1
|
Patiño-González MC, Echeverri-Cuartas CE, Torijano-Gutiérrez S, Naranjo-Rios SM, Agudelo NA. Optimization of the green synthesis of gold nanorods using aqueous extract of peeled sour guava as a source of antioxidants. PLoS One 2025; 20:e0313485. [PMID: 39775354 PMCID: PMC11709274 DOI: 10.1371/journal.pone.0313485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 10/24/2024] [Indexed: 01/11/2025] Open
Abstract
Obtaining gold nanorods (AuNRs) through biosynthesis is an alternative that replaces the traditional use of ascorbic acid with chemical compounds such as polyphenols, owing to their notable antioxidant properties. Therefore, we developed an AuNR biosynthesis method using an aqueous extract of sour guava (Psidium araca). Initially, a study was conducted to determine the antioxidant capacity of different parts of the fruit (pulp and peel) over 14 days. Four colorimetric techniques were used: total phenol, ABTS (2,2-azino-bis-3-ethylbenzothiazoline-6-sulphonic acid), FRAP (ferric reducing antioxidant power (FRAP), and DPPH (1,1-diphenyl-2-picrylhydrazyl). Subsequently, in stage 2, the selected aqueous extract was used, and two response surface designs were performed. The objective of this study was to find a model equation that would indicate the optimal parameters for obtaining AuNRs with a surface plasmon band at 808 nm, with possible applications in the health field. The results of the antioxidant capacity experiments were analyzed in Minitab® using a multilevel factorial design, and the peel exhibited the highest antioxidant capacity. Subsequently, the biosynthesis of AuNRs proceeded using a 5-factor response surface experimental design as input variables (concentration in mM of gold, silver, extract, NaBH4, and reaction time in hours) and longitudinal plasmon (LSPR) as output variables. The AuNRs were approximately 30 nm in size with an LSPR between 700 and 800 nm. Statistical model evaluation revealed a dependence between gold and time and gold-silver factors. Finally, antioxidant capacity was used to select the part (peel or pulp) of sour guava that could be used as a weak reducing agent. Moreover, the utility of surface-response methodology was explored to optimize the synthesis of AuNRs using green agents.
Collapse
Affiliation(s)
- M. Camila Patiño-González
- Grupo de Investigación de Ingeniería Biomédica-GIBEC, Escuela de Ciencias de la Vida y Medicina, Programa de Ingeniería Biomédica, Universidad EIA, Colombia
| | - Claudia E. Echeverri-Cuartas
- Grupo de Investigación de Ingeniería Biomédica-GIBEC, Escuela de Ciencias de la Vida y Medicina, Programa de Ingeniería Biomédica, Universidad EIA, Colombia
| | - Sandra Torijano-Gutiérrez
- Grupo de Investigación en Síntesis Orgánica, de Polímeros y Biotecnología Aplicada-SINBIOTEC, Escuela de Ingeniería y Ciencias Básicas, Universidad EIA, Colombia
| | - Sandra Milena Naranjo-Rios
- Grupo de Investigación en Síntesis Orgánica, de Polímeros y Biotecnología Aplicada-SINBIOTEC, Escuela de Ingeniería y Ciencias Básicas, Universidad EIA, Colombia
| | - Natalia A. Agudelo
- Grupo de Investigación en Síntesis Orgánica, de Polímeros y Biotecnología Aplicada-SINBIOTEC, Escuela de Ingeniería y Ciencias Básicas, Universidad EIA, Colombia
| |
Collapse
|
2
|
Stern NB, Shrestha B, Porter T. A Facile Approach to Producing Liposomal J-Aggregates of Indocyanine Green with Diagnostic and Therapeutic Potential. ADVANCED THERAPEUTICS 2024; 7:2400042. [PMID: 39132131 PMCID: PMC11308451 DOI: 10.1002/adtp.202400042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Indexed: 08/13/2024]
Abstract
Liposomal J-Aggregates of Indocyanine Green (L-JA) can serve as a biocompatible and biodegradable nanoparticle for photoacoustic imaging and photothermal therapy. When compared to monomeric IcG, L-JA are characterized by longer circulation, improved photostability, elevated absorption at longer wavelengths, and increased photoacoustic signal generation. However, the documented methods for production of L-JA vary widely. We developed an approach to efficiently form IcG J-aggregates (IcG-JA) directly in liposomes at elevated temperatures. Aggregating within fully formed liposomes ensures particle uniformity and allows for control of J-aggregate size. L-JA have unique properties compared to IcG. L-JA provide significant contrast enhancement in photoacoustic images for up to 24 hours after injection, while IcG and unencapsulated IcG-JA are cleared within an hour. L-JA allow for more accurate photoacoustic-based sO2 estimation and particle tracking compared to IcG. Furthermore, photothermal heating of L-JA with an 852nm laser is demonstrated to be more effective at lower laser powers than conventional 808nm lasers for the first time. The presented technique offers an avenue for formulating a multi-faceted contrast agent for photoacoustic imaging and photothermal therapy that offers significant advantages over other conventional agents.
