1
|
Darwish MA, Abd-Elaziem W, Elsheikh A, Zayed AA. Advancements in nanomaterials for nanosensors: a comprehensive review. NANOSCALE ADVANCES 2024; 6:4015-4046. [PMID: 39114135 PMCID: PMC11304082 DOI: 10.1039/d4na00214h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/23/2024] [Indexed: 08/10/2024]
Abstract
Nanomaterials (NMs) exhibit unique properties that render them highly suitable for developing sensitive and selective nanosensors across various domains. This review aims to provide a comprehensive overview of nanomaterial-based nanosensors, highlighting their applications and the classification of frequently employed NMs to enhance sensitivity and selectivity. The review introduces various classifications of NMs commonly used in nanosensors, such as carbon-based NMs, metal-based NMs, and others, elucidating their exceptional properties, including high thermal and electrical conductivity, large surface area-to-volume ratio and good biocompatibility. A thorough examination of literature sources was conducted to gather information on NMs-based nanosensors' characteristics, properties, and fabrication methods and their application in diverse sectors such as healthcare, environmental monitoring, industrial processes, and security. Additionally, advanced applications incorporating machine learning techniques were analyzed to enhance the sensor's performance. This review advances the understanding and development of nanosensor technologies by providing insights into fabrication techniques, characterization methods, applications, and future outlook. Key challenges such as robustness, biocompatibility, and scalable manufacturing are also discussed, offering avenues for future research and development in this field.
Collapse
Affiliation(s)
- Moustafa A Darwish
- Physics Department, Faculty of Science, Tanta University Tanta 31527 Egypt
| | - Walaa Abd-Elaziem
- Department of Mechanical Design and Production Engineering, Faculty of Engineering, Zagazig University P.O. Box 44519 Egypt
- Department of Materials Science and Engineering, Northwestern University Evanston IL 60208 USA
| | - Ammar Elsheikh
- Production Engineering and Mechanical Design Department, Faculty of Engineering, Tanta University Tanta 31521 Egypt
- Department of Industrial and Mechanical Engineering, Lebanese American University P.O. Box 36 / S-12 Byblos Lebanon
| | - Abdelhameed A Zayed
- Production Engineering and Mechanical Design Department, Faculty of Engineering, Tanta University Tanta 31521 Egypt
| |
Collapse
|
2
|
Skibińska K, Żabiński P. Nanocones: A Compressive Review of Their Electrochemical Synthesis and Applications. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3089. [PMID: 38998173 PMCID: PMC11242391 DOI: 10.3390/ma17133089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/16/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024]
Abstract
The development in the field of nanomaterials has resulted in the synthesis of various structures. Depending on their final applications, the desired composition and therefore alternate properties can be achieved. In electrochemistry, the fabrication of bulk films characterized by high catalytic performance is well-studied in the literature. However, decreasing the scale of materials to the nanoscale significantly increases the active surface area, which is crucial in electrocatalysis. In this work, a special focus is placed on the electrodeposition of nanocones and their application as catalysts in hydrogen evolution reactions. The main paths for their synthesis concern deposition into the templates and from electrolytes containing an addition of crystal modifier that are directly deposited on the substrate. Additionally, the fabrication of cones using other methods and their applications are briefly reviewed.
Collapse
Affiliation(s)
- Katarzyna Skibińska
- Faculty of Non-Ferrous-Metals, AGH University of Krakow, al. Adama Mickiewicza 30, 30-059 Krakow, Poland;
| | | |
Collapse
|
3
|
Su Y, He Z, Jiang R, Zhang J. Observation of Linear Magnetoresistance in MoO 2. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:915. [PMID: 38869538 PMCID: PMC11173525 DOI: 10.3390/nano14110915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 06/14/2024]
Abstract
Magnetoresistance, the change in resistance with applied magnetic fields, is crucial to the magnetic sensor technology. Linear magnetoresistance has been intensively studied in semimetals and semiconductors. However, the air-stable oxides with a large linear magnetoresistance are highly desirable but remain to be fully explored. In this paper, we report the direct observation of linear magnetoresistance in polycrystalline MoO2 without any sign of saturation up to 7 T under 50 K. Interestingly, the linear magnetoresistance reaches as large as 1500% under 7 T at 2 K. The linear field dependence is in great contrast to the parabolic behavior observed in single-crystal MoO2, probably due to phonon scattering near the grain boundaries. Our results pave the way to comprehending magneto-transport behavior in oxides and their potential applications in magnetic sensors.
