1
|
Minea AA. Thermophysical Properties of Nanocolloids and Their Potential Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:217. [PMID: 36616126 PMCID: PMC9824248 DOI: 10.3390/nano13010217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
This Special Issue is a continuation of the previous successful Special Issue, entitled "Future and Prospects in Nanofluids Research", co-edited by the present Editor and dedicated to the topic of "Thermophysical Properties of Nanocolloids and Their Potential Applications" [...].
Collapse
Affiliation(s)
- Alina Adriana Minea
- Materials Science and Engineering Faculty, "Gheorghe Asachi" Technical University of Iasi, 700050 Iasi, Romania
| |
Collapse
|
2
|
Macrocyclic Ionic Liquids with Amino Acid Residues: Synthesis and Influence of Thiacalix[4]arene Conformation on Thermal Stability. Molecules 2022; 27:molecules27228006. [PMID: 36432113 PMCID: PMC9698724 DOI: 10.3390/molecules27228006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/19/2022] Open
Abstract
Novel thiacalix[4]arene based ammonium ionic liquids (ILs) containing amino acid residues (glycine and L-phenylalanine) in cone, partial cone, and 1,3-alternate conformations were synthesized by alkylation of macrocyclic tertiary amines with N-bromoacetyl-amino acids ethyl ester followed by replacing bromide anions with bis(trifluoromethylsulfonyl)imide ions. The melting temperature of the obtained ILs was found in the range of 50−75 °C. The effect of macrocyclic core conformation on the synthesized ILs’ melting points was shown, i.e., the ILs in partial cone conformation have the lowest melting points. Thermal stability of the obtained macrocyclic ILs was determined via thermogravimetry and differential scanning calorimetry. The onset of decomposition of the synthesized compounds was established at 305−327 °C. The compounds with L-phenylalanine residues are less thermally stable by 3−19 °C than the same glycine-containing derivatives.
Collapse
|
3
|
Jahanbakhshi A, Farahi M. Immobilized sulfonic acid functionalized ionic liquid on magnetic cellulose as a novel catalyst for the synthesis of triazolo[4,3-a]pyrimidines. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
4
|
Krasovskii VG, Kapustin GI, Glukhov LM, Chernikova EA, Kustov LM. Dicationic Ionic Liquids As Heat Transfer Fluids in Vacuum. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2022. [DOI: 10.1134/s0036024422070172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Abstract
Stationary energy storage methods such as flow batteries are one of the best options to integrate with smart power grids. Though electrochemical energy storage using flow battery technologies has been successfully demonstrated since the 1970s, the introduction of ionic liquids into the field of energy storage introduces new dimensions in this field. This reliable energy storage technology can provide significantly more flexibility when incorporated with the synergic effects of ionic liquids. This mini-review enumerates the present trends in redox flow battery designs and the use of ionic liquids as electrolytes, membranes, redox couples, etc. explored in these designs. This review specifically intends to provide an overview of the research prospects of ionic liquids for redox flow batteries (RFB).
Collapse
|
6
|
Ionic liquid-nanoparticle based hybrid systems for energy conversion and energy storage applications. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104237] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
7
|
Effect of Water and Salt on the Colloidal Stability of Latex Particles in Ionic Liquid Solutions. COLLOIDS AND INTERFACES 2021. [DOI: 10.3390/colloids6010002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The colloidal stability of sulfate (SL) and polyimidazolium-modified sulfate (SL-IP-2) latex particles was studied in an ionic liquid (IL) of ethylammonium nitrate (EAN) and its water mixtures. Aggregation rates were found to vary systematically as a function of the IL-to-water ratio. Repulsive electrostatic interactions between particles dominated at low IL concentrations, while they were significantly screened at intermediate IL concentrations, leading to destabilization of the dispersions. When the IL concentration was further increased, the aggregation of latex particles slowed down due to the increased viscosity and finally, a striking stabilization was observed in the IL-rich regime close to the pure IL solvent. The latter stabilization is due to the formation of IL layers at the interface between particles and IL, which induce repulsive oscillatory forces. The presence of the added salt in the system affected differently the structure of the interfaces around SL and SL-IP-2 particles. The sign of the charge and the composition of the particle surfaces were found to be the most important parameters affecting the colloidal stability. The nature of the counterions also plays an important role in the interfacial properties due to their influence on the structure of the IL surface layers. No evidence was observed for the presence of long-range electrostatic interactions between the particles in pure ILs. The results indicate that the presence of even low concentrations of water and salt in the system (as undesirable impurities) can strongly alter the interfacial structure and thus, the aggregation mechanism in particle IL dispersions.