Collapse
|
3
|
Lin X, Xu Z, Li J, Shi H, Fu Z, Chen Y, Zhang W, Zhang Y, Lin H, Xu G, Chen X, Chen S, Chen M. Visualization of photothermal therapy by semiconducting polymer dots mediated photoacoustic detection in NIR II. J Nanobiotechnology 2023; 21:468. [PMID: 38062508 PMCID: PMC10701955 DOI: 10.1186/s12951-023-02243-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 12/03/2023] [Indexed: 12/18/2023] Open
Abstract
Visualization of photothermal therapy mediated by photothermal transduction agents (PTAs) is important to promote individual treatment of patients with low side effects. Photoacoustic detection has emerged as a promising noninvasive method for the visualization of PTAs distribution but still has limitations in temperature measurement, including poor measurement accuracy and low tissue penetration depth. In this study, we developed biocompatible semiconducting polymer dots (SPD) for in situ coupling of photothermal and photoacoustic detection in the near-infrared II window. SPD has dual photostability under pulsed laser and continuous-wave laser irradiation with a photothermal conversion efficiency of 42.77%. Meanwhile, a strong correlation between the photoacoustic signal and the actual temperature of SPD can be observed. The standard deviation of SPD-mediated photoacoustic thermometry can reach 0.13 °C when the penetration depth of gelatin phantom is 9.49 mm. Preliminary experimental results in vivo show that SPD-mediated photoacoustic signal has a high signal-to-noise ratio, as well as good performance in temperature response and tumor enrichment. Such a study not only offers a new nanomaterial for the visualization of photothermal therapy but will also promote the theranostic platform for clinical applications.
Collapse
Affiliation(s)
- Xiangwei Lin
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China
| | - Zhourui Xu
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China
| | - Jiangao Li
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, College of Material Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Hongji Shi
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China
| | - Zhenyu Fu
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China
| | - Yuqing Chen
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China
| | - Wenguang Zhang
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China
| | - Yibin Zhang
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China
| | - Haoming Lin
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China
| | - Gaixia Xu
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China
| | - Xin Chen
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China
| | - Siping Chen
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China
| | - Mian Chen
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China.
| |
Collapse
|
4
|
Khanadeev VA, Simonenko AV, Grishin OV, Khlebtsov NG. One-Shot Laser-Pulse Modification of Bare and Silica-Coated Gold Nanoparticles of Various Morphologies. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1312. [PMID: 37110897 PMCID: PMC10143654 DOI: 10.3390/nano13081312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/02/2023] [Accepted: 04/05/2023] [Indexed: 06/19/2023]
Abstract
Gold nanoparticles are widely used in laser biomedical applications due to their favorable properties, mainly localized plasmon resonance. However, laser radiation can cause a change in the shape and size of plasmonic nanoparticles, thus resulting in an unwanted reduction of their photothermal and photodynamic efficiency due to a drastic alteration of optical properties. Most previously reported experiments were carried out with bulk colloids where different particles were irradiated by different numbers of laser pulses, thus making it difficult to accurately evaluate the laser power photomodification (PM) threshold. Here, we examine the one-shot nanosecond laser-pulse PM of bare and silica-coated gold nanoparticles moving in a capillary flow. Four types of gold nanoparticles, including nanostars, nanoantennas, nanorods, and SiO2@Au nanoshells, were fabricated for PM experiments. To evaluate the changes in the particle morphology under laser irradiation, we combine measurements of extinction spectra with electron microscopy. A quantitative spectral approach is developed to characterize the laser power PM threshold in terms of normalized extinction parameters. The experimentally determined PM threshold increases in series were as follows: nanorods, nanoantennas, nanoshells, and nanostars. An important observation is that even a thin silica shell significantly increases the photostability of gold nanorods. The developed methods and reported findings can be useful for the optimal design of plasmonic particles and laser irradiation parameters in various biomedical applications of functionalized hybrid nanostructures.
