1
|
Costa B, Carvalho J, Gavinho S, Vieira T, Silva JC, Soares PIP, Valente MA, Soreto S, Graça M. Preparation and Characterization of Zinc Ferrite and Gadolinium Iron Garnet Composite for Biomagnetic Applications. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2949. [PMID: 38930318 PMCID: PMC11205474 DOI: 10.3390/ma17122949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/04/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024]
Abstract
Cancer is a major worldwide public health problem. Although there have already been astonishing advances in cancer diagnosis and treatment, the scientific community continues to make huge efforts to develop new methods to treat cancer. The main objective of this work is to prepare, using a green sol-gel method with coconut water powder (CWP), a new nanocomposite with a mixture of Gd3Fe5O12 and ZnFe2O4, which has never been synthesized previously. Therefore, we carried out a structural (DTA-TG and X-ray diffraction), morphological (SEM), and magnetic (VSM and hyperthermia) characterization of the prepared samples. The prepared nanocomposite denoted a saturation magnetization of 11.56 emu/g at room temperature with a ferromagnetic behavior and with a specific absorption rate (SAR) value of 0.5 ± 0.2 (W/g). Regarding cytotoxicity, for concentrations < 10 mg/mL, it does not appear to be toxic. Although the obtained results were interesting, the high particle size was identified as a problem for the use of this nanocomposite.
Collapse
Affiliation(s)
- Bárbara Costa
- i3N and Department of Physics, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (B.C.); (S.G.); (M.A.V.); (M.G.)
| | - João Carvalho
- i3N and Department of Physics, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (B.C.); (S.G.); (M.A.V.); (M.G.)
| | - Sílvia Gavinho
- i3N and Department of Physics, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (B.C.); (S.G.); (M.A.V.); (M.G.)
| | - Tânia Vieira
- i3N/CENIMAT, Physics Department, NOVA School of Science and Technology, Campus de Caparica, NOVA University Lisbon, 2829-516 Caparica, Portugal; (T.V.); (J.C.S.)
| | - Jorge Carvalho Silva
- i3N/CENIMAT, Physics Department, NOVA School of Science and Technology, Campus de Caparica, NOVA University Lisbon, 2829-516 Caparica, Portugal; (T.V.); (J.C.S.)
| | - Paula I. P. Soares
- i3N/CENIMAT, Science Materials Department, Faculty of Sciences and Technology, Nova University of Lisbon, 2829-516 Caparica, Portugal;
| | - Manuel A. Valente
- i3N and Department of Physics, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (B.C.); (S.G.); (M.A.V.); (M.G.)
| | - Sílvia Soreto
- i3N and Department of Physics, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (B.C.); (S.G.); (M.A.V.); (M.G.)
| | - Manuel Graça
- i3N and Department of Physics, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (B.C.); (S.G.); (M.A.V.); (M.G.)
| |
Collapse
|
2
|
Gomes P, Costa B, Carvalho JPF, Soares PIP, Vieira T, Henriques C, Valente MA, Teixeira SS. Cobalt Ferrite Synthesized Using a Biogenic Sol-Gel Method for Biomedical Applications. Molecules 2023; 28:7737. [PMID: 38067467 PMCID: PMC10708217 DOI: 10.3390/molecules28237737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/10/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
Cancer is one of the leading causes of death worldwide. Conventional treatments such as surgery, chemotherapy, and radiotherapy have limitations and severe side effects. Magnetic hyperthermia (MH) is an alternative method that can be used alone or in conjunction with chemotherapy or radiotherapy to treat cancer. Cobalt ferrite particles were synthesized using an innovative biogenic sol-gel method with powder of coconut water (PCW). The obtained powders were subjected to heat treatments between 500 °C and 1100 °C. Subsequently, they were characterized by thermal, structural, magnetic, and cytotoxic analyses to assess their suitability for MH applications. Through X-ray diffraction and Raman spectroscopy, it was possible to confirm the presence of the pure phase of CoFe2O4 in the sample treated at 1100 °C, exhibiting a saturation magnetization of 84 emu/g at 300 K and an average grain size of 542 nm. Furthermore, the sample treated at 1100 °C showed a specific absorption rate (SAR) of 3.91 W/g, and at concentrations equal to or below 5 mg/mL, is non-cytotoxic, being the most suitable for biomedical applications.