Collapse
|
8
|
Development of artificial neural network model for predicting dynamic viscosity and specific heat of MWCNT nanoparticle-enhanced ionic liquids with different [HMIM]-cation base agents. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117356] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Huminic G, Huminic A. Thermophysical Properties of NH 3/IL+ Carbon Nanomaterial Solutions. NANOMATERIALS 2021; 11:nano11102612. [PMID: 34685055 PMCID: PMC8541318 DOI: 10.3390/nano11102612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 09/28/2021] [Accepted: 09/30/2021] [Indexed: 11/16/2022]
Abstract
This study proposes the use of new working fluids, refrigerant/IL+ carbon nanomaterials (CNMs), in absorption systems as an alternative to conventional working fluids. In this regard, the thermophysical properties of ammonia and carbon nanomaterials (graphene and single-wall carbon nanotubes) dispersed into [BMIM]BF4 ionic liquid are theoretically investigated. The thermophysical properties of NH3/IL+ CNMs solutions are computed for weight fractions of NH3 in the range of 0.018-0.404 and temperatures between 293 and 388 K. In addition, two weight fractions of CNMs are considered: 0.005 and 0.01, respectively. Our results indicate that by adding a small amount of nanomaterial to the ionic liquid, the solution's thermal conductivity is enhanced, while its viscosity and specific heat are reduced. Correlations of the thermal conductivity, viscosity, specific heat, and density of the NH3/IL+ CNMs solutions are proposed.
Collapse
|
10
|
Riedl JC, Sarkar M, Fiuza T, Cousin F, Depeyrot J, Dubois E, Mériguet G, Perzynski R, Peyre V. Design of concentrated colloidal dispersions of iron oxide nanoparticles in ionic liquids: Structure and thermal stability from 25 to 200 °C. J Colloid Interface Sci 2021; 607:584-594. [PMID: 34509733 DOI: 10.1016/j.jcis.2021.08.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 11/19/2022]
Abstract
HYPOTHESIS Some of the most promising fields of application of ionic liquid-based colloids imply elevated temperatures. Their careful design and analysis is therefore essential. We assume that tuning the structure of the nanoparticle-ionic liquid interface through its composition can ensure colloidal stability for a wide temperature range, from room temperature up to 200 °C. EXPERIMENTS The system under study consists of iron oxide nanoparticles (NPs) dispersed in ethylmethylimidazolium bistriflimide (EMIM TFSI). The key parameters of the solid-liquid interface, tuned at room temperature, are the surface charge density and the nature of the counterions. The thermal stability of these nanoparticle dispersions is then analysed on the short and long term up to 200 °C. A multiscale analysis is performed combining dynamic light scattering (DLS), small angle X-ray/neutron scattering (SAXS/SANS) and thermogravimetric analysis (TGA). FINDINGS Following the proposed approach with a careful choice of the species at the solid-liquid interface, ionic liquid-based colloidal dispersions of iron oxide NPs in EMIM TFSI stable over years at room temperature can be obtained, also stable at least over days up to 200 °C and NPs concentrations up to 12 vol% (≈30 wt%) thanks to few near-surface ionic layers.