Collapse
Affiliation(s)
- Vitaly A. Khanadeev
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 13 Prospect Entuziastov, Saratov 410049, Russia
- Department of Microbiology and Biotechnology, Saratov State University of Genetics, Biotechnology and Engineering Named after N. I. Vavilov, 1 Teatralnaya pl., Saratov 410012, Russia
| | - Andrey V. Simonenko
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 13 Prospect Entuziastov, Saratov 410049, Russia
- Saratov State University, 83 Ulitsa Astrakhanskaya, Saratov 410012, Russia
| | - Oleg V. Grishin
- Saratov State University, 83 Ulitsa Astrakhanskaya, Saratov 410012, Russia
| | - Nikolai G. Khlebtsov
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 13 Prospect Entuziastov, Saratov 410049, Russia
- Saratov State University, 83 Ulitsa Astrakhanskaya, Saratov 410012, Russia
| |
Collapse
|
5
|
He C, Zhu J, Zhang H, Qiao R, Zhang R. Photoacoustic Imaging Probes for Theranostic Applications. BIOSENSORS 2022; 12:947. [PMID: 36354456 PMCID: PMC9688356 DOI: 10.3390/bios12110947] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/23/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Photoacoustic imaging (PAI), an emerging biomedical imaging technology, capitalizes on a wide range of endogenous chromophores and exogenous contrast agents to offer detailed information related to the functional and molecular content of diseased biological tissues. Compared with traditional imaging technologies, PAI offers outstanding advantages, such as a higher spatial resolution, deeper penetrability in biological tissues, and improved imaging contrast. Based on nanomaterials and small molecular organic dyes, a huge number of contrast agents have recently been developed as PAI probes for disease diagnosis and treatment. Herein, we report the recent advances in the development of nanomaterials and organic dye-based PAI probes. The current challenges in the field and future research directions for the designing and fabrication of PAI probes are proposed.
Collapse
Affiliation(s)
| | | | | | - Ruirui Qiao
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane 4072, Australia
| | - Run Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane 4072, Australia
| |
Collapse
|
6
|
Alvarez C, Berrospe-Rodriguez C, Wu C, Pasek-Allen J, Khosla K, Bischof J, Mangolini L, Aguilar G. Photothermal heating of titanium nitride nanomaterials for fast and uniform laser warming of cryopreserved biomaterials. Front Bioeng Biotechnol 2022; 10:957481. [PMID: 36091458 PMCID: PMC9455577 DOI: 10.3389/fbioe.2022.957481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/18/2022] [Indexed: 11/20/2022] Open
Abstract
Titanium nitride (TiN) is presented as an alternative plasmonic nanomaterial to the commonly used gold (Au) for its potential use in laser rewarming of cryopreserved biomaterials. The rewarming of vitrified, glass like state, cryopreserved biomaterials is a delicate process as potential ice formation leads to mechanical stress and cracking on a macroscale, and damage to cell walls and DNA on a microscale, ultimately leading to the destruction of the biomaterial. The use of plasmonic nanomaterials dispersed in cryoprotective agent solutions to rapidly convert optical radiation into heat, generally supplied by a focused laser beam, proposes a novel approach to overcome this difficulty. This study focuses on the performance of TiN nanoparticles (NPs), since they present high thermal stability and are inexpensive compared to Au. To uniformly warm up the nanomaterial solutions, a beam splitting laser system was developed to heat samples from multiple sides with equal beam energy distribution. In addition, uniform laser warming requires equal distribution of absorption and scattering properties in the nanomaterials. Preliminary results demonstrated higher absorption but less scattering in TiN NPs than Au nanorods (GNRs). This led to the development of TiN clusters, synthetized by nanoparticle agglomeration, to increase the scattering cross-section of the material. Overall, this study analyzed the heating rate, thermal efficiency, and heating uniformity of TiN NPs and clusters in comparison to GNRs at different solution concentrations. TiN NPs and clusters demonstrated higher heating rates and solution temperatures, while only clusters led to a significantly improved uniformity in heating. These results highlight a promising alternative plasmonic nanomaterial to rewarm cryopreserved biological systems in the future.
