1
|
Jirát-Ziółkowska N, Vít M, Groborz O, Kolouchová K, Červený D, Sedláček O, Jirák D. Long-term in vivo dissolution of thermo- and pH-responsive, 19F magnetic resonance-traceable and injectable polymer implants. NANOSCALE ADVANCES 2024; 6:3041-3051. [PMID: 38868824 PMCID: PMC11166117 DOI: 10.1039/d4na00212a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 03/28/2024] [Indexed: 06/14/2024]
Abstract
19F magnetic resonance (19F MR) tracers stand out for their wide range of applications in experimental and clinical medicine, as they can be precisely located in living tissues with negligible fluorine background. This contribution demonstrates the long-term dissolution of multiresponsive fluorinated implants designed for prolonged release. Implants were detected for 14 (intramuscular injection) and 20 (subcutaneous injection) months by 19F MR at 4.7 T, showing favorable MR relaxation times, biochemical stability, biological compatibility and slow, long-term dissolution. Thus, polymeric implants may become a platform for long-term local theranostics.
Collapse
Affiliation(s)
- Natalia Jirát-Ziółkowska
- Radiodiagnostic and Interventional Radiology Department, Institute for Clinical and Experimental Medicine Videnska 1958/9 140 21 Prague Czech Republic +420-736467349
- Institute of Biophysics and Informatics, First Faculty of Medicine, Charles University Katerinska 1660/32 Prague 121 08 Czech Republic
| | - Martin Vít
- Radiodiagnostic and Interventional Radiology Department, Institute for Clinical and Experimental Medicine Videnska 1958/9 140 21 Prague Czech Republic +420-736467349
| | - Ondřej Groborz
- Institute of Biophysics and Informatics, First Faculty of Medicine, Charles University Katerinska 1660/32 Prague 121 08 Czech Republic
- Institute of Macromolecular Chemistry, Czech Academy of Sciences Heyrovsky square 2 162 06 Prague Czech Republic
| | - Kristýna Kolouchová
- Institute of Macromolecular Chemistry, Czech Academy of Sciences Heyrovsky square 2 162 06 Prague Czech Republic
| | - David Červený
- Radiodiagnostic and Interventional Radiology Department, Institute for Clinical and Experimental Medicine Videnska 1958/9 140 21 Prague Czech Republic +420-736467349
- Faculty of Health Studies, Technical University of Liberec Studentska 1402/2 Liberec 461 17 Czech Republic
| | - Ondřej Sedláček
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University Hlavova 8 Prague 128 00 Czech Republic
| | - Daniel Jirák
- Radiodiagnostic and Interventional Radiology Department, Institute for Clinical and Experimental Medicine Videnska 1958/9 140 21 Prague Czech Republic +420-736467349
- Faculty of Health Studies, Technical University of Liberec Studentska 1402/2 Liberec 461 17 Czech Republic
| |
Collapse
|
2
|
Chang J, Zhou H, Li C, Sun J, Wang Q, Li Y, Zhao W. Preparation of PFPE-Based Polymeric Nanoparticles via Polymerization-Induced Self-Assembly as Contrast Agents for 19F MRI. Biomacromolecules 2023. [PMID: 37235210 DOI: 10.1021/acs.biomac.3c00291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Fluorine-19 magnetic resonance imaging (19F MRI) probes have received considerable research interest as imaging contrast agents (CAs), but they remain neglected and underutilized due to the limited fluorine content or poor performance of fluorinated tracers. Here, we present polymeric nanoparticles (NPs) as 19F MRI CAs with a simple synthesis method and promising imaging performance. First, hydrophilic random copolymers were synthesized from oligo(ethylene glycol) methyl ether acrylate and perfluoropolyether methacrylate by reversible addition-fragmentation chain transfer (RAFT) polymerization. The optimal fluorine content, polymer concentration, and cytotoxicity as 19F MRI CAs were investigated in detail. Then, the optimal copolymer was selected as the macromolecular chain transfer agent, and the chain extension was performed with 2-(perfluorooctyl ethyl methacrylate). Subsequently, the NPs with different morphologies, such as ellipsoidal, spherical nanoparticles and vesicles, were prepared in situ by the RAFT-mediated polymerization-induced self-assembly method. In addition, the 19F MRI signal and cytotoxicity studies further confirmed that these polymeric NPs are nontoxic and have great potential as promising 19F MRI CAs for biological applications.
