1
|
Harish V, Ansari MM, Tewari D, Gaur M, Yadav AB, García-Betancourt ML, Abdel-Haleem FM, Bechelany M, Barhoum A. Nanoparticle and Nanostructure Synthesis and Controlled Growth Methods. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12183226. [PMID: 36145012 PMCID: PMC9503496 DOI: 10.3390/nano12183226] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 05/19/2023]
Abstract
Nanomaterials are materials with one or more nanoscale dimensions (internal or external) (i.e., 1 to 100 nm). The nanomaterial shape, size, porosity, surface chemistry, and composition are controlled at the nanoscale, and this offers interesting properties compared with bulk materials. This review describes how nanomaterials are classified, their fabrication, functionalization techniques, and growth-controlled mechanisms. First, the history of nanomaterials is summarized and then the different classification methods, based on their dimensionality (0-3D), composition (carbon, inorganic, organic, and hybrids), origin (natural, incidental, engineered, bioinspired), crystal phase (single phase, multiphase), and dispersion state (dispersed or aggregated), are presented. Then, the synthesis methods are discussed and classified in function of the starting material (bottom-up and top-down), reaction phase (gas, plasma, liquid, and solid), and nature of the dispersing forces (mechanical, physical, chemical, physicochemical, and biological). Finally, the challenges in synthesizing nanomaterials for research and commercial use are highlighted.
Collapse
Affiliation(s)
- Vancha Harish
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Md Mustafiz Ansari
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Devesh Tewari
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi 110017, India
| | - Manish Gaur
- Centre of Biotechnology, University of Allahabad, Prayagraj 211002, Uttar Pradesh, India
| | - Awadh Bihari Yadav
- Centre of Biotechnology, University of Allahabad, Prayagraj 211002, Uttar Pradesh, India
| | | | - Fatehy M. Abdel-Haleem
- Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt
- Center for Hazards Mitigation, Environmental Studies and Research (CHMESR), Cairo University, Giza 12613, Egypt
| | - Mikhael Bechelany
- Institut Europeen des Membranes, IEM, UMR 5635, University of Montpellier, ENSCM, CNRS, 34730 Montpellier, France
- Correspondence: (M.B.); or (A.B.)
| | - Ahmed Barhoum
- NanoStruc Research Group, Chemistry Department, Faculty of Science, Helwan University, Cairo 11795, Egypt
- School of Chemical Sciences, Dublin City University, D09 Y074 Dublin, Ireland
- Correspondence: (M.B.); or (A.B.)
| |
Collapse
|
2
|
Wang H, Chen X, Sun T, Li Y, Lv X, Li Y, Wang H. Cobalt nanoparticles embedded into nitrogen-doped graphene with abundant macropores as a bifunctional electrocatalyst for rechargeable zinc-air batteries. Chem Asian J 2022; 17:e202200390. [PMID: 35582772 DOI: 10.1002/asia.202200390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/12/2022] [Indexed: 11/11/2022]
Abstract
Nitrogen doped carbon materials containing transition metal nanoparticles have attracted much attention as bifunctional oxygen electrocatalysts. In this paper, the template etching method is used to obtain the nitrogen-doped graphene with abundant macropores embedded with cobalt nanoparticles (Co@N-C). The prepared Co@NC-800 catalyst has a half-wave potential (E 1/2= 0.835V) close to Pt/C and good stability in excess of Pt/C for oxygen reduction reaction (ORR). At the same time, the catalyst has good oxygen evolution reaction (OER) performance. In addition, zinc-air batteries (ZABs) based on the Co@NC-800 catalyst show good cycle stability of up to 200000 s and high power density of 73.5 mW cm -2 . The synergistic effect of the integrated component between nitrogen-doped graphene and cobalt nanoparticles as well as the macroporous structure endow Co@NC-800 with abundant exposed active sites and mass/electron transfer capacity, thus leading to the high electrocatalytic activity. This work shows potential for practical applications in electrochemistry.
Collapse
Affiliation(s)
- Han Wang
- Changchun University of Science and Technology, School of Materials Science and Engineering, CHINA
| | - Xinyu Chen
- Changchun University of Science and Technology, School of Materials Science and Engineering, CHINA
| | - Tiantian Sun
- Changchun University of Science and Technology, School of Materials Science and Engineering, CHINA
| | - Yanwei Li
- Changchun University of Science and Technology, School of Materials Science and Engineering, CHINA
| | - Xiaoling Lv
- Changchun University of Science and Technology, School of Materials Science and Engineering, CHINA
| | - Yanhui Li
- Changchun University of Science and Technology, School of Materials Science and Engineering, CHINA
| | - Hengguo Wang
- Northeast Normal University, Faculty of Chemistry, 7989 Weixing Road, 130022, Changchun, CHINA
| |
Collapse
|
3
|
Pore Modification and Phosphorus Doping Effect on Phosphoric Acid-Activated Fe-N-C for Alkaline Oxygen Reduction Reaction. NANOMATERIALS 2021; 11:nano11061519. [PMID: 34201332 PMCID: PMC8229517 DOI: 10.3390/nano11061519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/02/2021] [Accepted: 06/07/2021] [Indexed: 11/21/2022]
Abstract
The price and scarcity of platinum has driven up the demand for non-precious metal catalysts such as Fe-N-C. In this study, the effects of phosphoric acid (PA) activation and phosphorus doping were investigated using Fe-N-C catalysts prepared using SBA-15 as a sacrificial template. The physical and structural changes caused by the addition of PA were analyzed by nitrogen adsorption/desorption and X-ray diffraction. Analysis of the electronic states of Fe, N, and P were conducted by X-ray photoelectron spectroscopy. The amount and size of micropores varied depending on the PA content, with changes in pore structure observed using 0.066 g of PA. The electronic states of Fe and N did not change significantly after treatment with PA, and P was mainly found in states bonded to oxygen or carbon. When 0.135 g of PA was introduced per 1 g of silica, a catalytic activity which was increased slightly by 10 mV at −3 mA/cm2 was observed. A change in Fe-N-C stability was also observed through the introduction of PA.
Collapse
|