1
|
Shi S, Shi W, Zhou B, Qiu S. Research and Application of Chitosan Nanoparticles in Orthopedic Infections. Int J Nanomedicine 2024; 19:6589-6602. [PMID: 38979535 PMCID: PMC11228078 DOI: 10.2147/ijn.s468848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/15/2024] [Indexed: 07/10/2024] Open
Abstract
Orthopedic infection is one of the most intractable orthopedic problems. Bacteria resistant to antibiotics also develop gradually. Chitosan is widely used in the Biomedical field because of its high biocompatibility, biodegradability, and antibacterial activity. Chitosan-based drug delivery systems are frequently utilized to produce controlled medication release. When combined with antibiotics, synergistic antibacterial effects can be achieved. Chitosan-based nanoparticles are one of the most widely used applications in drug delivery systems. The focus of this review is to provide information on new methods being developed for chitosan-based nanoparticles in the field of bone infection treatment, including chitosan nanoparticles for antibacterial purposes, Ch-loaded with antibiotics, Ch-loaded with metal, and used as immune adjuvants. It may Provide ideas for the fundamental research and the prospects of future clinical applications of orthopedic infections.
Collapse
Affiliation(s)
- Sifeng Shi
- Department of Orthopedic Surgery, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, People’s Republic of China
| | - Weiran Shi
- Department of Orthopedic Surgery, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, People’s Republic of China
| | - Bing Zhou
- Department of Orthopedic Surgery, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, People’s Republic of China
| | - Shang Qiu
- Department of Orthopedic Surgery, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, People’s Republic of China
| |
Collapse
|
2
|
Balážová Ľ, Wolaschka T, Rohaľová S, Daneu N, Stahorský M, Salayová A, Tkáčiková Ľ, Eftimová J. In Situ Gel with Silver Nanoparticles Prepared Using Agrimonia eupatoria L. Shows Antibacterial Activity. Life (Basel) 2023; 13:life13020573. [PMID: 36836930 PMCID: PMC9966964 DOI: 10.3390/life13020573] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/14/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
Silver nanoparticles (Ag NPs) with antibacterial activity can be prepared in different ways. In our case, we used ecological green synthesis with Agrimonia eupatoria L. The plant extract was used with Ag NPs for the first time to prepare termosensitive in situ gels (ISGs). Such gels are used to heal human or animal skin and mucous membranes, as they can change from a liquid to solid state after application. Ag NPs were characterized with various techniques (FTIR, TEM, size distribution, zeta potential) and their antibacterial activity was tested against Staphylococcus aureus and Escherichia coli. In accordance with the TEM data, we prepared monodispersed spherical Ag NPs with an average size of about 20 nm. Organic active compounds from Agrimonia eupatoria L. were found on their surfaces using FTIR spectroscopy. Surprisingly, only the in situ gel with Ag NPs showed antibacterial activity against Escherichia coli, while Ag NPs alone did not. Ag NPs prepared via green synthesis using plants with medicinal properties and incorporated into ISGs have great potential for wound healing due to the antibacterial activity of Ag NPs and the dermatological activity of organic substances from plants.
Collapse
Affiliation(s)
- Ľudmila Balážová
- Department of Pharmaceutical Technology, Pharmacognosy and Botany, University of Veterinary Medicine and Pharmacy in Košice, 041 81 Kosice, Slovakia
- Correspondence: ; Tel.: +421-907-536-280
| | - Tomáš Wolaschka
- Department of Pharmaceutical Technology, Pharmacognosy and Botany, University of Veterinary Medicine and Pharmacy in Košice, 041 81 Kosice, Slovakia
| | - Simona Rohaľová
- Department of Pharmaceutical Technology, Pharmacognosy and Botany, University of Veterinary Medicine and Pharmacy in Košice, 041 81 Kosice, Slovakia
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Masaryk University, 601 77 Brno, Czech Republic
| | - Nina Daneu
- Advanced Materials Department, Jozef Stefan Institute, SI-1000 Ljubljana, Slovenia
| | - Martin Stahorský
- Department of Mechanochemistry, Institute of Geotechnics, Slovak Academy of Sciences, 040 01 Kosice, Slovakia
| | - Aneta Salayová
- Department of Chemistry, Biochemistry and Biophysics, Institute of Pharmaceutical Chemistry, University of Veterinary Medicine and Pharmacy in Košice, 041 81 Kosice, Slovakia
| | - Ľudmila Tkáčiková
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Košice, 041 81 Kosice, Slovakia
| | - Jarmila Eftimová
- Department of Pharmaceutical Technology, Pharmacognosy and Botany, University of Veterinary Medicine and Pharmacy in Košice, 041 81 Kosice, Slovakia
| |
Collapse
|
3
|
Dubadi R, Huang SD, Jaroniec M. Mechanochemical Synthesis of Nanoparticles for Potential Antimicrobial Applications. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1460. [PMID: 36837091 PMCID: PMC9961116 DOI: 10.3390/ma16041460] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 05/13/2023]
Abstract
There is an increased interest in porous materials due to their unique properties such as high surface area, enhanced catalytic properties, and biological applications. Various solvent-based approaches have been already used to synthesize porous materials. However, the use of large volume of solvents, their toxicity, and time-consuming synthesis make this process less effective, at least in terms of principles of green chemistry. Mechanochemical synthesis is one of the effective eco-friendly alternatives to the conventional synthesis. It adopts the efficient mixing of reactants using ball milling without or with a very small volume of solvents, gives smaller size nanoparticles (NPs) and larger surface area, and facilitates their functionalization, which is highly beneficial for antimicrobial applications. A large variety of nanomaterials for different applications have already been synthesized by this method. This review emphasizes the comparison between the solvent-based and mechanochemical methods for the synthesis of mainly inorganic NPs for potential antimicrobial applications, although some metal-organic framework NPs are briefly presented too.