Collapse
Affiliation(s)
- Yulong Su
- Marine Engineering College, Dalian Maritime University, Dalian 116026, China; (Z.H.); (R.J.); (J.Z.)
| | | | | | | |
Collapse
|
4
|
Nichterwitz M, Hiekel K, Wolf D, Eychmüller A, Leistner K. Voltage-Controlled ON-OFF-Switching of Magnetoresistance in FeO x/Fe/Au Aerogel Networks. ACS MATERIALS AU 2024; 4:55-64. [PMID: 38221921 PMCID: PMC10786128 DOI: 10.1021/acsmaterialsau.3c00045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 09/28/2023] [Accepted: 09/28/2023] [Indexed: 01/16/2024]
Abstract
Voltage control of magnetoresistance (MR) in nanoscale three-dimensional (3D) geometries is interesting from a fundamental point of view and a promising route toward novel sensors and energy-efficient computing schemes. Magneto-ionic mechanisms are favorable for low-voltage control of magnetism and room-temperature operation, but magneto-ionic control of MR has been studied only for planar geometries so far. We synthesize a 3D nanomaterial with magneto-ionic functionality by electrodepositing an iron hydroxide/iron coating on a porous nanoscale gold network (aerogel). To enable maximum magneto-ionic ON-OFF-switching, the thickness of the coating is adjusted to a few nanometers by a self-terminating electrodeposition process. In situ magnetotransport measurements during electrolytic gating of these nanostructures reveal large reversible changes in MR, including ON-OFF-switching of MR, with a small applied voltage difference (1.72 V). This effect is related to the electrochemical switching between a ferromagnetic iron shell/gold core nanostructure (negative MR at the reduction voltage) and an iron oxide shell/gold core nanostructure (negligible MR at the oxidation voltage).
Collapse
Affiliation(s)
- Martin Nichterwitz
- Electrochemical
Sensors and Energy Storage, Faculty of Natural Sciences, Institute of Chemistry, TU Chemnitz, Strasse der Nationen 62, Chemnitz 09111, Germany
- Leibniz
IFW Dresden, Helmholtzstrasse 20, Dresden 01069, Germany
| | - Karl Hiekel
- Physical
Chemistry, TU Dresden, Zellescher Weg 19, Dresden 01062, Germany
| | - Daniel Wolf
- Leibniz
IFW Dresden, Helmholtzstrasse 20, Dresden 01069, Germany
| | | | - Karin Leistner
- Electrochemical
Sensors and Energy Storage, Faculty of Natural Sciences, Institute of Chemistry, TU Chemnitz, Strasse der Nationen 62, Chemnitz 09111, Germany
- Leibniz
IFW Dresden, Helmholtzstrasse 20, Dresden 01069, Germany
| |
Collapse
|
5
|
Drault F, Ferain E, Lisboa MC, Hermans S, Demoustier-Champagne S. Tuning Au/SiO 2 nanostructures from 1D to 3D interconnected nanotube networks using polycarbonate porous templates. NANOSCALE 2023; 15:14981-14993. [PMID: 37661913 DOI: 10.1039/d3nr03783e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
We report a simple process, based on the combination of sol-gel deposition and nano-templating with polycarbonate membranes, for the synthesis of 1D to 3D free-standing silica (SiO2) interconnected nanotube (NT) networks. The thickness and porosity of the SiO2 nanotube walls can be, respectively, controlled by adjusting the ethanol amount in the sol-gel reaction mixture and by the addition or not of a porogen agent during the synthesis. Internal functionalization of 1D and 3D porous and non-porous SiO2 NTs by Au nanoparticles (NPs) was then performed using electroless deposition leading to particle sizes ranging from 15 to 20 nm. Characterization of all these systems by SEM-EDX, TEM, ICP and XPS clearly demonstrated the impact of the porosity of SiO2 on the amount and localization of Au NPs. Selective functionalization of the inner or the inner + outer surfaces of SiO2 NTs was achieved by keeping or freeing the SiO2 NTs from the template prior to electroless deposition, respectively. Moreover, UV-visible analysis confirmed plasmon resonance associated with Au NPs in all functionalized systems, paving the way to applications in many fields such as nano-medicine or (photo-)catalysis. In particular, the free-standing interconnected silica-based nanotube systems provide unique features of great interest for use in nanoscale fluidic bioseparation, sensing, and flow (photo)-catalytic chemistry, as demonstrated herein for the photodegradation of methylene blue.
