1
|
Kumar K, Fachet M, Hoeschen C. High-Spatial-Resolution Benchtop X-ray Fluorescence Imaging through Bragg-Diffraction-Based Focusing with Bent Mosaic Graphite Crystals: A Simulation Study. Int J Mol Sci 2024; 25:4733. [PMID: 38731956 PMCID: PMC11083219 DOI: 10.3390/ijms25094733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/18/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
X-ray fluorescence imaging (XFI) can localize diagnostic or theranostic entities utilizing nanoparticle (NP)-based probes at high resolution in vivo, in vitro, and ex vivo. However, small-animal benchtop XFI systems demonstrating high spatial resolution (variable from sub-millimeter to millimeter range) in vivo are still limited to lighter elements (i.e., atomic number Z≤45). This study investigates the feasibility of focusing hard X-rays from solid-target tubes using ellipsoidal lens systems composed of mosaic graphite crystals with the aim of enabling high-resolution in vivo XFI applications with mid-Z (42≤Z≤64) elements. Monte Carlo simulations are performed to characterize the proposed focusing-optics concept and provide quantitative predictions of the XFI sensitivity, in silico tumor-bearing mice models loaded with palladium (Pd) and barium (Ba) NPs. Based on simulation results, the minimum detectable total mass of PdNPs per scan position is expected to be on the order of a few hundred nanograms under in vivo conform conditions. PdNP masses as low as 150 ng to 50 ng could be detectable with a resolution of 600 μm when imaging abdominal tumor lesions across a range of low-dose (0.8 μGy) to high-dose (8 μGy) exposure scenarios. The proposed focusing-optics concept presents a potential step toward realizing XFI with conventional X-ray tubes for high-resolution applications involving interesting NP formulations.
Collapse
Affiliation(s)
| | - Melanie Fachet
- Chair of Medical Systems Technology, Institute for Medical Technology, Faculty of Electrical Engineering and Information Technology, Otto von Guericke University Magdeburg, 39106 Magdeburg, Germany; (K.K.)
| | | |
Collapse
|
2
|
Saladino GM, Brodin B, Kakadiya R, Toprak MS, Hertz HM. Iterative nanoparticle bioengineering enabled by x-ray fluorescence imaging. SCIENCE ADVANCES 2024; 10:eadl2267. [PMID: 38517973 DOI: 10.1126/sciadv.adl2267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 02/16/2024] [Indexed: 03/24/2024]
Abstract
Nanoparticles (NPs) are currently developed for drug delivery and molecular imaging. However, they often get intercepted before reaching their target, leading to low targeting efficacy and signal-to-noise ratio. They tend to accumulate in organs like lungs, liver, kidneys, and spleen. The remedy is to iteratively engineer NP surface properties and administration strategies, presently a time-consuming process that includes organ dissection at different time points. To improve this, we propose a rapid iterative approach using whole-animal x-ray fluorescence (XRF) imaging to systematically evaluate NP distribution in vivo. We applied this method to molybdenum-based NPs and clodronate liposomes for tumor targeting with transient macrophage depletion, leading to reduced accumulations in lungs and liver and eventual tumor detection. XRF computed tomography (XFCT) provided 3D insight into NP distribution within the tumor. We validated the results using a multiscale imaging approach with dye-doped NPs and gene expression analysis for nanotoxicological profiling. XRF imaging holds potential for advancing therapeutics and diagnostics in preclinical pharmacokinetic studies.
Collapse
Affiliation(s)
- Giovanni M Saladino
- Department of Applied Physics, Biomedical and X-Ray Physics, KTH Royal Institute of Technology, SE 10691, Stockholm, Sweden
| | - Bertha Brodin
- Department of Applied Physics, Biomedical and X-Ray Physics, KTH Royal Institute of Technology, SE 10691, Stockholm, Sweden
| | - Ronak Kakadiya
- Department of Applied Physics, Biomedical and X-Ray Physics, KTH Royal Institute of Technology, SE 10691, Stockholm, Sweden
| | - Muhammet S Toprak
- Department of Applied Physics, Biomedical and X-Ray Physics, KTH Royal Institute of Technology, SE 10691, Stockholm, Sweden
| | - Hans M Hertz
- Department of Applied Physics, Biomedical and X-Ray Physics, KTH Royal Institute of Technology, SE 10691, Stockholm, Sweden
| |
Collapse
|
3
|
Arsana KGY, Saladino GM, Brodin B, Toprak MS, Hertz HM. Laboratory Liquid-Jet X-ray Microscopy and X-ray Fluorescence Imaging for Biomedical Applications. Int J Mol Sci 2024; 25:920. [PMID: 38255992 PMCID: PMC10815599 DOI: 10.3390/ijms25020920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/30/2023] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Diffraction-limited resolution and low penetration depth are fundamental constraints in optical microscopy and in vivo imaging. Recently, liquid-jet X-ray technology has enabled the generation of X-rays with high-power intensities in laboratory settings. By allowing the observation of cellular processes in their natural state, liquid-jet soft X-ray microscopy (SXM) can provide morphological information on living cells without staining. Furthermore, X-ray fluorescence imaging (XFI) permits the tracking of contrast agents in vivo with high elemental specificity, going beyond attenuation contrast. In this study, we established a methodology to investigate nanoparticle (NP) interactions in vitro and in vivo, solely based on X-ray imaging. We employed soft (0.5 keV) and hard (24 keV) X-rays for cellular studies and preclinical evaluations, respectively. Our results demonstrated the possibility of localizing NPs in the intracellular environment via SXM and evaluating their biodistribution with in vivo multiplexed XFI. We envisage that laboratory liquid-jet X-ray technology will significantly contribute to advancing our understanding of biological systems in the field of nanomedical research.