Collapse
Affiliation(s)
- Patrícia Gomes
- i3N and Department of Physics, University of Aveiro, 3810-193 Aveiro, Portugal; (P.G.); (B.C.); (J.P.F.C.); (M.A.V.)
| | - Bárbara Costa
- i3N and Department of Physics, University of Aveiro, 3810-193 Aveiro, Portugal; (P.G.); (B.C.); (J.P.F.C.); (M.A.V.)
| | - João P. F. Carvalho
- i3N and Department of Physics, University of Aveiro, 3810-193 Aveiro, Portugal; (P.G.); (B.C.); (J.P.F.C.); (M.A.V.)
| | - Paula I. P. Soares
- CENIMAT, Department of Materials Science, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal;
| | - Tânia Vieira
- CENIMAT/i3N, Department of Physics, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal; (T.V.); (C.H.)
| | - Célia Henriques
- CENIMAT/i3N, Department of Physics, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal; (T.V.); (C.H.)
| | - Manuel Almeida Valente
- i3N and Department of Physics, University of Aveiro, 3810-193 Aveiro, Portugal; (P.G.); (B.C.); (J.P.F.C.); (M.A.V.)
| | - Sílvia Soreto Teixeira
- i3N and Department of Physics, University of Aveiro, 3810-193 Aveiro, Portugal; (P.G.); (B.C.); (J.P.F.C.); (M.A.V.)
| |
Collapse
|
3
|
Carvalho JPF, Vieira T, Silva JC, Soares PIP, Ferreira NM, Amorim CO, Teixeira SS, Graça MPF. Potassium Ferrite for Biomedical Applications. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16103880. [PMID: 37241507 DOI: 10.3390/ma16103880] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/14/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023]
Abstract
Ferrites have been widely studied for their use in the biomedical area, mostly due to their magnetic properties, which gives them the potential to be used in diagnostics, drug delivery, and in treatment with magnetic hyperthermia, for example. In this work, KFeO2 particles were synthesized with a proteic sol-gel method using powdered coconut water as a precursor; this method is based on the principles of green chemistry. To improve its properties, the base powder obtained was subjected to multiple heat treatments at temperatures between 350 and 1300 °C. The samples obtained underwent structural, morphological, biocompatibility, and magnetic characterization. The results show that upon raising the heat treatment temperature, not only is the wanted phase detected, but also the secondary phases. To overcome these secondary phases, several different heat treatments were carried out. Using scanning electron microscopy, grains in the micrometric range were observed. Saturation magnetizations between 15.5 and 24.1 emu/g were observed for the samples containing KFeO2 with an applied field of 50 kOe at 300 K. From cellular compatibility (cytotoxicity) assays, for concentrations up to 5 mg/mL, only the samples treated at 350 °C were cytotoxic. However, the samples containing KFeO2, while being biocompatible, had low specific absorption rates (1.55-5.76 W/g).