Collapse
Affiliation(s)
- Fabien Drault
- Institute of Condensed Matter and Nanosciences (BSMA division), UCLouvain, Croix du Sud 1, B-1348, Louvain-la-Neuve, Belgium.
- Institute of Condensed Matter and Nanosciences (MOST division), UCLouvain, 1 Place Louis Pasteur, B-1348 Louvain-la- Neuve, Belgium.
| | - Etienne Ferain
- Institute of Condensed Matter and Nanosciences (BSMA division), UCLouvain, Croix du Sud 1, B-1348, Louvain-la-Neuve, Belgium.
- Institute of Condensed Matter and Nanosciences (MOST division), UCLouvain, 1 Place Louis Pasteur, B-1348 Louvain-la- Neuve, Belgium.
- it4ip S.A., Avenue Jean-Etienne Lenoir 1, B-1348 Louvain-la-Neuve, Belgium
| | - Milena Chagas Lisboa
- Institute of Condensed Matter and Nanosciences (BSMA division), UCLouvain, Croix du Sud 1, B-1348, Louvain-la-Neuve, Belgium.
| | - Sophie Hermans
- Institute of Condensed Matter and Nanosciences (MOST division), UCLouvain, 1 Place Louis Pasteur, B-1348 Louvain-la- Neuve, Belgium.
| | - Sophie Demoustier-Champagne
- Institute of Condensed Matter and Nanosciences (BSMA division), UCLouvain, Croix du Sud 1, B-1348, Louvain-la-Neuve, Belgium.
| |
Collapse
|
6
|
Pereira A, Sáez G, Saavedra E, Escrig J. Tunable Magnetic Properties of Interconnected Permalloy Nanowire Networks. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1971. [PMID: 37446487 DOI: 10.3390/nano13131971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/22/2023] [Accepted: 06/25/2023] [Indexed: 07/15/2023]
Abstract
In this study, we investigate the magnetic properties of interconnected permalloy nanowire networks using micromagnetic simulations. The effects of interconnectivity on the hysteresis curves, coercivity, and remanence of the nanowire networks are analyzed. Our results reveal intriguing characteristics of the hysteresis curves, including nonmonotonic behaviors of coercivity as a function of the position of horizontal nanowires relative to vertical nanowires. By introducing horizontal nanowires at specific positions, the coercivity of the nanowire networks can be enhanced without altering the material composition. The normalized remanence remains relatively constant regardless of the position of the horizontal wires, although it is lower in the interconnected nanowire arrays compared to nonconnected arrays. These findings provide valuable insights into the design and optimization of nanowire networks for applications requiring tailored magnetic properties.
Collapse
Affiliation(s)
- Alejandro Pereira
- Department of Sciences, Faculty of Liberal Arts, Adolfo Ibañez University, Santiago 7941169, Chile
| | - Guidobeth Sáez
- Department of Physics, Faculty of Physical and Mathematical Sciences, University of Chile, Santiago 8370448, Chile
| | - Eduardo Saavedra
- Department of Physics, University of Santiago de Chile (USACH), Santiago 9170124, Chile
| | - Juan Escrig
- Department of Physics, University of Santiago de Chile (USACH), Santiago 9170124, Chile
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Santiago 9170124, Chile
| |
Collapse
|
7
|
Chopin C, de Wergifosse S, Marchal N, Van Velthem P, Piraux L, Abreu Araujo F. Memristive and Tunneling Effects in 3D Interconnected Silver Nanowires. ACS OMEGA 2023; 8:6663-6668. [PMID: 36844586 PMCID: PMC9948158 DOI: 10.1021/acsomega.2c07171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
A network of silver nanowires (Ag-NWs) is grown by electrodeposition in a nanoporous membrane with interconnected nanopores. This bottom-up approach fabrication method gives a conducting network with a 3D architecture and a high density of Ag-NWs. The network is then functionalized during the etching process, which leads to a high initial resistance as well as memristive behavior. The latter is expected to arise from the creation and the destruction of conducting silver filaments in the functionalized Ag-NW network. Moreover, after several cycles of measurement, the resistance of the network switches from a high-resistance regime in the GΩ range with tunnel conduction to a low-resistance regime presenting negative differential resistance in the kΩ range.