Collapse
Affiliation(s)
| | | | | | | | - Hans M. Hertz
- Department of Applied Physics, Biomedical and X-ray Physics, KTH Royal Institute of Technology, 10691 Stockholm, Sweden (G.M.S.)
| |
Collapse
|
4
|
Kilic NI, Saladino GM, Johansson S, Shen R, McDorman C, Toprak MS, Johansson S. Two-Photon Polymerization Printing with High Metal Nanoparticle Loading. ACS APPLIED MATERIALS & INTERFACES 2023; 15:49794-49804. [PMID: 37816209 PMCID: PMC10614202 DOI: 10.1021/acsami.3c10581] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/27/2023] [Indexed: 10/12/2023]
Abstract
Two-photon polymerization (2PP) is an efficient technique to achieve high-resolution, three-dimensional (3D)-printed complex structures. However, it is restricted to photocurable monomer combinations, thus presenting constraints when aiming at attaining functionally active resist formulations and structures. In this context, metal nanoparticle (NP) integration as an additive can enable functionality and pave the way to more dedicated applications. Challenges lay on the maximum NP concentrations that can be incorporated into photocurable resist formulations due to the laser-triggered interactions, which primarily originate from laser scattering and absorption, as well as the limited dispersibility threshold. In this study, we propose an approach to address these two constraints by integrating metallic Rh NPs formed ex situ, purposely designed for this scope. The absence of surface plasmon resonance (SPR) within the visible and near-infrared spectra, coupled with the limited absorption value measured at the laser operating wavelength (780 nm), significantly limits the laser-induced interactions. Moreover, the dispersibility threshold is increased by engineering the NP surface to be compatible with the photocurable resin, permitting us to achieve concentrations of up to 2 wt %, which, to our knowledge, is significantly higher than the previously reported limit (or threshold) for embedded metal NPs. Another distinctive advantage of employing Rh NPs is their role as promising contrast agents for X-ray fluorescence (XRF) bioimaging. We demonstrated the presence of Rh NPs within the whole 2PP-printed structure and emphasized the potential use of NP-loaded 3D-printed nanostructures for medical devices.
Collapse
Affiliation(s)
- Nuzhet I. Kilic
- Department
of Materials Science and Engineering, Microsystems Technology, Uppsala University, SE 75103 Uppsala, Sweden
- Department
of Applied Physics, Biomedical and X-ray Physics, KTH Royal Institute of Technology, SE 10691 Stockholm, Sweden
| | - Giovanni M. Saladino
- Department
of Applied Physics, Biomedical and X-ray Physics, KTH Royal Institute of Technology, SE 10691 Stockholm, Sweden
| | - Sofia Johansson
- Department
of Materials Science and Engineering, Biomedical Engineering, Science
for Life Laboratory, Uppsala University, SE 75103 Uppsala, Sweden
| | | | - Cacie McDorman
- Alleima
Advanced Materials, Palm Coast, Florida 32164, United States
| | - Muhammet S. Toprak
- Department
of Applied Physics, Biomedical and X-ray Physics, KTH Royal Institute of Technology, SE 10691 Stockholm, Sweden
| | - Stefan Johansson
- Department
of Materials Science and Engineering, Microsystems Technology, Uppsala University, SE 75103 Uppsala, Sweden
| |
Collapse
|
5
|
Saladino GM, Vogt C, Brodin B, Shaker K, Kilic NI, Andersson K, Arsenian-Henriksson M, Toprak MS, Hertz HM. XFCT-MRI hybrid multimodal contrast agents for complementary imaging. NANOSCALE 2023; 15:2214-2222. [PMID: 36625091 DOI: 10.1039/d2nr05829d] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Multimodal contrast agents in biomedical imaging enable the collection of more comprehensive diagnostic information. In the present work, we design hybrid ruthenium-decorated superparamagnetic iron oxide nanoparticles (NPs) as the contrast agents for both magnetic resonance imaging (MRI) and X-ray fluorescence computed tomography (XFCT). The NPs are synthesized via a one-pot polyol hot injection route, in diethylene glycol. In vivo preclinical studies demonstrate the possibility of correlative bioimaging with these contrast agents. The complementarity allows accurate localization, provided by the high contrast of the soft tissues in MRI combined with the elemental selectivity of XFCT, leading to NP detection with high specificity and resolution. We envision that this multimodal imaging could find future applications for early tumor diagnosis, improved long-term treatment monitoring, and enhanced radiotherapy planning.
