1
|
Frackowiak JE, Kubica P, Kosno M, Potęga A, Owczarek-Grzymkowska K, Borzyszkowska-Bukowska J, Laskowski T, Paluszkiewicz E, Mazerska Z. Distinct cellular uptake patterns of two anticancer unsymmetrical bisacridines and their metabolic transformation in tumor cells. J Pharm Biomed Anal 2024; 252:116493. [PMID: 39368137 DOI: 10.1016/j.jpba.2024.116493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/12/2024] [Accepted: 09/29/2024] [Indexed: 10/07/2024]
Abstract
Unsymmetrical bisacridines (UAs) represent a novel class of anticancer agents. Their high cytotoxicity towards multiple human cancer cell lines and inhibition of human tumor xenograft growth in nude mice signal their potential for cancer treatment. Therefore, the mechanism of their strong biological activity is broadly investigated. Here, we explore the efflux and metabolism of UAs, as both strongly contribute to the development of drug resistance in cancer cells. We tested two highly cytotoxic UAs, C-2028 and C-2045, as well as their glucuronic acid and glutathione conjugates in human cancer cell lines (HepG2 and LS174T). As a point of reference for cell-based systems, we examined the rate of UA metabolic conversion in cell-free systems. A multiple reaction monitoring (MRM)-mass spectrometry (MS) method was developed in the present study for analysis of UAs and their metabolic conversion in complex biological matrices. Individual analytes were identified by several features: their retention time, mass-to-charge ratio and unique fragmentation pattern. The rate of UA uptake and metabolic transformation was monitored for 24 h in cell extracts and cell culture medium. Both UAs were rapidly internalized by cells. However, C-2028 was gradually accumulated, while C-2045 was eventually released from cells during treatment. UAs demonstrated limited metabolic conversion in cells. The glucuronic acid conjugate was excreted, whereas the glutathione conjugate was deposited in cancer cells. Our results obtained from cell-free and cell-based systems, using a uniform MRM-MS method, will provide valuable insight into the mechanism of UA biological activity in diverse biological models.
Collapse
Affiliation(s)
- Joanna E Frackowiak
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Narutowicza Str., Gdańsk 80-233, Poland.
| | - Paweł Kubica
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Narutowicza Str., Gdańsk 80-233, Poland
| | - Michał Kosno
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Narutowicza Str., Gdańsk 80-233, Poland
| | - Agnieszka Potęga
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Narutowicza Str., Gdańsk 80-233, Poland
| | - Katarzyna Owczarek-Grzymkowska
- Department of Biochemistry, Bioanalytical Laboratory, Faculty of Medicine, Medical University of Gdańsk, 1 Dębinki Str., Gdańsk 80-211, Poland
| | - Julia Borzyszkowska-Bukowska
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Narutowicza Str., Gdańsk 80-233, Poland
| | - Tomasz Laskowski
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Narutowicza Str., Gdańsk 80-233, Poland
| | - Ewa Paluszkiewicz
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Narutowicza Str., Gdańsk 80-233, Poland
| | - Zofia Mazerska
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Narutowicza Str., Gdańsk 80-233, Poland.
| |
Collapse
|
2
|
Pilch J, Potęga A, Kowalik P, Kowalczyk A, Bujak P, Kasprzak A, Paluszkiewicz E, Nowicka AM. In vitro biological evaluation of a novel folic acid-targeted receptor quantum dot-β-cyclodextrin carrier for C-2028 unsymmetrical bisacridine in the treatment of human lung and prostate cancers. Pharmacol Rep 2024; 76:823-837. [PMID: 38888724 PMCID: PMC11294431 DOI: 10.1007/s43440-024-00606-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 06/20/2024]
Abstract
BACKGROUND Traditional small-molecule chemotherapeutics usually do not distinguish tumors from healthy tissues. However, nanotechnology creates nanocarriers that selectively deliver drugs to their site of action. This work is the next step in the development of the quantum dot-β-cyclodextrin-folic acid (QD-β-CD-FA) platform for targeted and selected delivery of C-2028 unsymmetrical bisacridine in cancer therapy. METHODS Herein, we report an initial biological evaluation (using flow cytometry and light microscopy) as well as cell migration analysis of QD-β-CD(C-2028)-FA nanoconjugate and its components in the selected human lung and prostate cancer cells, as well as against their respective normal cells. RESULTS C-2028 compound induced apoptosis, which was much stronger in cancer cells compared to normal cells. Conjugation of C-2028 with QDgreen increased cellular senescence, while the introduction of FA to the conjugate significantly decreased this process. C-2028 nanoencapsulation also reduced cell migration. Importantly, QDgreen and QDgreen-β-CD-FA themselves did not induce any toxic responses in studied cells. CONCLUSIONS In conclusion, the results demonstrate the high potential of a novel folic acid-targeted receptor quantum dot-β-cyclodextrin carrier (QDgreen-β-CD-FA) for drug delivery in cancer treatment. Nanoplatforms increased the amount of delivered compounds and demonstrated high suitability.