Collapse
Affiliation(s)
- João P F Carvalho
- i3N and Department of Physics, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Tânia Vieira
- i3N/CENIMAT, Physics Department, NOVA School of Science and Technology, Campus de Caparica, NOVA University Lisbon, 2829-516 Caparica, Portugal
| | - Jorge Carvalho Silva
- i3N/CENIMAT, Physics Department, NOVA School of Science and Technology, Campus de Caparica, NOVA University Lisbon, 2829-516 Caparica, Portugal
| | - Paula I P Soares
- i3N/CENIMAT, Materials Science Department, NOVA School of Science and Technology, Campus de Caparica, NOVA University Lisbon, 2829-516 Caparica, Portugal
| | - Nuno M Ferreira
- i3N and Department of Physics, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Carlos O Amorim
- CICECO-Aveiro Institute of Materials and Department of Physics, University of Aveiro, 3810-193 Aveiro, Portugal
| | | | - Manuel P F Graça
- i3N and Department of Physics, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
4
|
Subash S, Udhayakumar S, Kumaresan L, Patro L, Kumaran V, Kumar ES, Navaneethan M, Kim DK, Bharathi KK. Ordered LiFe5O8 Thin Films Prepared By Pulsed Laser Deposition as an Anode Material for All-Solid Thin Film Batteries. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.142318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
5
|
Kim SY, Kim KS, Jong UG, Kang CJ, Ri SC, Yu CJ. First-principles study on structural, electronic, magnetic and thermodynamic properties of lithium ferrite LiFe 5O 8. RSC Adv 2022; 12:15973-15979. [PMID: 35733680 PMCID: PMC9134028 DOI: 10.1039/d2ra01656g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/25/2022] [Indexed: 11/21/2022] Open
Abstract
Lithium ferrite, LiFe5O8 (LFO), has attracted great attention for various applications, and there has been extensive experimental studies on its material properties and applications. However, no systematic theoretical study has yet been reported, so understanding of its material properties at the atomic scale is still required. In this work, we present a comprehensive investigation into the structural, electronic, magnetic and thermodynamic properties of LFO using first-principles calculations. We demonstrate that the ordered α-phase with ferrimagnetic spin configuration is energetically favourable among various crystalline phases with different magnetic configurations. By applying the DFT + U approach with U = 4 eV, we reproduce the lattice constant, band gap energy, and total magnetization in good agreement with experiments, emphasizing the importance of considering strong correlation and spin-polarization effects originating from the 3d states of Fe atoms. We calculated the phonon dispersions of LFO with ferrimagnetic and non-magnetic states, and subsequently evaluated the Gibbs free energy differences between the two states, plotting the P–T diagram for thermodynamic stability of the ferrimagnetic against non-magnetic state. From the P–T diagram, the Curie temperature is found to be ∼925 K at the normal condition and gradually increase with increasing pressure. Our calculations explain the experimental observations for material properties of LFO, providing a comprehensive understanding of the underlying mechanism and useful guidance for enhancing performance of LFO-based devices. We systematically investigate the material properties of lithium ferrite LiFe5O8 – structural, magnetic, electronic, lattice vibrational properties and thermodynamic stability – using density functional theory calculations.![]()
Collapse
Affiliation(s)
- Su-Yong Kim
- Chair of Computational Materials Design (CMD), Faculty of Materials Science, Kim Il Sung University P.O. Box 76 Pyongyang Democratic People's Republic of Korea
| | - Kwang-Su Kim
- Institute of Functional Materials, Faculty of Materials Science, Kim Il Sung University P.O. Box 76 Pyongyang Democratic People's Republic of Korea
| | - Un-Gi Jong
- Chair of Computational Materials Design (CMD), Faculty of Materials Science, Kim Il Sung University P.O. Box 76 Pyongyang Democratic People's Republic of Korea
| | - Chung-Jin Kang
- Chair of Computational Materials Design (CMD), Faculty of Materials Science, Kim Il Sung University P.O. Box 76 Pyongyang Democratic People's Republic of Korea
| | - Song-Chol Ri
- Institute of Functional Materials, Faculty of Materials Science, Kim Il Sung University P.O. Box 76 Pyongyang Democratic People's Republic of Korea
| | - Chol-Jun Yu
- Chair of Computational Materials Design (CMD), Faculty of Materials Science, Kim Il Sung University P.O. Box 76 Pyongyang Democratic People's Republic of Korea
| |
Collapse
|
6
|
Teixeira SS, Gama N, Cordeiro T, Barros-Timmons A, Dionísio M, Graça MP, Costa LC. Poly(l-lactic acid)/lithium ferrite composites: Electrical properties. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.124100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|