Collapse
Affiliation(s)
- J C Riedl
- Sorbonne Université, CNRS, Laboratoire PHENIX, 4 place Jussieu, case 51, 75005 Paris, France.
| | - M Sarkar
- Sorbonne Université, CNRS, Laboratoire PHENIX, 4 place Jussieu, case 51, 75005 Paris, France.
| | - T Fiuza
- Sorbonne Université, CNRS, Laboratoire PHENIX, 4 place Jussieu, case 51, 75005 Paris, France; Inst. de Fisica, Complex Fluid Group, Universidade de Brasília, Brasília, Brazil.
| | - F Cousin
- Laboratoire Léon Brillouin, UMR 12 CNRS-CEA, CEA-Saclay, 91191 Gif-sur-Yvette, France.
| | - J Depeyrot
- Inst. de Fisica, Complex Fluid Group, Universidade de Brasília, Brasília, Brazil
| | - E Dubois
- Sorbonne Université, CNRS, Laboratoire PHENIX, 4 place Jussieu, case 51, 75005 Paris, France.
| | - G Mériguet
- Sorbonne Université, CNRS, Laboratoire PHENIX, 4 place Jussieu, case 51, 75005 Paris, France.
| | - R Perzynski
- Sorbonne Université, CNRS, Laboratoire PHENIX, 4 place Jussieu, case 51, 75005 Paris, France.
| | - V Peyre
- Sorbonne Université, CNRS, Laboratoire PHENIX, 4 place Jussieu, case 51, 75005 Paris, France.
| |
Collapse
|
11
|
Czaplicka N, Grzegórska A, Wajs J, Sobczak J, Rogala A. Promising Nanoparticle-Based Heat Transfer Fluids-Environmental and Techno-Economic Analysis Compared to Conventional Fluids. Int J Mol Sci 2021; 22:9201. [PMID: 34502109 PMCID: PMC8431053 DOI: 10.3390/ijms22179201] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/20/2021] [Accepted: 08/24/2021] [Indexed: 11/28/2022] Open
Abstract
Providing optimal operating conditions is one of the major challenges for effective heating or cooling systems. Moreover, proper adjustment of the heat transfer fluid is also important from the viewpoint of the correct operation, maintenance, and cost efficiency of these systems. Therefore, in this paper, a detailed review of recent work on the subject of conventional and novel heat transfer fluid applications is presented. Particular attention is paid to the novel nanoparticle-based materials used as heat transfer fluids. In-depth comparison of environmental, technical, and economic characteristics is discussed. Thermophysical properties including thermal conductivity, specific heat, density, viscosity, and Prandtl number are compared. Furthermore, the possible benefits and limitations of various transfer fluids in the fields of application are taken into account.
Collapse
Affiliation(s)
- Natalia Czaplicka
- Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland; (A.G.); (A.R.)
| | - Anna Grzegórska
- Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland; (A.G.); (A.R.)
| | - Jan Wajs
- Institute of Energy, Faculty of Mechanical Engineering and Ship Technology, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland;
| | - Joanna Sobczak
- Research and Development Joanna Sobczak, Różnowo 8, 14-240 Susz, Poland;
| | - Andrzej Rogala
- Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland; (A.G.); (A.R.)
| |
Collapse
|
12
|
Appearance of a Solitary Wave Particle Concentration in Nanofluids under a Light Field. NANOMATERIALS 2021; 11:nano11051291. [PMID: 34068861 PMCID: PMC8153594 DOI: 10.3390/nano11051291] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/06/2021] [Accepted: 05/11/2021] [Indexed: 11/30/2022]
Abstract
In this study, the nonlinear dynamics of nanoparticle concentration in a colloidal suspension (nanofluid) were theoretically studied under the action of a light field with constant intensity by considering concentration convection. The heat and nanoparticle transfer processes that occur in this case are associated with the phenomenon of thermal diffusion, which is considered to be positive in our work. Two exact analytical solutions of a nonlinear Burgers-Huxley-type equation were derived and investigated, one of which was presented in the form of a solitary concentration wave. These solutions were derived considering the dependence of the coefficients of thermal conductivity, viscosity, and absorption of radiation on the nanoparticle concentration in the nanofluid. Furthermore, an expression was obtained for the solitary wave velocity, which depends on the absorption coefficient and intensity of the light wave. Numerical estimates of the concentration wave velocity for a specific nanofluid—water/silver—are given. The results of this study can be useful in the creation of next-generation solar collectors.
Collapse
|