Collapse
Affiliation(s)
- Jun Chang
- College of Basic Medicine, Shanxi Medical University, Taiyuan, Shanxi 030001, China
- Key Laboratory of Rubber-plastics, Ministry of Education, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Zhengzhou Rd. 53, CN-266042 Qingdao, China
| | - Huimin Zhou
- College of Basic Medicine, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Chenlong Li
- College of Medical Imaging, Shanxi Medical University, Taiyuan, Shanxi 030001, China
- Key Laboratory of Rubber-plastics, Ministry of Education, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Zhengzhou Rd. 53, CN-266042 Qingdao, China
| | - Jingjiang Sun
- Key Laboratory of Rubber-plastics, Ministry of Education, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Zhengzhou Rd. 53, CN-266042 Qingdao, China
| | - Qingfu Wang
- Key Laboratory of Rubber-plastics, Ministry of Education, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Zhengzhou Rd. 53, CN-266042 Qingdao, China
| | - Yanan Li
- College of Medical Imaging, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Wei Zhao
- Key Laboratory of Rubber-plastics, Ministry of Education, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Zhengzhou Rd. 53, CN-266042 Qingdao, China
| |
Collapse
|
3
|
Kolouchova K, Cernochova Z, Groborz O, Herynek V, Koucky F, Jaksa R, Benes J, Slouf M, Hruby M. Multiresponsive Fluorinated Polymers as a Theragnostic Platform Using 19F MRI. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
4
|
Švec P, Petrov OV, Lang J, Štěpnička P, Groborz O, Dunlop D, Blahut J, Kolouchová K, Loukotová L, Sedláček O, Heizer T, Tošner Z, Šlouf M, Beneš H, Hoogenboom R, Hrubý M. Fluorinated Ferrocene Moieties as a Platform for Redox-Responsive Polymer 19F MRI Theranostics. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Pavel Švec
- Institute of Macromolecular Chemistry, CAS, Heyrovského nám. 2, Prague 6 162 06, Czech Republic
| | - Oleg V. Petrov
- Department of Low Temperature Physics, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, Prague 8 180 00, Czech Republic
| | - Jan Lang
- Department of Low Temperature Physics, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, Prague 8 180 00, Czech Republic
| | | | - Ondřej Groborz
- Institute of Macromolecular Chemistry, CAS, Heyrovského nám. 2, Prague 6 162 06, Czech Republic
- Institute of Organic Chemistry and Biochemistry, CAS, Flemingovo nám. 2, Prague 6 160 00, Czech Republic
| | - David Dunlop
- Institute of Organic Chemistry and Biochemistry, CAS, Flemingovo nám. 2, Prague 6 160 00, Czech Republic
- J. Heyrovský Institute of Physical Chemistry, CAS, Dolejškova 2155/3, Prague 8 182 23, Czech Republic
| | | | - Kristýna Kolouchová
- Institute of Macromolecular Chemistry, CAS, Heyrovského nám. 2, Prague 6 162 06, Czech Republic
| | - Lenka Loukotová
- Institute of Macromolecular Chemistry, CAS, Heyrovského nám. 2, Prague 6 162 06, Czech Republic
- Institute of Organic Chemistry and Biochemistry, CAS, Flemingovo nám. 2, Prague 6 160 00, Czech Republic
| | - Ondřej Sedláček
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, Ghent B-9000, Belgium
| | | | | | - Miroslav Šlouf
- Institute of Macromolecular Chemistry, CAS, Heyrovského nám. 2, Prague 6 162 06, Czech Republic
| | - Hynek Beneš
- Institute of Macromolecular Chemistry, CAS, Heyrovského nám. 2, Prague 6 162 06, Czech Republic
| | - Richard Hoogenboom
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, Ghent B-9000, Belgium
| | - Martin Hrubý
- Institute of Macromolecular Chemistry, CAS, Heyrovského nám. 2, Prague 6 162 06, Czech Republic
| |
Collapse
|
5
|
Babuka D, Kolouchova K, Loukotova L, Sedlacek O, Groborz O, Skarkova A, Zhigunov A, Pavlova E, Hoogenboom R, Hruby M, Stepanek P. Self-Assembly, Drug Encapsulation, and Cellular Uptake of Block and Gradient Copolymers of 2-Methyl-2-oxazine and 2- n-Propyl/butyl-2-oxazoline. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01794] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- David Babuka
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovskeho sq. 2, Prague 6 162 06, Czech Republic
- Department of Biophysics, Institute of Physics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, Prague 2 121 16, Czech Republic
| | - Kristyna Kolouchova
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovskeho sq. 2, Prague 6 162 06, Czech Republic
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, Prague 2 128 00, Czech Republic
| | - Lenka Loukotova
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovskeho sq. 2, Prague 6 162 06, Czech Republic
| | - Ondrej Sedlacek
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, Prague 2 128 00, Czech Republic
- Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, 9000 Ghent, Belgium
| | - Ondrej Groborz
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovskeho sq. 2, Prague 6 162 06, Czech Republic