Collapse
Affiliation(s)
- Crysthal Alvarez
- J. Mike Walker ’66 Department of Mechanical Engineering, Texas A&M University, College Station, TX, United States
- Department of Mechanical Engineering, University of California, Riverside, Riverside, CA, United States
| | - Carla Berrospe-Rodriguez
- Department of Mechanical Engineering, University of California, Riverside, Riverside, CA, United States
| | - Chaolumen Wu
- Department of Chemistry, University of California, Riverside, Riverside, CA, United States
| | - Jacqueline Pasek-Allen
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Kanav Khosla
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - John Bischof
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Lorenzo Mangolini
- Department of Mechanical Engineering, University of California, Riverside, Riverside, CA, United States
- *Correspondence: Lorenzo Mangolini, ; Guillermo Aguilar,
| | - Guillermo Aguilar
- J. Mike Walker ’66 Department of Mechanical Engineering, Texas A&M University, College Station, TX, United States
- Department of Mechanical Engineering, University of California, Riverside, Riverside, CA, United States
- *Correspondence: Lorenzo Mangolini, ; Guillermo Aguilar,
| |
Collapse
|
7
|
Feng Y, Wang X, Chang Y, Guo J, Wang C. Sensitive and handy detection of pesticide residue on fruit surface based on single microsphere surface-enhanced Raman spectroscopy technique. J Colloid Interface Sci 2022; 628:116-128. [PMID: 35987151 DOI: 10.1016/j.jcis.2022.08.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 08/06/2022] [Accepted: 08/09/2022] [Indexed: 10/15/2022]
Abstract
HYPOTHESIS Surface-enhanced Raman spectroscopy (SERS) has become an emerging and reliable tool for detecting pesticide residues due to its high sensitivity, fast testing speed and easy sample handling. SERS active substrates are the key to achieve efficient and sensitive detection. However, for the most widely used noble metal nanoparticles, there are problems of high noble metal nanoparticle usage and random aggregation. The micron-scale Raman spot is focused on multiple randomly aggregated nanoparticles during the test, resulting in poor reproducibility. Therefore, the development of micron-scale cost-effective SERS substrates with good reproducibility and simple detecting method is of great significance in practical detection. EXPERIMENTS Through deposition of silver nanoparticles (Ag-NPs) by chemical reduction on the surface of monodisperse sulfonated polystyrene (SPS) microspheres, micron-sized PS@Ag-NPs core-shell microspheres were prepared with excellent SERS activity. After that, two simple protocols (Method I and Method II) were explored for the determination of thiram on apple epidermis. FINDINGS Based on our developed strategy of the single microsphere SERS technique, we successfully fabricated uniform PS@Ag-NPs substrate with high SERS activity and excellent detection sensitivity. The single microsphere SERS technique possesses the capability of anti-dilutability and the utilization of ultra-low PS@Ag-NPs microsphere dosage, realizing qualitative and quantitative detection of thiram on apple with detection limits far below the standard stipulated by China and the European Union.
Collapse
Affiliation(s)
- Yiting Feng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Xiuli Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Yinghao Chang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Jia Guo
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Changchun Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China; Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China.
| |
Collapse
|
8
|
NIR-Absorbing Mesoporous Silica-Coated Copper Sulphide Nanostructures for Light-to-Thermal Energy Conversion. NANOMATERIALS 2022; 12:nano12152545. [PMID: 35893513 PMCID: PMC9330451 DOI: 10.3390/nano12152545] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/17/2022] [Accepted: 07/20/2022] [Indexed: 02/04/2023]
Abstract
Plasmonic nanostructures, featuring near infrared (NIR)-absorption, are rising as efficient nanosystems for in vitro photothermal (PT) studies and in vivo PT treatment of cancer diseases. Among the different materials, new plasmonic nanostructures based on Cu2−xS nanocrystals (NCs) are emerging as valuable alternatives to Au nanorods, nanostars and nanoshells, largely exploited as NIR absorbing nanoheaters. Even though Cu2−xS plasmonic properties are not linked to geometry, the role played by their size, shape and surface chemistry is expected to be fundamental for an efficient PT process. Here, Cu2−xS NCs coated with a hydrophilic mesoporous silica shell (MSS) are synthesized by solution-phase strategies, tuning the core geometry, MSS thickness and texture. Besides their loading capability, the silica shell has been widely reported to provide a more robust plasmonic core protection than organic molecular/polymeric coatings, and improved heat flow from the NC to the environment due to a reduced interfacial thermal resistance and direct electron–phonon coupling through the interface. Systematic structural and morphological analysis of the core-shell nanoparticles and an in-depth thermoplasmonic characterization by using a pump beam 808 nm laser, are carried out. The results suggest that large triangular nanoplates (NPLs) coated by a few tens of nanometers thick MSS, show good photostability under laser light irradiation and provide a temperature increase above 38 °C and a 20% PT efficiency upon short irradiation time (60 s) at 6 W/cm2 power density.