Collapse
Affiliation(s)
- Joanna Pilch
- Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12 Str., Gdańsk, 80-233, Poland.
| | - Agnieszka Potęga
- Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12 Str., Gdańsk, 80-233, Poland
| | - Patrycja Kowalik
- Institute of Physical Chemistry, Polish Academy of Science, Warsaw, Poland
| | | | - Piotr Bujak
- Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland
| | - Artur Kasprzak
- Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland
| | - Ewa Paluszkiewicz
- Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12 Str., Gdańsk, 80-233, Poland
| | | |
Collapse
|
3
|
Narayana S, Gowda BHJ, Hani U, Shimu SS, Paul K, Das A, Ashique S, Ahmed MG, Tarighat MA, Abdi G. Inorganic nanoparticle-based treatment approaches for colorectal cancer: recent advancements and challenges. J Nanobiotechnology 2024; 22:427. [PMID: 39030546 PMCID: PMC11264527 DOI: 10.1186/s12951-024-02701-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/03/2024] [Indexed: 07/21/2024] Open
Abstract
Colorectal cancer, the third most prevalent cancer globally, contributes significantly to mortality rates, with over 1.9 million reported cases and nearly 935,000 fatalities annually. Surgical resection is a primary approach for localized colorectal tumors, with adjunct therapies like chemotherapy, radiotherapy, and targeted/immunotherapy considered depending on the tumor stage. However, despite preferences for targeted and immunotherapy post-surgery, chemotherapy remains commonly chosen due to its lower cost and high cancer-killing efficiency. Yet, chemotherapy faces issues such as tumor resistance and severe side effects. Nanotechnology has emerged in cancer therapy by alleviating the drawbacks of current treatment approaches. In the past few decades, inorganic nanoparticles have shown promise in combating colorectal cancer, offering advantages over conventional chemotherapy. Compared to organic nanoparticles, inorganic nanoparticles exhibit properties like photosensitivity, conductivity, magnetic allure, and thermal proficiency, allowing them to function as both drug carriers and therapeutic agents. Derived primarily from carbon, silica, metals, and metal oxides, they offer superior drug-loading capacity, heightened quantum yield, and participation in advanced photothermal and photodynamic therapies. This review provides a brief overview of the pathophysiology of colorectal cancer and the pivotal role of inorganic nanoparticles in photothermal therapy photodynamic therapy, and drug delivery. Additionally, it discusses numerous inorganic nanoparticles in colorectal cancer therapy based on recent literature.
Collapse
Affiliation(s)
- Soumya Narayana
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, Karnataka, India
| | - B H Jaswanth Gowda
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, Karnataka, India
| | - Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, 61421, Saudi Arabia
| | - Sharmin Sultana Shimu
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Karthika Paul
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Mysuru, 570015, Karnataka, India.
| | - Avinaba Das
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, Karnataka, India
| | - Sumel Ashique
- Department of Pharmaceutical Sciences, Bengal College of Pharmaceutical Sciences & Research, Durgapur, 713212, West Bengal, India
- School of Pharmaceutical Sciences , Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Mohammed Gulzar Ahmed
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, Karnataka, India
| | - Maryam Abbasi Tarighat
- Faculty of Nano and Bio Science and Technology, Persian Gulf University, Bushehr, 75169, Iran
| | - Gholamreza Abdi
- Department of Biotechnology, Persian Gulf Research Institute, Persian Gulf University, Bushehr, 75169, Iran.
| |
Collapse
|
4
|
Jadhav V, Roy A, Kaur K, Roy A, Sharma K, Verma R, Rustagi S, Malik S. Current advancements in functional nanomaterials for drug delivery systems. NANO-STRUCTURES & NANO-OBJECTS 2024; 38:101177. [DOI: 10.1016/j.nanoso.2024.101177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
|
5
|
Budka J, Debowski D, Mai S, Narajczyk M, Hac S, Rolka K, Vrettos EI, Tzakos AG, Inkielewicz-Stepniak I. Design, Synthesis, and Antitumor Evaluation of an Opioid Growth Factor Bioconjugate Targeting Pancreatic Ductal Adenocarcinoma. Pharmaceutics 2024; 16:283. [PMID: 38399336 PMCID: PMC10892429 DOI: 10.3390/pharmaceutics16020283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/02/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) presents a formidable challenge with high lethality and limited effective drug treatments. Its heightened metastatic potential further complicates the prognosis. Owing to the significant toxicity of current chemotherapeutics, compounds like [Met5]-enkephalin, known as opioid growth factor (OGF), have emerged in oncology clinical trials. OGF, an endogenous peptide interacting with the OGF receptor (OGFr), plays a crucial role in inhibiting cell proliferation across various cancer types. This in vitro study explores the potential anticancer efficacy of a newly synthesized OGF bioconjugate in synergy with the classic chemotherapeutic agent, gemcitabine (OGF-Gem). The study delves into assessing the impact of the OGF-Gem conjugate on cell proliferation inhibition, cell cycle regulation, the induction of cellular senescence, and apoptosis. Furthermore, the antimetastatic potential of the OGF-Gem conjugate was demonstrated through evaluations using blood platelets and AsPC-1 cells with a light aggregometer. In summary, this article demonstrates the cytotoxic impact of the innovative OGF-Gem conjugate on pancreatic cancer cells in both 2D and 3D models. We highlight the potential of both the OGF-Gem conjugate and OGF alone in effectively inhibiting the ex vivo pancreatic tumor cell-induced platelet aggregation (TCIPA) process, a phenomenon not observed with Gem alone. Furthermore, the confirmed hemocompatibility of OGF-Gem with platelets reinforces its promising potential. We anticipate that this conjugation strategy will open avenues for the development of potent anticancer agents.