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo sq. 542, Prague 6 162 06, Czech Republic
- Institute of Biophysics and Informatics, Charles University, First Faculty of Medicine, Salmovská 1, Prague 2 120 00, Czech Republic
| | - Aneta Skarkova
- Department of Cell Biology, Charles University, Vinicna 7, Prague 12843, Czech Republic
- Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University (BIOCEV), Prumyslova 595, Vestec u Prahy 25242, Czech Republic
| | - Alexander Zhigunov
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovskeho sq. 2, Prague 6 162 06, Czech Republic
| | - Ewa Pavlova
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovskeho sq. 2, Prague 6 162 06, Czech Republic
| | - Richard Hoogenboom
- Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, 9000 Ghent, Belgium
| | - Martin Hruby
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovskeho sq. 2, Prague 6 162 06, Czech Republic
| | - Petr Stepanek
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovskeho sq. 2, Prague 6 162 06, Czech Republic
| |
Collapse
|
6
|
Mali A, Kaijzel EL, Lamb HJ, Cruz LJ. 19F-nanoparticles: Platform for in vivo delivery of fluorinated biomaterials for 19F-MRI. J Control Release 2021; 338:870-889. [PMID: 34492234 DOI: 10.1016/j.jconrel.2021.09.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 11/19/2022]
Abstract
Fluorine-19 (19F) magnetic resonance imaging (MRI) features one of the most investigated and innovative techniques for quantitative and unambiguous cell tracking, providing information for both localization and number of cells. Because of the relative insensitivity of the MRI technique, a high number of magnetically equivalent fluorine atoms are required to gain detectable signals. However, an increased amount of 19F nuclei induces low solubility in aqueous solutions, making fluorine-based probes not suitable for in vivo imaging applications. In this context, nanoparticle-based platforms play a crucial role, since nanoparticles may carry a high payload of 19F-based contrast agents into the relevant cells or tissues, increase the imaging agents biocompatibility, and provide a highly versatile platform. In this review, we present an overview of the 19F-based nanoprobes for sensitive 19F-MRI, focusing on the main nanotechnologies employed to date, such as fluorine and theranostic nanovectors, including their design and applications.
Collapse
Affiliation(s)
- Alvja Mali
- Translational Nanobiomaterials and Imaging (TNI) Group, Department of Radiology, Leiden University Medical Center (LUMC), Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Eric L Kaijzel
- Translational Nanobiomaterials and Imaging (TNI) Group, Department of Radiology, Leiden University Medical Center (LUMC), Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Hildo J Lamb
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Luis J Cruz
- Translational Nanobiomaterials and Imaging (TNI) Group, Department of Radiology, Leiden University Medical Center (LUMC), Albinusdreef 2, 2333 ZA Leiden, the Netherlands.
| |
Collapse
|
7
|
Kolouchova K, Groborz O, Cernochova Z, Skarkova A, Brabek J, Rosel D, Svec P, Starcuk Z, Slouf M, Hruby M. Thermo- and ROS-Responsive Self-Assembled Polymer Nanoparticle Tracers for 19F MRI Theranostics. Biomacromolecules 2021; 22:2325-2337. [PMID: 33881829 DOI: 10.1021/acs.biomac.0c01316] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Fluorine-19 magnetic resonance imaging (19F MRI) enables detailed in vivo tracking of fluorine-containing tracers and is therefore becoming a particularly useful tool in noninvasive medical imaging. In previous studies, we introduced biocompatible polymers based on the hydrophilic monomer N-(2-hydroxypropyl)methacrylamide (HPMA) and the thermoresponsive monomer N-(2,2-difluoroethyl)acrylamide (DFEA). These polymers have abundant magnetically equivalent fluorine atoms and advantageous properties as 19F MRI tracers. Furthermore, in this pilot study, we modified these polymers by introducing a redox-responsive monomer. As a result, our polymers changed their physicochemical properties once exposed to an oxidative environment. Reactive oxygen species (ROS)-responsive polymers were prepared by incorporating small amounts (0.9-4.5 mol %) of the N-[2-(ferrocenylcarboxamido)ethyl]acrylamide (FcCEA) monomer, which is hydrophobic and diamagnetic in the reduced electroneutral (Fe(II), ferrocene) state but hydrophilic and paramagnetic in the oxidized (Fe(III), ferrocenium cation) state. This property can be useful for theranostic purposes (therapy and diagnostic purposes), especially, in terms of ROS-responsive drug-delivery systems. In the reduced state, these nanoparticles remain self-assembled with the encapsulated drug but release the drug upon oxidation in ROS-rich tumors or inflamed tissues.