Collapse
|
8
|
Fullerton J, Hierro-Rodriguez A, Donnelly C, Sanz-Hernández D, Skoric L, MacLaren DA, Fernández-Pacheco A. Controlled evolution of three-dimensional magnetic states in strongly coupled cylindrical nanowire pairs. NANOTECHNOLOGY 2023; 34:125301. [PMID: 36595337 DOI: 10.1088/1361-6528/aca9d6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Cylindrical magnetic nanowires are promising systems for the development of three-dimensional spintronic devices. Here, we simulate the evolution of magnetic states during fabrication of strongly-coupled cylindrical nanowires with varying degrees of overlap. By varying the separation between wires, the relative strength of exchange and magnetostatic coupling can be tuned. Hence, we observe the formation of six fundamental states as a function of both inter-wire separation and wire height. In particular, two complex three-dimensional magnetic states, a 3D Landau Pattern and a Helical domain wall, are observed to emerge for intermediate overlap. These two emergent states show complex spin configurations, including a modulated domain wall with both Néel and Bloch character. The competition of magnetic interactions and the parallel growth scheme we follow (growing both wires at the same time) favours the formation of these anti-parallel metastable states. This works shows how the engineering of strongly coupled 3D nanostructures with competing interactions can be used to create complex spin textures.
Collapse
Affiliation(s)
- J Fullerton
- SUPA, School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
| | | | - C Donnelly
- Max Planck Institute for Chemical Physics of Solids, Dresden, Germany
| | - D Sanz-Hernández
- Unité Mixte de Physique, CNRS, Thales, Université Paris-Saclay, Paris, France
| | - L Skoric
- Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - D A MacLaren
- SUPA, School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
| | - A Fernández-Pacheco
- SUPA, School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
- Instituto de Nanociencia y Materiales de Aragón, CSIC-Universidad de Zaragoza, Zaragoza, Spain
| |
Collapse
|
9
|
Proenca MP. Multifunctional Magnetic Nanowires and Nanotubes. NANOMATERIALS 2022; 12:nano12081308. [PMID: 35458014 PMCID: PMC9030238 DOI: 10.3390/nano12081308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 04/01/2022] [Indexed: 02/01/2023]
Affiliation(s)
- Mariana P. Proenca
- ISOM and Departamento de Electrónica Física, Universidad Politécnica de Madrid, Avda. Complutense 30, 28040 Madrid, Spain;
- IFIMUP and Departamento de Física e Astronomia, Faculdade de Ciências Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal
| |
Collapse
|
10
|
Patiño Cárdenas J, Encinas A, Ramírez Villegas R, de la Torre Medina J. Control of the asymmetric growth of nanowire arrays with gradient profiles. RSC Adv 2021; 11:25892-25900. [PMID: 35479484 PMCID: PMC9037112 DOI: 10.1039/d1ra04198c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 07/18/2021] [Indexed: 11/22/2022] Open
Abstract
A novel electrochemical methodology for the growth of arrays of Ni and Co nanowires (NWs) with linear and non-linear varying micro-height gradient profiles (μHGPs), has been developed. The growth mechanism of these microstructures consists of a three-dimensional growth originating from the allowed electrical contact between the electrolyte and the edges of the cathode at the bottom side of porous alumina membranes. It has been shown that the morphology of these microstructures strongly depends on electrodeposition parameters like the cation material and concentration and the reduction potential. At constant reduction potentials, linear Ni μHGPs with trapezoid-like geometry are obtained, whereas deviations from this simple morphology are observed for Co μHGPs. In this regime, the μHGPs average inclination angle decreases for more negative reduction potential values, leading as a result to more laterally extended microstructures. Besides, more complex morphologies have been obtained by varying the reduction potential using a simple power function of time. Using this strategy allows us to accelerate or decelerate the reduction potential in order to change the μHGPs morphology, so to obtain convex- or concave-like profiles. This methodology is a novel and reliable strategy to synthesize μHGPs into porous alumina membranes with controlled and well-defined morphologies. Furthermore, the synthesized low dimensional asymmetrically loaded nanowired substrates with μHGPs are interesting for their application in micro-antennas for localized electromagnetic radiation, magnetic stray field gradients in microfluidic systems, non-reciprocal microwave absorption, and super-capacitive devices for which a very large surface area and controlled morphology are key requirements.