Collapse
Affiliation(s)
- Justyna Budka
- Department of Pharmaceutical Pathophysiology, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Dawid Debowski
- Department of Molecular Biochemistry, University of Gdansk, 80-309 Gdansk, Poland
| | - Shaoshan Mai
- Department of Pharmaceutical Pathophysiology, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Magdalena Narajczyk
- Bioimaging Laboratory, Faculty of Biology, University of Gdansk, 80-309 Gdansk, Poland
| | - Stanislaw Hac
- Department of General Endocrine and Transplant Surgery, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Krzysztof Rolka
- Department of Molecular Biochemistry, University of Gdansk, 80-309 Gdansk, Poland
| | | | - Andreas G. Tzakos
- Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece
- University Research Center of Ioannina, Institute of Materials Science and Computing, 45110 Ioannina, Greece
| | | |
Collapse
|
6
|
Potęga A, Rafalska D, Kazimierczyk D, Kosno M, Pawłowicz A, Andrałojć W, Paluszkiewicz E, Laskowski T. In Vitro Enzyme Kinetics and NMR-Based Product Elucidation for Glutathione S-Conjugation of the Anticancer Unsymmetrical Bisacridine C-2028 in Liver Microsomes and Cytosol: Major Role of Glutathione S-Transferase M1-1 Isoenzyme. Molecules 2023; 28:6812. [PMID: 37836655 PMCID: PMC10574777 DOI: 10.3390/molecules28196812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/21/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
This work is the next step in studying the interplay between C-2028 (anticancer-active unsymmetrical bisacridine developed in our group) and the glutathione S-transferase/glutathione (GST/GSH) system. Here, we analyzed the concentration- and pH-dependent GSH conjugation of C-2028 in rat liver microsomes and cytosol. We also applied three recombinant human GST isoenzymes, which altered expression was found in various tumors. The formation of GSH S-conjugate of C-2028 in liver subfractions followed Michaelis-Menten kinetics. We found that C-2028 was conjugated with GSH preferentially by GSTM1-1, revealing a sigmoidal kinetic model. Using a colorimetric assay (MTT test), we initially assessed the cellular GST/GSH-dependent biotransformation of C-2028 in relation to cytotoxicity against Du-145 human prostate cancer cells in the presence or absence of the modulator of GSH biosynthesis. Pretreatment of cells with buthionine sulfoximine resulted in a cytotoxicity decrease, suggesting a possible GSH-mediated bioactivation process. Altogether, our results confirmed the importance of GSH conjugation in C-2028 metabolism, which humans must consider when planning a treatment strategy. Finally, nuclear magnetic resonance spectroscopy elucidated the structure of the GSH-derived product of C-2028. Hence, synthesizing the compound standard necessary for further advanced biological and bioanalytical investigations will be achievable.
Collapse
Affiliation(s)
- Agnieszka Potęga
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza Str. 11/12, 80-233 Gdańsk, Poland; (D.R.); (D.K.); (M.K.); (E.P.); (T.L.)
| | - Dominika Rafalska
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza Str. 11/12, 80-233 Gdańsk, Poland; (D.R.); (D.K.); (M.K.); (E.P.); (T.L.)
| | - Dawid Kazimierczyk
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza Str. 11/12, 80-233 Gdańsk, Poland; (D.R.); (D.K.); (M.K.); (E.P.); (T.L.)
| | - Michał Kosno
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza Str. 11/12, 80-233 Gdańsk, Poland; (D.R.); (D.K.); (M.K.); (E.P.); (T.L.)
| | - Aleksandra Pawłowicz
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Zygmunta Noskowskiego Str. 12/14, 61-704 Poznań, Poland; (A.P.); (W.A.)
| | - Witold Andrałojć
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Zygmunta Noskowskiego Str. 12/14, 61-704 Poznań, Poland; (A.P.); (W.A.)
| | - Ewa Paluszkiewicz
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza Str. 11/12, 80-233 Gdańsk, Poland; (D.R.); (D.K.); (M.K.); (E.P.); (T.L.)
| | - Tomasz Laskowski
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza Str. 11/12, 80-233 Gdańsk, Poland; (D.R.); (D.K.); (M.K.); (E.P.); (T.L.)