Collapse
Affiliation(s)
- Giovanni Marco Saladino
- Department of Applied Physics, Biomedical and X-Ray Physics, KTH Royal Institute of Technology, SE 10691 Stockholm, Sweden.
| | - Carmen Vogt
- Department of Applied Physics, Biomedical and X-Ray Physics, KTH Royal Institute of Technology, SE 10691 Stockholm, Sweden.
| | - Bertha Brodin
- Department of Applied Physics, Biomedical and X-Ray Physics, KTH Royal Institute of Technology, SE 10691 Stockholm, Sweden.
| | - Kian Shaker
- Department of Applied Physics, Biomedical and X-Ray Physics, KTH Royal Institute of Technology, SE 10691 Stockholm, Sweden.
| | - Nuzhet Inci Kilic
- Department of Applied Physics, Biomedical and X-Ray Physics, KTH Royal Institute of Technology, SE 10691 Stockholm, Sweden.
| | - Kenth Andersson
- Department of Applied Physics, Biomedical and X-Ray Physics, KTH Royal Institute of Technology, SE 10691 Stockholm, Sweden.
| | - Marie Arsenian-Henriksson
- Department of Microbiology Tumor and Cell Biology (MTC), Karolinska Institute, SE 17165 Stockholm, Sweden
| | - Muhammet Sadaka Toprak
- Department of Applied Physics, Biomedical and X-Ray Physics, KTH Royal Institute of Technology, SE 10691 Stockholm, Sweden.
| | - Hans Martin Hertz
- Department of Applied Physics, Biomedical and X-Ray Physics, KTH Royal Institute of Technology, SE 10691 Stockholm, Sweden.
| |
Collapse
|
6
|
Design of Micro- and Nanoparticles: Self-Assembly and Application. NANOMATERIALS 2022; 12:nano12030430. [PMID: 35159775 PMCID: PMC8839509 DOI: 10.3390/nano12030430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/18/2022] [Indexed: 01/25/2023]
Abstract
The modern world throws down an increasing number of challenges to humanity [...].
Collapse
|
7
|
Saladino GM, Kilic NI, Brodin B, Hamawandi B, Yazgan I, Hertz HM, Toprak MS. Carbon Quantum Dots Conjugated Rhodium Nanoparticles as Hybrid Multimodal Contrast Agents. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2165. [PMID: 34578481 PMCID: PMC8470909 DOI: 10.3390/nano11092165] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/18/2021] [Accepted: 08/21/2021] [Indexed: 11/16/2022]
Abstract
Nanoparticle (NP)-based contrast agents enabling different imaging modalities are sought for non-invasive bio-diagnostics. A hybrid material, combining optical and X-ray fluorescence is presented as a bioimaging contrast agent. Core NPs based on metallic rhodium (Rh) have been demonstrated to be potential X-ray Fluorescence Computed Tomography (XFCT) contrast agents. Microwave-assisted hydrothermal method is used for NP synthesis, yielding large-scale NPs within a significantly short reaction time. Rh NP synthesis is performed by using a custom designed sugar ligand (LODAN), constituting a strong reducing agent in aqueous solution, which yields NPs with primary amines as surface functional groups. The amino groups on Rh NPs are used to directly conjugate excitation-independent nitrogen-doped carbon quantum dots (CQDs), which are synthesized through citrate pyrolysis in ammonia solution. CQDs provided the Rh NPs with optical fluorescence properties and improved their biocompatibility, as demonstrated in vitro by Real-Time Cell Analysis (RTCA) on a macrophage cell line (RAW 264.7). The multimodal characteristics of the hybrid NPs are confirmed with confocal microscopy, and X-ray Fluorescence (XRF) phantom experiments.