Collapse
Affiliation(s)
- Kristyna Kolouchova
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského sq. 2, 16206 Prague 6, Czech Republic.,Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 12800 Prague 2, Czech Republic
| | - Ondrej Groborz
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského sq. 2, 16206 Prague 6, Czech Republic.,Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 8, 12800 Prague 2, Czech Republic.,Institute of Biophysics and Informatics, Charles University, First Faculty of Medicine, Salmovská 1, 12000 Prague 2, Czech Republic
| | - Zulfiya Cernochova
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského sq. 2, 16206 Prague 6, Czech Republic
| | - Aneta Skarkova
- Department of Cell Biology, Charles University, Viničná 7, 12843 Prague, Czech Republic.,Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University (BIOCEV), Průmyslová 595, 25242 Vestec u Prahy, Czech Republic
| | - Jan Brabek
- Department of Cell Biology, Charles University, Viničná 7, 12843 Prague, Czech Republic.,Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University (BIOCEV), Průmyslová 595, 25242 Vestec u Prahy, Czech Republic
| | - Daniel Rosel
- Department of Cell Biology, Charles University, Viničná 7, 12843 Prague, Czech Republic.,Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University (BIOCEV), Průmyslová 595, 25242 Vestec u Prahy, Czech Republic
| | - Pavel Svec
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského sq. 2, 16206 Prague 6, Czech Republic.,Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 12800 Prague 2, Czech Republic
| | - Zenon Starcuk
- Institute of Scientific Instruments, Czech Academy of Sciences, Královopolská 147, 61264 Brno, Czech Republic
| | - Miroslav Slouf
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského sq. 2, 16206 Prague 6, Czech Republic
| | - Martin Hruby
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského sq. 2, 16206 Prague 6, Czech Republic
| |
Collapse
|
8
|
Kolouchová K, Lobaz V, Beneš H, de la Rosa VR, Babuka D, Švec P, Černoch P, Hrubý M, Hoogenboom R, Štěpánek P, Groborz O. Thermoresponsive properties of polyacrylamides in physiological solutions. Polym Chem 2021. [DOI: 10.1039/d1py00843a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We show that the cloud point temperature (TCP) of thermoresponsive polyacrylamides is considerably lower in physiologically relevant solvents (phosphate-buffered saline, serum) than in pure water. This decrease of TCP may be critical for some biomedical applications.
Collapse
Affiliation(s)
- Kristýna Kolouchová
- Institute of Macromolecular Chemistry, Czech Academy of Science, Heyrovsky square 2, 162 06 Prague 6, Czech Republic
| | - Volodymyr Lobaz
- Institute of Macromolecular Chemistry, Czech Academy of Science, Heyrovsky square 2, 162 06 Prague 6, Czech Republic
| | - Hynek Beneš
- Institute of Macromolecular Chemistry, Czech Academy of Science, Heyrovsky square 2, 162 06 Prague 6, Czech Republic
| | - Victor R. de la Rosa
- Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, 9000 Ghent, Belgium
- AVROXA BV, Technologiepark-Zwijnaarde 82, B-9052 Ghent, Belgium
| | - David Babuka
- Institute of Macromolecular Chemistry, Czech Academy of Science, Heyrovsky square 2, 162 06 Prague 6, Czech Republic
- Department of Biophysics, Institute of Physics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, Prague 2, 121 16, Czech Republic
| | - Pavel Švec
- Institute of Macromolecular Chemistry, Czech Academy of Science, Heyrovsky square 2, 162 06 Prague 6, Czech Republic
- Department of Physical and Macromolecular Chemistry, Faculty of Sciences, Charles University, Hlavova 8, Prague 2, 128 00, Czech Republic
| | - Peter Černoch
- Institute of Macromolecular Chemistry, Czech Academy of Science, Heyrovsky square 2, 162 06 Prague 6, Czech Republic
| | - Martin Hrubý
- Institute of Macromolecular Chemistry, Czech Academy of Science, Heyrovsky square 2, 162 06 Prague 6, Czech Republic
| | - Richard Hoogenboom
- Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, 9000 Ghent, Belgium
| | - Petr Štěpánek
- Institute of Macromolecular Chemistry, Czech Academy of Science, Heyrovsky square 2, 162 06 Prague 6, Czech Republic
| | - Ondřej Groborz
- Institute of Macromolecular Chemistry, Czech Academy of Science, Heyrovsky square 2, 162 06 Prague 6, Czech Republic
- Institute of Biophysics and Informatics, Charles University, First Faculty of Medicine, Salmovská 1, 120 00 Prague 2, Czech Republic
- Department of Organic and Medicinal Chemistry, Charles University, Faculty of Science, Hlavova 8, 128 43 Prague 2, Czech Republic
| |
Collapse
|