Collapse
|
9
|
Optical Resolution Photoacoustic Microscopy Imaging in the Detection of Early Oral Cancer under Image Reconstruction Algorithm. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:6077748. [PMID: 35756418 PMCID: PMC9232320 DOI: 10.1155/2022/6077748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/09/2022] [Accepted: 05/11/2022] [Indexed: 11/18/2022]
Abstract
This research was intended to explore the application value of photoacoustic imaging technology based on image intelligent iterative reconstruction algorithm in the detection and diagnosis of early oral cancer. An iterative algorithm model was constructed and systematically analyzed. The algorithm was used to debug the detection of B-scan images on the diameter of the imaging area. The results showed that the sensitivity of line-focused ultrasound detector was 86.72% and the specificity was 80.79%, while the sensitivity of the flat-field ultrasound detector was 63.15% and the specificity was 71.79%. The photoacoustic microscopy imaging technology can clearly observe the rich capillary network on human lips. A part of the vascular network at the depth of 100 μm, 500 μm, and 1000 μm grew out of the reticular capillaries and extended out of the loop-like capillaries, and the diameter gradually expanded. The imaging experiment of the sublingual capillary network in the human body showed that loop-like capillaries were observed, but there were some large blood vessels, which corresponded to the densely distributed blood vessel network under the tongue. The morphological changes of loop-like capillaries can be well observed by photoacoustic microscopy. In conclusion, the reconstructed photoacoustic microscopy imaging technology can realize high-resolution imaging of human oral capillaries and observe the morphological changes of loop-like capillaries, which had a certain application value for the early detection of oral cancer.
Collapse
|
10
|
Dieperink M, Scalerandi F, Albrecht W. Correlating structure, morphology and properties of metal nanostructures by combining single-particle optical spectroscopy and electron microscopy. NANOSCALE 2022; 14:7460-7472. [PMID: 35481561 DOI: 10.1039/d1nr08130f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The nanoscale morphology of metal nanostructures directly defines their optical, catalytic and electronic properties and even small morphological changes can cause significant property variations. On the one hand, this dependence allows for precisely tuning and exploring properties by shape engineering; next to advanced synthesis protocols, post-synthesis modification through tailored laser modification has become an emerging tool to do so. On the other hand, with this interconnection also comes the quest for detailed structure-property correlation and understanding of laser-induced reshaping processes on the individual nanostructure level beyond ensemble averages. With the development of single-particle (ultrafast) optical spectroscopy techniques and advanced electron microscopy such understanding can in principle be gained at the femtosecond temporal and atomic spatial scale, respectively. However, accessing both on the same individual nanostructure is far from straightforward as it requires the combination of optical spectroscopy and electron microscopy. In this Minireview, we highlight key studies from recent years that performed such correlative measurements on the same individual metal nanostructure either in a consecutive ex situ manner or in situ inside the electron microscope. We demonstrate that such a detailed correlation is critical for revealing the full picture of the structure-property relationship and the physics behind light-induced nanostructure modifications. We put emphasis on the advantages and disadvantages of each methodology as well as on the unique information that one can gain only by correlative studies performed on the same individual nanostructure and end with an outlook on possible further development of this field in the near future.
Collapse
Affiliation(s)
- Mees Dieperink
- Department of Sustainable Energy Materials, AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands.
| | - Francesca Scalerandi
- Department of Sustainable Energy Materials, AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands.
| | - Wiebke Albrecht
- Department of Sustainable Energy Materials, AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands.
