZnO/CdS Nanocomposites. CHEMENGINEERING 2022. [DOI: 10.3390/chemengineering6060087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Properties of heterotructured semiconductors based on ZnO/CdS nanosheets are investigated for their possible application in photocatalytic and photoelectrochemical reactions. Semiconductor material is the main active coating of photoanodes, which triggers the half-reaction of water oxidation and reduction, which entails the purifying or splitting of water. This article explains nanocomposite assembly by convenient and simple methods. The study of the physicochemical properties of semiconductor layers is carried out using electron microscopy, X-ray diffractometry, and UV-visible spectroscopy. Studies of electrochemical properties are carried out by potential static methods in electrochemical cells.
Collapse
|
9
|
Gorobtsov FY, Grigoryeva MK, Simonenko TL, Simonenko NP, Simonenko EP, Kuznetsov NT. Synthesis of Vanadium-Doped Nano-Sized WO3 by a Combination of Sol–Gel Process and Hydrothermal Treatment. RUSS J INORG CHEM+ 2022. [DOI: 10.1134/s0036023622601131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Jeevitha G, Sivaselvam S, Keerthana S, Mangalaraj D, Ponpandian N. Highly effective and stable MWCNT/WO 3 nanocatalyst for ammonia gas sensing, photodegradation of ciprofloxacin and peroxidase mimic activity. CHEMOSPHERE 2022; 297:134023. [PMID: 35227750 DOI: 10.1016/j.chemosphere.2022.134023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/13/2022] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
The present study discusses the ammonia (NH3) sensing characteristics, photocatalytic degradation of emerging pollutants, and peroxidase mimic activity of multifunctional multi-walled carbon nanotube-tungsten oxide nanocomposite (MWCNT/WO3) prepared by conventional solvothermal method. The prepared MWCNT/WO3 nanocomposites were characterized by various analytical techniques like XRD, Raman, XPS, N2 adsorption, FESEM with elemental analysis and diffuse reflection spectroscopy. The prepared 1% MWCNT/WO3 nanocomposite showed better gas sensing performance for the NH3 vapors at 10-100 ppm than the pristine WO3 and the response and recover time of about 13 and 15s towards 20 ppm of ammonia (NH3) was achieved. The photocatalytic activity of MWCNT/WO3 towards organic dyes such as Rhodamine-B (Rh.B) methylene blue (MB) and pharmaceutical compound ciprofloxacin (CIP) were studied and achieved above 90% degradation at 160 min for CIP and 60 min for MB and Rho-B respectively. The radicle scavenging activity for MWCNT/WO3 nanocomposite showed the predominant formation of hydroxyl (OH•) and superoxide radicle (•O2-). Further, the MWCNT/WO3 nanocomposite showed peroxidase mimic activity and exhibit the limit of detection (LOD) of about 321 nM. From the overall analysis, MWCNT/WO3 hybrid seems to have potential characteristics that can be explored for multiple functional applications.
Collapse
Affiliation(s)
- G Jeevitha
- Department of Nanoscience and Technology, Bharathiar University, Coimbatore, 641046, India
| | - S Sivaselvam
- Department of Nanoscience and Technology, Bharathiar University, Coimbatore, 641046, India
| | - S Keerthana
- Department of Nanoscience and Technology, Bharathiar University, Coimbatore, 641046, India
| | - D Mangalaraj
- Department of Nanoscience and Technology, Bharathiar University, Coimbatore, 641046, India.
| | - N Ponpandian
- Department of Nanoscience and Technology, Bharathiar University, Coimbatore, 641046, India.
| |
Collapse
|
11
|
Tuning the visible light activity of tungsten oxide layers by changing the anodization conditions. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.05.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Electrochemical Synthesis-Dependent Photoelectrochemical Properties of Tungsten Oxide Powders. CHEMENGINEERING 2022. [DOI: 10.3390/chemengineering6020031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
A rapid, facile, and environmentally benign strategy to electrochemical oxidation of metallic tungsten under pulse alternating current in an aqueous electrolyte solution was reported. Particle size, morphology, and electronic structure of the obtained WO3 nanopowders showed strong dependence on electrolyte composition (nitric, sulfuric, and oxalic acid). The use of oxalic acid as an electrolyte provides a gram-scale synthesis of WO3 nanopowders with tungsten electrochemical oxidation rate of up to 0.31 g·cm−2·h−1 that is much higher compared to the strong acids. The materials were examined as photoanodes in photoelectrochemical reforming of organic substances under solar light. WO3 synthesized in oxalic acid is shown to exhibit excellent activity towards the photoelectrochemical reforming of glucose and ethylene glycol, with photocurrents that are nearly equal to those achieved in the presence of simple alcohol such as ethanol. This work demonstrates the promise of pulse alternating current electrosynthesis in oxalic acid as an efficient and sustainable method to produce WO3 nanopowders for photoelectrochemical applications.