| |
Collapse
|
7
|
Laskowski T, Kosno M, Andrałojć W, Frackowiak JE, Borzyszkowska-Bukowska J, Szczeblewski P, Radoń N, Świerżewska M, Woźny A, Paluszkiewicz E, Mazerska Z. The interactions of monomeric acridines and unsymmetrical bisacridines (UAs) with DNA duplexes: an insight provided by NMR and MD studies. Sci Rep 2023; 13:3431. [PMID: 36859494 PMCID: PMC9977845 DOI: 10.1038/s41598-023-30587-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/27/2023] [Indexed: 03/03/2023] Open
Abstract
Members of a novel class of anticancer compounds, exhibiting high antitumor activity, i.e. the unsymmetrical bisacridines (UAs), consist of two heteroaromatic ring systems. One of the ring systems is an imidazoacridinone moiety, with the skeleton identical to the structural base of Symadex. The second one is a 1-nitroacridine moiety, hence it may be regarded as Nitracrine's structural basis. These monoacridine units are connected by an aminoalkyl linker, which vary in structure. In theory, these unsymmetrical dimers should act as double-stranded DNA (dsDNA) bis-intercalators, since the monomeric units constituting the UAs were previously reported to exhibit an intercalating mode of binding into dsDNA. On the contrary, our earlier, preliminary studies have suggested that specific and/or structurally well-defined binding of UAs into DNA duplexes might not be the case. In this contribution, we have revisited and carefully examined the dsDNA-binding properties of monoacridines C-1305, C-1311 (Symadex), C-283 (Ledakrin/Nitracrine) and C-1748, as well as bisacridines C-2028, C-2041, C-2045 and C-2053 using advanced NMR techniques, aided by molecular modelling calculations and the analysis of UV-VIS spectra, decomposed by chemometric techniques. These studies allowed us to explain, why the properties of UAs are not a simple sum of the features exhibited by the acridine monomers.
Collapse
Affiliation(s)
- Tomasz Laskowski
- Department of Pharmaceutical Technology and Biochemistry and BioTechMed Centre, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza Str. 11/12, 80-233, Gdańsk, Poland.
| | - Michał Kosno
- grid.6868.00000 0001 2187 838XDepartment of Pharmaceutical Technology and Biochemistry and BioTechMed Centre, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza Str. 11/12, 80-233 Gdańsk, Poland
| | - Witold Andrałojć
- grid.413454.30000 0001 1958 0162Institute of Bioorganic Chemistry, Polish Academy of Sciences, Zygmunta Noskowskiego Str. 12/14, 61-704 Poznań, Poland
| | - Joanna E. Frackowiak
- grid.6868.00000 0001 2187 838XDepartment of Pharmaceutical Technology and Biochemistry and BioTechMed Centre, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza Str. 11/12, 80-233 Gdańsk, Poland
| | - Julia Borzyszkowska-Bukowska
- grid.6868.00000 0001 2187 838XDepartment of Pharmaceutical Technology and Biochemistry and BioTechMed Centre, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza Str. 11/12, 80-233 Gdańsk, Poland
| | - Paweł Szczeblewski
- grid.6868.00000 0001 2187 838XDepartment of Pharmaceutical Technology and Biochemistry and BioTechMed Centre, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza Str. 11/12, 80-233 Gdańsk, Poland
| | - Nikola Radoń
- grid.6868.00000 0001 2187 838XDepartment of Pharmaceutical Technology and Biochemistry and BioTechMed Centre, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza Str. 11/12, 80-233 Gdańsk, Poland
| | - Maria Świerżewska
- grid.6868.00000 0001 2187 838XDepartment of Pharmaceutical Technology and Biochemistry and BioTechMed Centre, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza Str. 11/12, 80-233 Gdańsk, Poland
| | - Anna Woźny
- grid.6868.00000 0001 2187 838XFaculty of Applied Physics and Mathematics, Gdańsk University of Technology, Gabriela Narutowicza Str. 11/12, 80-233 Gdańsk, Poland
| | - Ewa Paluszkiewicz
- grid.6868.00000 0001 2187 838XDepartment of Pharmaceutical Technology and Biochemistry and BioTechMed Centre, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza Str. 11/12, 80-233 Gdańsk, Poland
| | - Zofia Mazerska
- grid.6868.00000 0001 2187 838XDepartment of Pharmaceutical Technology and Biochemistry and BioTechMed Centre, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza Str. 11/12, 80-233 Gdańsk, Poland
| |
Collapse
|
8
|
pH-Responsive Drug Delivery Nanoplatforms as Smart Carriers of Unsymmetrical Bisacridines for Targeted Cancer Therapy. Pharmaceutics 2023; 15:pharmaceutics15010201. [PMID: 36678830 PMCID: PMC9861370 DOI: 10.3390/pharmaceutics15010201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/02/2023] [Accepted: 01/04/2023] [Indexed: 01/09/2023] Open
Abstract
Selective therapy and controlled drug release at an intracellular level remain key challenges for effective cancer treatment. Here, we employed folic acid (FA) as a self-navigating molecule in nanoconjugates containing quantum dots (QDs) and β-cyclodextrin (β-CD) for the delivery of antitumor unsymmetrical bisacridine compound (C-2028) to lung and prostate cancers as well as normal cells. The bisacridine derivative can form the inclusion complex with β-cyclodextrin molecule, due to the presence of a planar fragment in its structure. The stability of such a complex is pH-dependent. The drug release profile at different pH values and the mechanism of C-2028 release from QDs-β-CD-FA nanoconjugates were investigated. Next, the intracellular fate of compounds and their influence on lysosomal content in the cells were also studied. Confocal Laser Scanning Microscopy studies proved that all investigated compounds were delivered to acidic organelles, the pH of which promoted an increased release of C-2028 from its nanoconjugates. Since the pH in normal cells is higher than in cancer cells, the release of C-2028 from its nanoconjugates is decreased in these cells. Additionally, we obtained the concentration profiles of C-2028 in the selected cells treated with unbound C-2028 or nanoconjugate by the HPLC analysis.