Collapse
Affiliation(s)
| | | | - Mietek Jaroniec
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA
| |
Collapse
|
4
|
Baláž M, Casas-Luna M, Augustinyak A, Tkáčiková Ľ, Szmuc K, Kováčová M, Čelko L, Shpotyuk Y. Hybrid Ag0/Ag2CO3–eggshell–plant nanocomposites for antimicrobial action prepared by bio-mechanochemical synthesis. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-022-02417-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
5
|
Baláž M, Bedlovičová Z, Daneu N, Siksa P, Sokoli L, Tkáčiková Ľ, Salayová A, Džunda R, Kováčová M, Bureš R, Bujňáková ZL. Mechanochemistry as an Alternative Method of Green Synthesis of Silver Nanoparticles with Antibacterial Activity: A Comparative Study. NANOMATERIALS 2021; 11:nano11051139. [PMID: 33924877 PMCID: PMC8146714 DOI: 10.3390/nano11051139] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/13/2021] [Accepted: 04/23/2021] [Indexed: 01/14/2023]
Abstract
This study shows mechanochemical synthesis as an alternative method to the traditional green synthesis of silver nanoparticles in a comparative manner by comparing the products obtained using both methodologies and different characterization methods. As a silver precursor, the most commonly used silver nitrate was applied and the easily accessible lavender (Lavandula angustofolia L.) plant was used as a reducing agent. Both syntheses were performed using 7 different lavender:AgNO3 mass ratios. The synthesis time was limited to 8 and 15 min in the case of green and mechanochemical synthesis, respectively, although a significant amount of unreacted silver nitrate was detected in both crude reaction mixtures at low lavender:AgNO3 ratios. This finding is of particular interest mainly for green synthesis, as the potential presence of silver nitrate in the produced nanosuspension is often overlooked. Unreacted AgNO3 has been removed from the mechanochemically synthesized samples by washing. The nanocrystalline character of the products has been confirmed by both X-ray diffraction (Rietveld refinement) and transmission electron microscopy. The latter has shown bimodal size distribution with larger particles in tens of nanometers and the smaller ones below 10 nm in size. In the case of green synthesis, the used lavender:AgNO3 ratio was found to have a decisive role on the crystallite size. Silver chloride has been detected as a side-product, mainly at high lavender:AgNO3 ratios. Both products have shown a strong antibacterial activity, being higher in the case of green synthesis, but this can be ascribed to the presence of unreacted AgNO3. Thus, one-step mechanochemical synthesis (without the need to prepare extract and performing the synthesis as separate steps) can be applied as a sustainable alternative to the traditional green synthesis of Ag nanoparticles using plants.
Collapse
Affiliation(s)
- Matej Baláž
- Department of Mechanochemistry, Institute of Geotechnics, Slovak Academy of Sciences, Watsonova 45, 04001 Košice, Slovakia; (M.K.); (Z.L.B.)
- Correspondence:
| | - Zdenka Bedlovičová
- Department of Chemistry, Biochemistry and Biophysics, University of Veterinary Medicine and Pharmacy, Komenského 73, 04181 Košice, Slovakia; (Z.B.); (P.S.); (L.S.); (A.S.)
| | - Nina Daneu
- Advanced Materials Department, Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia;
| | - Patrik Siksa
- Department of Chemistry, Biochemistry and Biophysics, University of Veterinary Medicine and Pharmacy, Komenského 73, 04181 Košice, Slovakia; (Z.B.); (P.S.); (L.S.); (A.S.)
| | - Libor Sokoli
- Department of Chemistry, Biochemistry and Biophysics, University of Veterinary Medicine and Pharmacy, Komenského 73, 04181 Košice, Slovakia; (Z.B.); (P.S.); (L.S.); (A.S.)