Collapse
|
13
|
Epifani M. Mechanistic Insights into WO 3 Sensing and Related Perspectives. SENSORS (BASEL, SWITZERLAND) 2022; 22:2247. [PMID: 35336421 PMCID: PMC8950964 DOI: 10.3390/s22062247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/04/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
Tungsten trioxide (WO3) is taking on an increasing level of importance as an active material for chemoresistive sensors. However, many different issues have to be considered when trying to understand the sensing properties of WO3 in order to rationally design sensing devices. In this review, several key points are critically summarized. After a quick review of the sensing results, showing the most timely trends, the complex system of crystallographic WO3 phase transitions is considered, with reference to the phases possibly involved in gas sensing. Appropriate attention is given to related investigations of first principles, since they have been shown to be a solid support for understanding the physical properties of crucially important systems. Then, the surface properties of WO3 are considered from both an experimental and first principles point of view, with reference to the paramount importance of oxygen vacancies. Finally, the few investigations of the sensing mechanisms of WO3 are discussed, showing a promising convergence between the proposed hypotheses and several experimental and theoretical studies presented in the previous sections.
Collapse
Affiliation(s)
- Mauro Epifani
- Istituto per la Microelettronica e i Microsistemi, IMM-CNR, Via Monteroni, 73100 Lecce, Italy
| |
Collapse
|
14
|
Evaluation of the Effect of Different Nano-Size of WO3 on the Structural and Mechanical Properties of HDPE. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-021-02219-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
15
|
Bayahia H. Green synthesis of activated carbon doped tungsten trioxide photocatalysts using leaf of basil (Ocimum basilicum) for photocatalytic degradation of methylene blue under sunlight. JOURNAL OF SAUDI CHEMICAL SOCIETY 2022. [DOI: 10.1016/j.jscs.2022.101432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
16
|
Liang YC, Yang HC. Boosting photoresposive ability of WO 3-Bi 2O 3nanocomposite rods via annealing-induced intrinsic precipitation of nanosized Bi particles. NANOTECHNOLOGY 2021; 32:315701. [PMID: 33887714 DOI: 10.1088/1361-6528/abfabf] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/22/2021] [Indexed: 06/12/2023]
Abstract
In this study, Bi-particle-functionalized tungsten trioxide-bismuth oxide (WO3-Bi2O3) composite nanorods were prepared by integrating sputtering and hydrothermal syntheses with an appropriate postannealing procedure to induce Bi particle precipitation. Unlike other routes in which metal particle decoration is achieved externally, in this study, photoresponsive one-dimensional WO3-Bi2O3composite nanorods were decorated with Bi particles by using the internal precipitation method. Structural analysis revealed that the Bi-metal-particle-functionalized WO3-Bi2O3composite nanorods with particle size ranging from 5 to 10 nm were formed through hydrogen gas annealing at an optimal annealing temperature of 350 °C. Compared with the pristine WO3nanorod template, the Bi-WO3-Bi2O3composite nanorods exhibited higher photoresponsive performance, substantial photogenerated charge transfer ability, and efficient separation of photogenerated electron-hole pairs. The study results indicated that the Bi-WO3-Bi2O3composite nanorods had superior decontamination ability and excellent stability toward RhB dye as compared with pristine WO3. Moreover, the photogenerated charge separation and migration efficiencies of the WO3-Bi2O3nanorods could be tuned through appropriate reduction of the surface oxide layer; this is a promising approach to designing WO3-Bi2O3nanorods with high photoactive performance.
Collapse
Affiliation(s)
- Yuan-Chang Liang
- Department of Optoelectronics and Materials Technology, National Taiwan Ocean University, 20224, Taiwan
| | - Ho-Chung Yang
- Department of Optoelectronics and Materials Technology, National Taiwan Ocean University, 20224, Taiwan
| |
Collapse
|
17
|
Liang YC, Wang YP. Optimizing crystal characterization of WO3–ZnO composites for boosting photoactive performance via manipulating crystal formation conditions. CrystEngComm 2021. [DOI: 10.1039/d1ce00308a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Controlling crystal formation conditions enables the manipulation of crystal quality and photoactive performance of WO3–ZnO nanorods.
Collapse
Affiliation(s)
- Yuan-Chang Liang
- Department of Optoelectronics and Materials Technology
- National Taiwan Ocean University
- Keelung 20224
- Taiwan
| | - Yu-Pin Wang
- Department of Optoelectronics and Materials Technology
- National Taiwan Ocean University
- Keelung 20224
- Taiwan
| |
Collapse
|
18
|
Photoactive Nanomaterials. NANOMATERIALS 2021; 11:nano11010077. [PMID: 33401445 PMCID: PMC7824164 DOI: 10.3390/nano11010077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 12/29/2020] [Indexed: 12/05/2022]
|