Collapse
|
9
|
Younis NK, Roumieh R, Bassil EP, Ghoubaira JA, Kobeissy F, Eid AH. Nanoparticles: attractive tools to treat colorectal cancer. Semin Cancer Biol 2022; 86:1-13. [DOI: 10.1016/j.semcancer.2022.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 10/31/2022]
|
10
|
Shi M, Liu Y, Huang J, Chen Z, Ni C, Lu J, Zhang Y, Liu Z, Bai J. Multifunctional theranostic nanoplatform loaded with autophagy inhibitor for enhanced photothermal cancer therapy under mild near-infrared irradiation. BIOMATERIALS ADVANCES 2022; 138:212919. [PMID: 35913232 DOI: 10.1016/j.bioadv.2022.212919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/11/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
Photothermal therapy (PTT) usually causes hyperthermia and damages healthy tissues. Developing a PTT platform with enhanced therapeutic effects and reduced side effects to normal tissues attracts increasing attention. Herein, we developed a multifunctional theranostic nanoplatform using poly(lactic-co-glycolic acid) (PLGA) loaded with near-infrared (NIR) photothermal agent (new indocyanine green IR820), fluorescence imaging agent (ZnCdSe/ZnS quantum dots, QDs) and autophagy inhibitor (chloroquine, CQ). These PLGA/IR820/Fluorescence imaging agent/CQ co-loading nanoparticles (termed PIFC NPs) displayed photothermal effects, enhanced the stability of IR820 in vivo, and enabled QDs to have stable fluorescent signals in vitro and in vivo. The PIFC NPs with particle size around 240 nm aggregated to tumor sites through the high permeability and retention effects of solid tumors. The intracellular delivery of CQ molecules through PIFC NPs significantly attenuated the degradation of autophagic lysosomes in tumor cells and effectively inhibited the autophagy mediated repair of photothermal damaged cells. Under milder NIR irradiation conditions, PIFC NPs exhibited high antitumor effect. By regulating autophagy, PTT can be effectively sensitized, which will provide a new idea for future cancer treatment research.
Collapse
Affiliation(s)
- Meilin Shi
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Institute of Medical Imaging and Digital Medicine, Xuzhou Medical University, Xuzhou 221004, China
| | - Yawen Liu
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Jie Huang
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Zhian Chen
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Chen Ni
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Jiahui Lu
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yingying Zhang
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Institute of Medical Imaging and Digital Medicine, Xuzhou Medical University, Xuzhou 221004, China
| | - Zhenbao Liu
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China.
| | - Jin Bai
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| |
Collapse
|
11
|
Kosno M, Laskowski T, Frackowiak JE, Potęga A, Kurdyn A, Andrałojć W, Borzyszkowska-Bukowska J, Szwarc-Karabyka K, Mazerska Z. Acid–Base Equilibrium and Self-Association in Relation to High Antitumor Activity of Selected Unsymmetrical Bisacridines Established by Extensive Chemometric Analysis. Molecules 2022; 27:molecules27133995. [PMID: 35807234 PMCID: PMC9268451 DOI: 10.3390/molecules27133995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/18/2022] [Accepted: 06/19/2022] [Indexed: 11/20/2022] Open
Abstract
Unsymmetrical bisacridines (UAs) represent a novel class of anticancer agents previously synthesized by our group. Our recent studies have demonstrated their high antitumor potential against multiple cancer cell lines and human tumor xenografts in nude mice. At the cellular level, these compounds affected 3D cancer spheroid growth and their cellular uptake was selectively modulated by quantum dots. UAs were shown to undergo metabolic transformations in vitro and in tumor cells. However, the physicochemical properties of UAs, which could possibly affect their interactions with molecular targets, remain unknown. Therefore, we selected four highly active UAs for the assessment of physicochemical parameters under various pH conditions. We determined the compounds’ pKa dissociation constants as well as their potential to self-associate. Both parameters were determined by detailed and complex chemometric analysis of UV-Vis spectra supported by nuclear magnetic resonance (NMR) spectroscopy. The obtained results indicate that general molecular properties of UAs in aqueous media, including their protonation state, self-association ratio, and solubility, are strongly pH-dependent, particularly in the physiological pH range of 6 to 8. In conclusion, we describe the detailed physicochemical characteristics of UAs, which might contribute to their selectivity towards tumour cells as opposed to their effect on normal cells.
Collapse
Affiliation(s)
- Michał Kosno
- Department of Pharmaceutical Technology and Biochemistry and BioMedTech Centre, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza Str. 11/12, 80-233 Gdańsk, Poland; (M.K.); (J.E.F.); (A.P.); (A.K.); (J.B.-B.)
| | - Tomasz Laskowski
- Department of Pharmaceutical Technology and Biochemistry and BioMedTech Centre, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza Str. 11/12, 80-233 Gdańsk, Poland; (M.K.); (J.E.F.); (A.P.); (A.K.); (J.B.-B.)