Collapse
Affiliation(s)
- Juan Patiño Cárdenas
- Instituto de Investigaciones en Materiales - Unidad Morelia, Universidad Nacional Autónoma de México Antigua Carretera a Pátzcuaro No. 8701 Col. Ex Hacienda de San José de la Huerta C. P. 58190 Morelia Mexico
| | - Armando Encinas
- División de Materiales Avanzados, Instituto Potosino de Investigación Científica y Tecnológica A. C. Caminio a la Presa 2055 78216 San Luis Potosí, SLP Mexico
| | - Rossana Ramírez Villegas
- Instituto de Investigaciones en Materiales - Unidad Morelia, Universidad Nacional Autónoma de México Antigua Carretera a Pátzcuaro No. 8701 Col. Ex Hacienda de San José de la Huerta C. P. 58190 Morelia Mexico
| | - Joaquín de la Torre Medina
- Instituto de Investigaciones en Materiales - Unidad Morelia, Universidad Nacional Autónoma de México Antigua Carretera a Pátzcuaro No. 8701 Col. Ex Hacienda de San José de la Huerta C. P. 58190 Morelia Mexico
| |
Collapse
|
11
|
Marchal N, da Câmara Santa Clara Gomes T, Abreu Araujo F, Piraux L. Giant Magnetoresistance and Magneto-Thermopower in 3D Interconnected Ni xFe 1-x/Cu Multilayered Nanowire Networks. NANOMATERIALS 2021; 11:nano11051133. [PMID: 33925733 PMCID: PMC8146549 DOI: 10.3390/nano11051133] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/21/2021] [Accepted: 04/24/2021] [Indexed: 11/16/2022]
Abstract
The versatility of the template-assisted electrodeposition technique to fabricate complex three-dimensional networks made of interconnected nanowires allows one to easily stack ferromagnetic and non-magnetic metallic layers along the nanowire axis. This leads to the fabrication of unique multilayered nanowire network films showing giant magnetoresistance effect in the current-perpendicular-to-plane configuration that can be reliably measured along the macroscopic in-plane direction of the films. Moreover, the system also enables reliable measurements of the analogous magneto-thermoelectric properties of the multilayered nanowire networks. Here, three-dimensional interconnected NixFe1−x/Cu multilayered nanowire networks (with 0.60≤x≤0.97) are fabricated and characterized, leading to large magnetoresistance and magneto-thermopower ratios up to 17% and −25% in Ni80Fe20/Cu, respectively. A strong contrast is observed between the amplitudes of magnetoresistance and magneto-thermoelectric effects depending on the Ni content of the NiFe alloys. In particular, for the highest Ni concentrations, a strong increase in the magneto-thermoelectric effect is observed, more than a factor of 7 larger than the magnetoresistive effect for Ni97Fe3/Cu multilayers. This sharp increase is mainly due to an increase in the spin-dependent Seebeck coefficient from −7 µV/K for the Ni60Fe40/Cu and Ni70Fe30/Cu nanowire arrays to −21 µV/K for the Ni97Fe3/Cu nanowire array. The enhancement of the magneto-thermoelectric effect for multilayered nanowire networks based on dilute Ni alloys is promising for obtaining a flexible magnetic switch for thermoelectric generation for potential applications in heat management or logic devices using thermal energy.
Collapse
|