Collapse
Affiliation(s)
- Giovanni M. Saladino
- Department of Applied Physics, Biomedical and X-ray Physics, KTH Royal Institute of Technology, SE-10691 Stockholm, Sweden; (N.I.K.); (B.B.); (B.H.); (H.M.H.)
| | - Nuzhet I. Kilic
- Department of Applied Physics, Biomedical and X-ray Physics, KTH Royal Institute of Technology, SE-10691 Stockholm, Sweden; (N.I.K.); (B.B.); (B.H.); (H.M.H.)
| | - Bertha Brodin
- Department of Applied Physics, Biomedical and X-ray Physics, KTH Royal Institute of Technology, SE-10691 Stockholm, Sweden; (N.I.K.); (B.B.); (B.H.); (H.M.H.)
| | - Bejan Hamawandi
- Department of Applied Physics, Biomedical and X-ray Physics, KTH Royal Institute of Technology, SE-10691 Stockholm, Sweden; (N.I.K.); (B.B.); (B.H.); (H.M.H.)
| | - Idris Yazgan
- Center of Biosensors and Materials, Department of Biology, Faculty of Science and Arts, Kastamonu University, Kastamonu 37150, Turkey;
| | - Hans M. Hertz
- Department of Applied Physics, Biomedical and X-ray Physics, KTH Royal Institute of Technology, SE-10691 Stockholm, Sweden; (N.I.K.); (B.B.); (B.H.); (H.M.H.)
| | - Muhammet S. Toprak
- Department of Applied Physics, Biomedical and X-ray Physics, KTH Royal Institute of Technology, SE-10691 Stockholm, Sweden; (N.I.K.); (B.B.); (B.H.); (H.M.H.)
| |
Collapse
|
8
|
Saladino GM, Vogt C, Li Y, Shaker K, Brodin B, Svenda M, Hertz HM, Toprak MS. Optical and X-ray Fluorescent Nanoparticles for Dual Mode Bioimaging. ACS NANO 2021; 15:5077-5085. [PMID: 33587608 PMCID: PMC8028327 DOI: 10.1021/acsnano.0c10127] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/09/2021] [Indexed: 05/07/2023]
Abstract
Nanoparticle (NP) based contrast agents detectable via different imaging modalities (multimodal properties) provide a promising strategy for noninvasive diagnostics. Core-shell NPs combining optical and X-ray fluorescence properties as bioimaging contrast agents are presented. NPs developed earlier for X-ray fluorescence computed tomography (XFCT), based on ceramic molybdenum oxide (MoO2) and metallic rhodium (Rh) and ruthenium (Ru), are coated with a silica (SiO2) shell, using ethanolamine as the catalyst. The SiO2 coating method introduced here is demonstrated to be applicable to both metallic and ceramic NPs. Furthermore, a fluorophore (Cy5.5 dye) was conjugated to the SiO2 layer, without altering the morphological and size characteristics of the hybrid NPs, rendering them with optical fluorescence properties. The improved biocompatibility of the SiO2 coated NPs without and with Cy5.5 is demonstrated in vitro by Real-Time Cell Analysis (RTCA) on a macrophage cell line (RAW 264.7). The multimodal characteristics of the core-shell NPs are confirmed with confocal microscopy, allowing the intracellular localization of these NPs in vitro to be tracked and studied. In situ XFCT successfully showed the possibility of in vivo multiplexed bioimaging for multitargeting studies with minimum radiation dose. Combined optical and X-ray fluorescence properties empower these NPs as effective macroscopic and microscopic imaging tools.
Collapse
Affiliation(s)
- Giovanni M. Saladino
- Department of Applied Physics,
Biomedical and X-Ray Physics, KTH Royal
Institute of Technology, SE 10691 Stockholm, Sweden
| | - Carmen Vogt
- Department of Applied Physics,
Biomedical and X-Ray Physics, KTH Royal
Institute of Technology, SE 10691 Stockholm, Sweden
| | - Yuyang Li
- Department of Applied Physics,
Biomedical and X-Ray Physics, KTH Royal
Institute of Technology, SE 10691 Stockholm, Sweden
| | - Kian Shaker
- Department of Applied Physics,
Biomedical and X-Ray Physics, KTH Royal
Institute of Technology, SE 10691 Stockholm, Sweden
| | - Bertha Brodin
- Department of Applied Physics,
Biomedical and X-Ray Physics, KTH Royal
Institute of Technology, SE 10691 Stockholm, Sweden
| | - Martin Svenda
- Department of Applied Physics,
Biomedical and X-Ray Physics, KTH Royal
Institute of Technology, SE 10691 Stockholm, Sweden
| | - Hans M. Hertz
- Department of Applied Physics,
Biomedical and X-Ray Physics, KTH Royal
Institute of Technology, SE 10691 Stockholm, Sweden
| | - Muhammet S. Toprak
- Department of Applied Physics,
Biomedical and X-Ray Physics, KTH Royal
Institute of Technology, SE 10691 Stockholm, Sweden
| |
Collapse
|