- Correspondence: (T.L.); (Z.M.); Tel.: +48-58-347-20-79 (T.L.); +48-58-347-24-07 (Z.M.)
| | - Joanna E. Frackowiak
- Department of Pharmaceutical Technology and Biochemistry and BioMedTech Centre, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza Str. 11/12, 80-233 Gdańsk, Poland; (M.K.); (J.E.F.); (A.P.); (A.K.); (J.B.-B.)
| | - Agnieszka Potęga
- Department of Pharmaceutical Technology and Biochemistry and BioMedTech Centre, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza Str. 11/12, 80-233 Gdańsk, Poland; (M.K.); (J.E.F.); (A.P.); (A.K.); (J.B.-B.)
| | - Agnieszka Kurdyn
- Department of Pharmaceutical Technology and Biochemistry and BioMedTech Centre, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza Str. 11/12, 80-233 Gdańsk, Poland; (M.K.); (J.E.F.); (A.P.); (A.K.); (J.B.-B.)
| | - Witold Andrałojć
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Zygmunta Noskowskiego Str. 12/14, 61-704 Poznań, Poland;
| | - Julia Borzyszkowska-Bukowska
- Department of Pharmaceutical Technology and Biochemistry and BioMedTech Centre, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza Str. 11/12, 80-233 Gdańsk, Poland; (M.K.); (J.E.F.); (A.P.); (A.K.); (J.B.-B.)
| | - Katarzyna Szwarc-Karabyka
- Nuclear Magnetic Resonance Laboratory, Gdańsk University of Technology, Gabriela Narutowicza Str. 11/12, 80-233 Gdańsk, Poland;
| | - Zofia Mazerska
- Department of Pharmaceutical Technology and Biochemistry and BioMedTech Centre, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza Str. 11/12, 80-233 Gdańsk, Poland; (M.K.); (J.E.F.); (A.P.); (A.K.); (J.B.-B.)
- Correspondence: (T.L.); (Z.M.); Tel.: +48-58-347-20-79 (T.L.); +48-58-347-24-07 (Z.M.)
| |
Collapse
|
12
|
c-Myc Protein Level Affected by Unsymmetrical Bisacridines Influences Apoptosis and Senescence Induced in HCT116 Colorectal and H460 Lung Cancer Cells. Int J Mol Sci 2022; 23:ijms23063061. [PMID: 35328482 PMCID: PMC8955938 DOI: 10.3390/ijms23063061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/01/2022] [Accepted: 03/10/2022] [Indexed: 12/04/2022] Open
Abstract
Unsymmetrical bisacridines (UAs) are highly active antitumor compounds. They contain in their structure the drugs previously synthesized in our Department: C-1311 and C-1748. UAs exhibit different properties than their monomer components. They do not intercalate to dsDNA but stabilize the G-quadruplex structures, particularly those of the MYC and KRAS genes. Since MYC and KRAS are often mutated and constitutively expressed in cancer cells, they can be used as therapeutic targets. Herein, we investigate whether UAs can affect the expression and protein level of c-Myc and K-Ras in HCT116 and H460 cancer cells, and if so, what are the consequences for the UAs-induced cellular response. UAs did not affect K-Ras, but they strongly influenced the expression and translation of the c-Myc protein, and in H460 cells, they caused its full inhibition. UAs treatment resulted in apoptosis, as confirmed by the morphological changes, the presence of sub-G1 population and active caspase-3, cleaved PARP, annexin-V/PI staining and a decrease in mitochondrial potential. Importantly, apoptosis was induced earlier and to a greater extent in H460 compared to HCT116 cells. Moreover, accelerated senescence occurred only in H460 cells. In conclusion, the strong inhibition of c-Myc by UAs in H460 cells may participate in the final cellular response (apoptosis, senescence).