| |
Collapse
|
11
|
Mantri Y, Sit I, Zhou J, Grassian VH, Jokerst JV. Photoacoustic Enhancement of Ferricyanide-Treated Silver Chalcogenide-Coated Gold Nanorods. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2022; 126:7605-7614. [PMID: 36249163 PMCID: PMC9563653 DOI: 10.1021/acs.jpcc.2c01727] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Plasmonic gold nanorods (AuNRs) are often employed as photoacoustic (PA) contrast agents due to their ease of synthesis, functionalization, and biocompatibility. These materials can produce activatable signals in response to a change in optical absorbance intensity or absorbance wavelength. Here, we report a surprising finding: Ag2S/Se-coated AuNRs have a ~40-fold PA enhancement upon addition of an oxidant but with no change in absorption spectra. We then study the mechanism underlying this enhancement. Electron micrographs and absorption spectra show good colloidal stability and retention of the core-shell structure after potassium hexacyanoferrate(III) (HCF) addition, ruling out aggregation and morphology-induced PA enhancement. X-ray diffraction data showed no changes, ruling out crystallographic phase changes upon HCF addition, thus leading to induced PA enhancement. Attenuated total reflectance-Fourier transform infrared spectroscopy and zeta potential analysis suggest that PA enhancement is driven by the irreversible displacement of hexadecyltrimethylammonium bromide with HCF. This is further confirmed using elemental mapping with energy-dispersive X-ray analysis. PA characterization after HCF addition showed a four-fold increase in the Grüneisen parameter (Γ), thus resulting in PA enhancement. The PA enhancement is not seen in uncoated AuNRs or spherical particles. Two possible mechanisms for PA enhancement are proposed: first, the photo-induced redox heating at the Ag2S/Se shell-HCF interface, resulting in an increase in temperature-dependent Γ, and second, an enhanced electrostriction response due to HCF adsorption on a layered plasmonic nanoparticle surface, resulting in a high thermal expansion coefficient (β) that is directly proportional to Γ.
Collapse
Affiliation(s)
- Yash Mantri
- Department of Bioengineering, University of California San Diego, La Jolla, California 92093, United States
| | - Izaac Sit
- Department of Nanoengineering, University of California San Diego, La Jolla, California 92093, United States
| | - Jiajing Zhou
- Department of Nanoengineering, University of California San Diego, La Jolla, California 92093, United States
| | - Vicki H Grassian
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Jesse V Jokerst
- Department of Nanoengineering, Materials Science Program, and Department of Radiology, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
12
|
Han S, Lee H, Kim C, Kim J. Review on Multispectral Photoacoustic Analysis of Cancer: Thyroid and Breast. Metabolites 2022; 12:metabo12050382. [PMID: 35629886 PMCID: PMC9143964 DOI: 10.3390/metabo12050382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/18/2022] [Accepted: 04/20/2022] [Indexed: 12/11/2022] Open
Abstract
In recent decades, photoacoustic imaging has been used widely in biomedical research, providing molecular and functional information from biological tissues in vivo. In addition to being used for research in small animals, photoacoustic imaging has also been utilized for in vivo human studies, achieving a multispectral photoacoustic response in deep tissue. There have been several clinical trials for screening cancer patients by analyzing multispectral responses, which in turn provide metabolomic information about the underlying biological tissues. This review summarizes the methods and results of clinical photoacoustic trials available in the literature to date to classify cancerous tissues, specifically of the thyroid and breast. From the review, we can conclude that a great potential exists for photoacoustic imaging to be used as a complementary modality to improve diagnostic accuracy for suspicious tumors, thus significantly benefitting patients’ healthcare.
Collapse
Affiliation(s)
- Seongyi Han
- Departments of Cogno-Mechatronics Engineering and Optics & Mechatronics Engineering, Pusan National University, Busan 46241, Korea; (S.H.); (H.L.)
| | - Haeni Lee
- Departments of Cogno-Mechatronics Engineering and Optics & Mechatronics Engineering, Pusan National University, Busan 46241, Korea; (S.H.); (H.L.)
| | - Chulhong Kim
- Departments of Convergence IT Engineering, Mechanical Engineering, and Electrical Engineering, School of Interdisciplinary Bioscience and Bioengineering, Medical Device Innovation Center, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea;
| | - Jeesu Kim
- Departments of Cogno-Mechatronics Engineering and Optics & Mechatronics Engineering, Pusan National University, Busan 46241, Korea; (S.H.); (H.L.)
