1
|
Zhao S, Yue Z, Zhu D, Harberts J, Blick RH, Zierold R, Lisdat F, Parak WJ. Quantum Dot/TiO 2 Nanocomposite-Based Photoelectrochemical Sensor for Enhanced H 2O 2 Detection Applied for Cell Monitoring and Visualization. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401703. [PMID: 39210661 DOI: 10.1002/smll.202401703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/08/2024] [Indexed: 09/04/2024]
Abstract
This work exploits the possibility of using CdSe/ZnS quantum dot (QD)-electrodes to monitor the metabolism of living cells based on photoelectrochemical (PEC) measurements. To realize that, the PEC setup is improved with respect to an enhanced photocurrent signal, better stability, and an increased signal-to-noise ratio, but also for a better biocompatibility of the sensor surface on which cells have been grown. To achieve this, a QD-TiO2 heterojunction is introduced with the help of atomic layer deposition (ALD). The heterojunction reduces the charge carrier recombination inside the semiconductor nanoparticles and improves the drift behavior. The PEC performance is carefully analyzed by adjusting the TiO2 thickness and combining this strategy with multilayer immobilizations of QDs. The optimal thickness of this coating is ≈5 nm; here, photocurrent generation can be enhanced significantly (e.g., for a single QD layer electrode by more than one order of magnitude at 0 V vs Ag/AgCl). The resulting optimized electrode is used for hydrogen peroxide (H2O2) sensing with a good sensitivity down to µmolar concentrations, reusability, stability, response rate, and repeatability. Finally, the sensing system is applied to monitor the activity of cells directly grown on top of the electrode surface.
Collapse
Grants
- F2021203102 Hebei Natural Science Foundation, Science Research Project of Hebei Education Department, S&T Program of Hebei
- C20210324 Hebei Natural Science Foundation, Science Research Project of Hebei Education Department, S&T Program of Hebei
- F2023203085 Hebei Natural Science Foundation, Science Research Project of Hebei Education Department, S&T Program of Hebei
- F2024203033 Hebei Natural Science Foundation, Science Research Project of Hebei Education Department, S&T Program of Hebei
- ZD2022108 Hebei Natural Science Foundation, Science Research Project of Hebei Education Department, S&T Program of Hebei
- 236Z1705G Hebei Natural Science Foundation, Science Research Project of Hebei Education Department, S&T Program of Hebei
- China Scholarship Council
- Deutsche Forschungsgemeinschaft
- EXC 2056 Cluster of Excellence "Advanced Imaging of Matter"
- 390715994 Cluster of Excellence "Advanced Imaging of Matter"
- 192346071 the SFB986 "Tailor-Made Multi-Scale Materials Systems"
- 61871240 National Natural Science Foundation of China
Collapse
Affiliation(s)
- Shuang Zhao
- Fachbereich Physik, CHyN, Universität Hamburg, Hamburg, 22761, Germany
- Key Laboratory for Special Fiber and Fiber Sensor of Hebei Province, School of Information Science and Engineering, Yanshan University, Qinhuangdao, 066004, China
| | - Zhao Yue
- Department of Microelectronics, Nankai University, Tianjin, 30071, China
| | - Dingcheng Zhu
- Fachbereich Physik, CHyN, Universität Hamburg, Hamburg, 22761, Germany
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, China
| | - Jann Harberts
- Fachbereich Physik, CHyN, Universität Hamburg, Hamburg, 22761, Germany
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, 3052, VIC, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Road, Clayton, 3168, VIC, Australia
| | - Robert H Blick
- Fachbereich Physik, CHyN, Universität Hamburg, Hamburg, 22761, Germany
| | - Robert Zierold
- Fachbereich Physik, CHyN, Universität Hamburg, Hamburg, 22761, Germany
| | - Fred Lisdat
- Biosystems Technology, Institute of Life Sciences and Biomedical Technologies, Technical University of Applied Sciences Wildau, Wildau, 15745, Germany
| | - Wolfgang J Parak
- Fachbereich Physik, CHyN, Universität Hamburg, Hamburg, 22761, Germany
| |
Collapse
|
2
|
Wei H, Chen C, Yang D. Applications of inverse opal photonic crystal hydrogels in the preparation of acid-base color-changing materials. RSC Adv 2024; 14:2243-2263. [PMID: 38213963 PMCID: PMC10777361 DOI: 10.1039/d3ra07465j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/05/2024] [Indexed: 01/13/2024] Open
Abstract
Hydrogels are three-dimensional (3D) crosslinked network hydrophilic polymers that have structures similar to that of biological protein tissue and can quickly absorb a large amount of water. Opal photonic crystals (OPCs) are a kind of photonic band gap material formed by the periodic arrangement of 3D media, and inverse opal photonic crystals (IOPCs) are their inverse structure. Inverse opal photonic crystal hydrogels (IOPCHs) can produce corresponding visual color responses to a change in acid or alkali in an external humid environment, which has wide applications in chemical sensing, anti-counterfeiting, medical detection, intelligent display, and other fields, and the field has developed rapidly in recent years. In this paper, the research progress on fast acid-base response IOPCHs (pH-IOPCHs) is comprehensively described from the perspective of material synthesis. The technical bottleneck of enhancing the performance of acid-base-responsive IOPCHs and the current practical application limitations are summarized, and the development prospects of acid-base-responsive IOPCHs are described. These comprehensive analyses are expected to provide new ideas for solving problems in the preparation and application of pH-IOPCHs.
Collapse
Affiliation(s)
- Hu Wei
- Research Institute for National Defense Engineering of Academy of Military Science, PLA Luoyang 471023 China +086-18761686837
- Henan Key Laboratory of Special Protective Materials Luoyang 471023 China
| | - Changbing Chen
- Research Institute for National Defense Engineering of Academy of Military Science, PLA Luoyang 471023 China +086-18761686837
- Henan Key Laboratory of Special Protective Materials Luoyang 471023 China
| | - Dafeng Yang
- Research Institute for National Defense Engineering of Academy of Military Science, PLA Luoyang 471023 China +086-18761686837
- Henan Key Laboratory of Special Protective Materials Luoyang 471023 China
| |
Collapse
|
3
|
Fernández JG, Martínez VV, de la Prida Pidal VM. Special Issue "ALD Technique for Functional Coatings of Nanostructured Materials". NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3489. [PMID: 36234616 PMCID: PMC9565319 DOI: 10.3390/nano12193489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Atomic layer deposition (ALD) is a vapor-phase technique that consists of the alternation of separated self-limiting surface reactions, which enable film thickness to be accurately controlled at the angstrom level, based on the former atomic layer epitaxy method [...].
Collapse
Affiliation(s)
- Javier Garcia Fernández
- Departamento de Física, Facultad de Ciencias, Universidad de Oviedo, C/Federico García Lorca nº 18, 33007 Oviedo, Spain
| | - Victor Vega Martínez
- Laboratorio de Membranas Nanoporosas, Edificio de Servicios Científico Técnicos “Severo Ochoa”, Universidad de Oviedo, C/Fernando Bonguera s/n, 33006 Oviedo, Spain
| | | |
Collapse
|