Collapse
|
13
|
Kowalik P, Bujak P, Penkala M, Maroń AM, Ostrowski A, Kmita A, Gajewska M, Lisowski W, Sobczak JW, Pron A. Indium(II) Chloride as a Precursor in the Synthesis of Ternary (Ag-In-S) and Quaternary (Ag-In-Zn-S) Nanocrystals. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2022; 34:809-825. [PMID: 35095188 PMCID: PMC8794001 DOI: 10.1021/acs.chemmater.1c03800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/14/2021] [Indexed: 06/14/2023]
Abstract
A new indium precursor, namely, indium(II) chloride, was tested as a precursor in the synthesis of ternary Ag-In-S and quaternary Ag-In-Zn-S nanocrystals. This new precursor, being in fact a dimer of Cl2In-InCl2 chemical structure, is significantly more reactive than InCl3, typically used in the preparation of these types of nanocrystals. This was evidenced by carrying out comparative syntheses under the same reaction conditions using these two indium precursors in combination with the same silver (AgNO3) and zinc (zinc stearate) precursors. In particular, the use of indium(II) chloride in combination with low concentrations of the zinc precursor yielded spherical-shaped (D = 3.7-6.2 nm) Ag-In-Zn-S nanocrystals, whereas for higher concentrations of this precursor, rodlike nanoparticles (L = 9-10 nm) were obtained. In all cases, the resulting nanocrystals were enriched in indium (In/Ag = 1.5-10.3). Enhanced indium precursor conversion and formation of anisotropic, longitudinal nanoparticles were closely related to the presence of thiocarboxylic acid type of ligands in the reaction mixture. These ligands were generated in situ and subsequently bound to surfacial In(III) cations in the growing nanocrystals. The use of the new precursor of enhanced reactivity facilitated precise tuning of the photoluminescence color of the resulting nanocrystals in the spectral range from ca. 730 to 530 nm with photoluminescence quantum yield (PLQY) varying from 20 to 40%. The fabricated Ag-In-S and Ag-In-Zn-S nanocrystals exhibited the longest, reported to date, photoluminescence lifetimes of ∼9.4 and ∼1.4 μs, respectively. It was also demonstrated for the first time that ternary (Ag-In-S) and quaternary (Ag-In-Zn-S) nanocrystals could be applied as efficient photocatalysts, active under visible light (green) illumination, in the reaction of aldehydes reduction to alcohols.
Collapse
Affiliation(s)
- Patrycja Kowalik
- Faculty
of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
- Faculty
of Chemistry, University of Warsaw, Pasteura 1 Street, PL-02-093 Warsaw, Poland
| | - Piotr Bujak
- Faculty
of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Mateusz Penkala
- Institute
of Chemistry, Faculty of Science and Technology, University of Silesia, Szkolna 9, 40-007 Katowice, Poland
| | - Anna M. Maroń
- Institute
of Chemistry, Faculty of Science and Technology, University of Silesia, Szkolna 9, 40-007 Katowice, Poland
| | - Andrzej Ostrowski
- Faculty
of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Angelika Kmita
- Academic
Centre for Materials and Nanotechnology, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Krakow, Poland
| | - Marta Gajewska
- Academic
Centre for Materials and Nanotechnology, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Krakow, Poland
| | - Wojciech Lisowski
- Institute
of Physical Chemistry, Polish Academy of
Science, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Janusz W. Sobczak
- Institute
of Physical Chemistry, Polish Academy of
Science, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Adam Pron
- Faculty
of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| |
Collapse
|
14
|
Pilch J, Kowalik P, Kowalczyk A, Bujak P, Kasprzak A, Paluszkiewicz E, Augustin E, Nowicka AM. Foliate-Targeting Quantum Dots- β-Cyclodextrin Nanocarrier for Efficient Delivery of Unsymmetrical Bisacridines to Lung and Prostate Cancer Cells. Int J Mol Sci 2022; 23:ijms23031261. [PMID: 35163186 PMCID: PMC8835877 DOI: 10.3390/ijms23031261] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/16/2022] [Accepted: 01/20/2022] [Indexed: 01/29/2023] Open
Abstract
Targeted drug delivery by nanocarriers molecules can increase the efficiency of cancer treatment. One of the targeting ligands is folic acid (FA), which has a high affinity for the folic acid receptors, which are overexpressed in many cancers. Herein, we describe the preparation of the nanoconjugates containing quantum dots (QDs) and β-cyclodextrin (β-CD) with foliate-targeting properties for the delivery of anticancer compound C-2028. C-2028 was bound to the nanoconjugate via an inclusion complex with β-CD. The effect of using FA in QDs-β-CD(C-2028)-FA nanoconjugates on cytotoxicity, cellular uptake, and the mechanism of internalization in cancer (H460, Du-145, and LNCaP) and normal (MRC-5 and PNT1A) cells was investigated. The QDs-β-CD(C-2028)-FA were characterized using DLS (dynamic light scattering), ZP (zeta potential), quartz crystal microbalance with dissipation (QCM-D), and UV-vis spectroscopy. The conjugation of C-2028 with non-toxic QDs or QDs-β-CD-FA did not change the cytotoxicity of this compound. Confocal microscopy studies proved that the use of FA in nanoconjugates significantly increased the amount of delivered compound, especially to cancer cells. QDgreen-β-CD(C-2028)-FA enters the cells through multiple endocytosis pathways in different levels, depending on the cell line. To conclude, the use of FA is a good self-navigating molecule in the QDs platform for drug delivery to cancer cells.
Collapse
Affiliation(s)
- Joanna Pilch
- Faculty of Chemistry, Gdańsk University of Technology, Narutowicza Street 11/12, 80-233 Gdansk, Poland; (E.P.); (E.A.)
- Correspondence: (J.P.); (A.M.N.); Tel.: +48-58-347-12-97 (J.P.); +48-22-552-63-61 (A.M.N.)
| | - Patrycja Kowalik
- Faculty of Chemistry, University of Warsaw, Pasteura Street 1, 02-093 Warsaw, Poland; (P.K.); (A.K.)