- Department of Pharmacology and Toxicology, University of Veterinary Medicine and Pharmacy, Komenského 73, 04181 Košice, Slovakia
| | - Ľudmila Tkáčiková
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, Komenského 73, 04181 Košice, Slovakia;
| | - Aneta Salayová
- Department of Chemistry, Biochemistry and Biophysics, University of Veterinary Medicine and Pharmacy, Komenského 73, 04181 Košice, Slovakia; (Z.B.); (P.S.); (L.S.); (A.S.)
| | - Róbert Džunda
- Institute of Materials Research, Slovak Academy of Sciences, 04001 Košice, Slovakia; (R.D.); (R.B.)
| | - Mária Kováčová
- Department of Mechanochemistry, Institute of Geotechnics, Slovak Academy of Sciences, Watsonova 45, 04001 Košice, Slovakia; (M.K.); (Z.L.B.)
| | - Radovan Bureš
- Institute of Materials Research, Slovak Academy of Sciences, 04001 Košice, Slovakia; (R.D.); (R.B.)
| | - Zdenka Lukáčová Bujňáková
- Department of Mechanochemistry, Institute of Geotechnics, Slovak Academy of Sciences, Watsonova 45, 04001 Košice, Slovakia; (M.K.); (Z.L.B.)
| |
Collapse
|
6
|
Salayová A, Bedlovičová Z, Daneu N, Baláž M, Lukáčová Bujňáková Z, Balážová Ľ, Tkáčiková Ľ. Green Synthesis of Silver Nanoparticles with Antibacterial Activity Using Various Medicinal Plant Extracts: Morphology and Antibacterial Efficacy. NANOMATERIALS 2021; 11:nano11041005. [PMID: 33919801 PMCID: PMC8070782 DOI: 10.3390/nano11041005] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 12/24/2022]
Abstract
A green synthetic route for the production of silver nanoparticles (AgNPs) using five different aqueous plant extracts, namely, Berberis vulgaris, Brassica nigra, Capsella bursa-pastoris, Lavandula angustifolia and Origanum vulgare, was investigated in this study. The present work demonstrates the influence of plant extract composition (antioxidant and total phenolic content) on the size and morphology of the produced AgNPs. The biosynthetic procedure was rapid and simple and was easily monitored via colour changes and ultraviolet and visible (UV-Vis) spectroscopy. Subsequently, measurement of zeta potential (ZP), photon cross-correlation spectroscopy (PCCS), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM) and selected area electron diffraction (SAED) analysis were employed to characterise the as-synthesised nanoparticles. The XRD investigation confirmed the presence of Ag0 in the nanoparticles, and interactions between the bioactive compounds of the plants and the produced AgNPs were evident in the FTIR spectra. TEM indicated that the nanoparticles exhibited a bimodal size distribution, with the smaller particles being spherical and the larger having a truncated octahedron shape. In addition, the antimicrobial activity of the AgNPs was tested against five bacterial strains. All synthesised nanoparticles exhibited enhanced antimicrobial activity at a precursor concentration of 5 mM compared to the control substance, gentamicin sulphate, with the best results observed for AgNPs prepared with B. nigra and L. angustifolia extracts.
Collapse
Affiliation(s)
- Aneta Salayová
- Department of Chemistry, Biochemistry and Biophysics, University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81 Košice, Slovakia;
- Correspondence:
| | - Zdenka Bedlovičová
- Department of Chemistry, Biochemistry and Biophysics, University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81 Košice, Slovakia;
| | - Nina Daneu
- Advanced Materials Department, Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia;
| | - Matej Baláž
- Department of Mechanochemistry, Institute of Geotechnics, Slovak Academy of Sciences, Watsonova 45, 040 01 Košice, Slovakia; (M.B.); (Z.L.B.)
| | - Zdenka Lukáčová Bujňáková
- Department of Mechanochemistry, Institute of Geotechnics, Slovak Academy of Sciences, Watsonova 45, 040 01 Košice, Slovakia; (M.B.); (Z.L.B.)
| | - Ľudmila Balážová
- Department of Pharmaceutical Technology, Pharmacognosy and Botany, University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81 Košice, Slovakia;
| | - Ľudmila Tkáčiková
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81 Košice, Slovakia;
| |
Collapse
|
7
|
Fiss BG, Richard AJ, Douglas G, Kojic M, Friščić T, Moores A. Mechanochemical methods for the transfer of electrons and exchange of ions: inorganic reactivity from nanoparticles to organometallics. Chem Soc Rev 2021; 50:8279-8318. [DOI: 10.1039/d0cs00918k] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
For inorganic metathesis and reduction reactivity, mechanochemistry is demonstrating great promise towards both nanoparticles and organometallics syntheses.
Collapse
Affiliation(s)
- Blaine G. Fiss
- Centre in Green Chemistry and Catalysis
- Department of Chemistry
- McGill University
- Montréal
- Canada
| | - Austin J. Richard
- Centre in Green Chemistry and Catalysis
- Department of Chemistry
- McGill University
- Montréal
- Canada
| | - Georgia Douglas
- Centre in Green Chemistry and Catalysis
- Department of Chemistry
- McGill University
- Montréal
- Canada
| | - Monika Kojic
- Centre in Green Chemistry and Catalysis
- Department of Chemistry
- McGill University
- Montréal
- Canada
| | - Tomislav Friščić
- Centre in Green Chemistry and Catalysis
- Department of Chemistry
- McGill University
- Montréal
- Canada
| | - Audrey Moores
- Centre in Green Chemistry and Catalysis
- Department of Chemistry
- McGill University
- Montréal
- Canada
| |
Collapse
|