- Correspondence:
| |
Collapse
|
13
|
Park EY, Oh D, Park S, Kim W, Kim C. New contrast agents for photoacoustic imaging and theranostics: Recent 5-year overview on phthalocyanine/naphthalocyanine-based nanoparticles. APL Bioeng 2021; 5:031510. [PMID: 34368604 PMCID: PMC8325568 DOI: 10.1063/5.0047660] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 04/19/2021] [Indexed: 12/12/2022] Open
Abstract
The phthalocyanine (Pc) and naphthalocyanine (Nc) nanoagents have drawn much attention as contrast agents for photoacoustic (PA) imaging due to their large extinction coefficients and long absorption wavelengths in the near-infrared region. Many investigations have been conducted to enhance Pc/Ncs' photophysical properties and address their poor solubility in an aqueous solution. Many diverse strategies have been adopted, including centric metal chelation, structure modification, and peripheral substitution. This review highlights recent advances on Pc/Nc-based PA agents and their extended use for multiplexed biomedical imaging, multimodal diagnostic imaging, and image-guided phototherapy.
Collapse
Affiliation(s)
| | - Donghyeon Oh
- Departments of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, and Medical Device Innovation Center, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, South Korea
| | - Sinyoung Park
- Departments of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, and Medical Device Innovation Center, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, South Korea
| | - Wangyu Kim
- Departments of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, and Medical Device Innovation Center, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, South Korea
| | - Chulhong Kim
- Departments of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, and Medical Device Innovation Center, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, South Korea
| |
Collapse
|
14
|
Salah D, Moghanm FS, Arshad M, Alanazi AA, Latif S, El-Gammal MI, Shimaa EM, Elsayed S. Polymer-Peptide Modified Gold Nanorods to Improve Cell Conjugation and Cell labelling for Stem Cells Photoacoustic Imaging. Diagnostics (Basel) 2021; 11:1196. [PMID: 34209370 PMCID: PMC8305251 DOI: 10.3390/diagnostics11071196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/27/2021] [Accepted: 06/27/2021] [Indexed: 01/04/2023] Open
Abstract
The use of gold nanorods (GNRs) as a contrast agent in bioimaging and cell tracking has numerous advantages, primarily due to the unique optical properties of gold nanorods which allow for the use of infrared regions when imaging. Owing to their unique geometry, Au NRs exhibit surface plasmon modes in the near-infrared wavelength range, which is ideal for carrying out optical measurements in biological fluids and tissue. Gold nanorod functionalization is essential, since the Cetyltrimethyl ammonium bromide CTAB gold nanorods are toxic, and for further in vitro and in vivo experiments the nanorods should be functionalized to become optically stable and biocompatible. In the present study, gold nanorods with an longitudinal surface plasmon resonance (LSPR) position around 800 nm were synthesized in order to be used for photoacoustic imaging applications for stem cell tracking. The gold nanorods were functionalized using both thiolated poly (ethylene glycol) (PEG) to stabilize the gold nanorods surface and a CALNN-TAT peptide sequence. Both ligands were attached to the gold nanorods through an Au-sulfur bond. CALNN-TAT is known as a cell penetrating peptide which ensures endocytosis of the gold nanorods inside the mesenchymal stem cells of mice (MSCD1). Surface modifications of gold nanorods were achieved using optical spectroscopy (UV-VIS), electron microscopy (TEM), zeta-potential, and FTIR. Gold nanorods were incubated in MSCD1 in order to achieve a cellular uptake that was characterized by a transmission electron microscope (TEM). For photoacoustic imaging, Multi-Spectral Optoacoustic Tomography (MSOT) was used. The results demonstrated good cellular uptake for PEG-CALNN-TAT GNRs and the successful use of modified gold nanorods as both a contrast agent in photoacoustic imaging and as a novel tracking bioimaging technique.
Collapse
Affiliation(s)
- Dina Salah
- Biophysics Group, Physics Department, Ain Shams University, Cairo 11566, Egypt
| | - Farahat S. Moghanm
- Soil and Water Department, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt; (F.S.M.); (E.M.S.)
| | - Muhammad Arshad
- Department of Chemical Engineering, College of Engineering, King Khalid University, P.O. Box 394, Abha 61321, Saudi Arabia;
| | - Abdulaziz A. Alanazi
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | - Salman Latif
- Department of Chemistry, College of Science, University of Hail, P.O. Box 2440, Hail 81451, Saudi Arabia;
| | - Maie I. El-Gammal
- Environmental Science Department, Faculty of Science, Damietta University, Damietta 35511, Egypt;
| | - Elmahdy M. Shimaa
- Soil and Water Department, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt; (F.S.M.); (E.M.S.)
| | - Salah Elsayed
- Agricultural Engineering, Evaluation of Natural Resources Department, Environmental Studies and Research Institute, University of Sadat City, Minufiya 32897, Egypt;
| |
Collapse
|