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego Street 3, 00-664 Warsaw, Poland; (P.B.); (A.K.)
| | - Agata Kowalczyk
- Faculty of Chemistry, University of Warsaw, Pasteura Street 1, 02-093 Warsaw, Poland; (P.K.); (A.K.)
| | - Piotr Bujak
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego Street 3, 00-664 Warsaw, Poland; (P.B.); (A.K.)
| | - Artur Kasprzak
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego Street 3, 00-664 Warsaw, Poland; (P.B.); (A.K.)
| | - Ewa Paluszkiewicz
- Faculty of Chemistry, Gdańsk University of Technology, Narutowicza Street 11/12, 80-233 Gdansk, Poland; (E.P.); (E.A.)
| | - Ewa Augustin
- Faculty of Chemistry, Gdańsk University of Technology, Narutowicza Street 11/12, 80-233 Gdansk, Poland; (E.P.); (E.A.)
| | - Anna M. Nowicka
- Faculty of Chemistry, University of Warsaw, Pasteura Street 1, 02-093 Warsaw, Poland; (P.K.); (A.K.)
- Correspondence: (J.P.); (A.M.N.); Tel.: +48-58-347-12-97 (J.P.); +48-22-552-63-61 (A.M.N.)
| |
Collapse
|
15
|
Kowalik P, Bujak P, Penkala M, Pron A. Organic-to-Aqueous Phase Transfer of Alloyed AgInS 2-ZnS Nanocrystals Using Simple Hydrophilic Ligands: Comparison of 11-Mercaptoundecanoic Acid, Dihydrolipoic Acid and Cysteine. NANOMATERIALS 2021; 11:nano11040843. [PMID: 33806242 PMCID: PMC8066034 DOI: 10.3390/nano11040843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/18/2021] [Accepted: 03/22/2021] [Indexed: 02/05/2023]
Abstract
The exchange of primary hydrophobic ligands for hydrophilic ones was studied for two types of alloyed AgInS2-ZnS nanocrystals differing in composition and by consequence exhibiting two different emission colors: red (R) and green (G). Three simple hydrophilic ligands were tested, namely, 11-mercaptoundecanoic acid, dihydrolipoic acid and cysteine. In all cases, stable aqueous colloidal dispersions were obtained. Detailed characterization of the nanocrystal surface before and after the ligand exchange by NMR spectroscopy unequivocally showed that the exchange process was the most efficient in the case of dihydrolipoic acid, leading to the complete removal of the primary ligands with a relatively small photoluminescence quantum yield drop from 68% to 40% for nanocrystals of the R type and from 48% to 28% for the G ones.
Collapse
Affiliation(s)
- Patrycja Kowalik
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland; (P.K.); (A.P.)
- Faculty of Chemistry, University of Warsaw, Pasteura 1 Str., PL-02-093 Warsaw, Poland
| | - Piotr Bujak
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland; (P.K.); (A.P.)
- Correspondence:
| | - Mateusz Penkala
- Institute of Chemistry, Faculty of Mathematics, Physics and Chemistry, University of Silesia, Szkolna 9, 40-007 Katowice, Poland;
| | - Adam Pron
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland; (P.K.); (A.P.)
| |
Collapse
|
16
|
Kowalik P, Mucha SG, Matczyszyn K, Bujak P, Mazur LM, Ostrowski A, Kmita A, Gajewska M, Pron A. Heterogeneity induced dual luminescence properties of AgInS 2 and AgInS 2–ZnS alloyed nanocrystals. Inorg Chem Front 2021. [DOI: 10.1039/d1qi00566a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In the PL spectra of heterogeneous nanocrystals (In2S3–AgInS2 and In2S3–AgInS2–ZnS) two distinctly different peaks could be found at 430 and 710–515 nm.
Collapse
Affiliation(s)
- Patrycja Kowalik
- Warsaw University of Technology
- Faculty of Chemistry
- 00-664 Warsaw
- Poland
- Faculty of Chemistry
| | - Sebastian G. Mucha
- Laboratoire Charles Coulomb (L2C)
- UMR5221
- University of Montpellier
- CNRS
- 34095 Montpellier
| | - Katarzyna Matczyszyn
- Advanced Materials Engineering and Modelling Group
- Faculty of Chemistry
- Wroclaw University of Science and Technology
- 50-370 Wroclaw
- Poland
| | - Piotr Bujak
- Warsaw University of Technology
- Faculty of Chemistry
- 00-664 Warsaw
- Poland
| | - Leszek M. Mazur
- Advanced Materials Engineering and Modelling Group
- Faculty of Chemistry
- Wroclaw University of Science and Technology
- 50-370 Wroclaw
- Poland
| | - Andrzej Ostrowski
- Warsaw University of Technology
- Faculty of Chemistry
- 00-664 Warsaw
- Poland
| | - Angelika Kmita
- AGH University of Science and Technology
- Academic Centre for Materials and Nanotechnology
- 30-059 Kraków
- Poland
| | - Marta Gajewska
- AGH University of Science and Technology
- Academic Centre for Materials and Nanotechnology
- 30-059 Kraków
- Poland
| | - Adam Pron
- Warsaw University of Technology
- Faculty of Chemistry
- 00-664 Warsaw
- Poland
| |
Collapse
|