1
|
Chen Y, Zhu X, Liu H, Sun B. Multi-confinement structured carbon dots with long room temperature phosphorescence lifetime and efficiency for sensing thiram residues assisted by copper ions. Mikrochim Acta 2024; 191:655. [PMID: 39379669 DOI: 10.1007/s00604-024-06732-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 09/27/2024] [Indexed: 10/10/2024]
Abstract
Room temperature phosphorescent carbon dots (NCCDs@SiO2) were obtained by encapsulating hydrothermally synthesized CDs in a dense Si-O network structure after high-temperature calcination using silica as the matrix. This can avoid the quenching effect of dissolved oxygen in water and has a phosphorescence lifetime of up to 2.41 s. Using the phosphorescence property of NCCDs@SiO2, a phosphorescence quenching sensor was developed for the sensitive and selective detection of thiram with the assistance of Cu2+. Cu2+-thiram complexes led to a rapid phosphorescence quenching of NCCDs@SiO2 within 30 s through the inner filter effect. The linear range of phosphorescence for thiram was 0.5-100 µM with a detection limit of 0.121 µM. The proposed method was able to detect thiram in real samples and was validated by high-performance liquid chromatography (HPLC) confirming the potential of this phosphorescence sensing method for thiram detection. This work opens up a new avenue for the detection of thiram residues in fruits and vegetables and also provides a new idea for the design of a rapid detection platform using other room temperature phosphorescent materials.
Collapse
Affiliation(s)
- Yunhai Chen
- Ministry of Education, Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), 11 Fucheng Road, Beijing, 100048, China
| | - Xuecheng Zhu
- Ministry of Education, Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), 11 Fucheng Road, Beijing, 100048, China
| | - Huilin Liu
- Ministry of Education, Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), 11 Fucheng Road, Beijing, 100048, China.
| | - Baoguo Sun
- Ministry of Education, Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), 11 Fucheng Road, Beijing, 100048, China
| |
Collapse
|
2
|
Du X, Zhang Q, Ma X, Xu G, Li J, Song P, Xia L. Dual detection and quantification of hypochlorite and sulfite ions via SERS spectroscopy by utilizing the redox reaction of tetramethylbenzidine. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 312:124051. [PMID: 38368820 DOI: 10.1016/j.saa.2024.124051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 01/25/2024] [Accepted: 02/15/2024] [Indexed: 02/20/2024]
Abstract
We developed a highly efficient, ultra-sensitive, and selective dual detection sensor for hypochlorite (ClO-) and sulfite (SO32-) ions based on surface-enhanced Raman scattering (SERS) spectroscopy. 3,3',5,5'-Tetramethylbenzidine (TMB) is oxidized by ClO- under acidic conditions to diazotized oxTMB that, when electrostatically adsorbed onto Au nanoparticles (NPs), produces a strong Raman signal at 1605 cm-1. Meanwhile, oxTMB is reduced to TMB by SO32-, which significantly reduces the Raman signal. The linear detection range of the proposed sensor is 10-10 to 10-6 M with a detection limit of 59 pM for ClO- and 10-9 to 10-5 M with a detection limit of 5.4 nM for SO32-. In addition, the sensor was successfully applied to detect ClO- and SO32- in water samples.
Collapse
Affiliation(s)
- Xiaoyu Du
- College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Qijia Zhang
- College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Xiaodi Ma
- College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Guangda Xu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jia Li
- College of Physics, Liaoning University, Shenyang 110036, China
| | - Peng Song
- College of Physics, Liaoning University, Shenyang 110036, China.
| | - Lixin Xia
- College of Chemistry, Liaoning University, Shenyang 110036, China.
| |
Collapse
|
3
|
Ma J, Sun L, Gao F, Zhang S, Zhang Y, Wang Y, Zhang Y, Ma H. A Review of Dual-Emission Carbon Dots and Their Applications. Molecules 2023; 28:8134. [PMID: 38138622 PMCID: PMC10745998 DOI: 10.3390/molecules28248134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/06/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023] Open
Abstract
Carbon dots (CDs), as a rising star among fluorescent nanomaterials with excellent optical properties and fascinating dual-emission characteristics, have attracted increasing attention in sensing, bio-imaging, drug delivery, and so on. The synthesis of dual-emission CDs (DE-CDs) and the establishment of ratiometric fluorescence sensors can effectively diminish background interference and provide more accurate results than single-emission CDs. Although DE-CDs have generated increased attention in many fields, the review articles about DE-CDs are still insufficient. Therefore, we summarized the latest results and prepared this review. This review first provides an overview of the primary synthesis route and commonly used precursors in DE-CDs synthesis. Then, the photoluminescence mechanism behind the dual-emission phenomenon was discussed. Thirdly, the application of DE-CDs in metal cation detection, food safety analysis, biosensing, cell imaging, and optoelectronic devices has been extensively discussed. Finally, the main challenges and prospects for further development are presented. This review presents the latest research progress of DE-CDs synthesis and its application in ratiometric sensing; hopefully, it can help and encourage researchers to overcome existing challenges and broaden the area of DE-CDs research.
Collapse
Affiliation(s)
- Jing Ma
- Key Laboratory of Analytical Technology and Detection of Yan’an, College of Chemistry and Chemical Engineering, Yan’an University, Yan’an 716000, China; (J.M.); (S.Z.); (Y.W.); (H.M.)
| | - Lingbo Sun
- Medical College of Yan’an University, Yan’an University, Yan’an 716000, China; (L.S.); (Y.Z.)
| | - Feng Gao
- Xi’an Zhongkai Environmental Testing Co., Ltd., Xi’an 710000, China;
| | - Shiyu Zhang
- Key Laboratory of Analytical Technology and Detection of Yan’an, College of Chemistry and Chemical Engineering, Yan’an University, Yan’an 716000, China; (J.M.); (S.Z.); (Y.W.); (H.M.)
| | - Yuhan Zhang
- Medical College of Yan’an University, Yan’an University, Yan’an 716000, China; (L.S.); (Y.Z.)
| | - Yixuan Wang
- Key Laboratory of Analytical Technology and Detection of Yan’an, College of Chemistry and Chemical Engineering, Yan’an University, Yan’an 716000, China; (J.M.); (S.Z.); (Y.W.); (H.M.)
| | - Yuecheng Zhang
- Key Laboratory of Analytical Technology and Detection of Yan’an, College of Chemistry and Chemical Engineering, Yan’an University, Yan’an 716000, China; (J.M.); (S.Z.); (Y.W.); (H.M.)
| | - Hongyan Ma
- Key Laboratory of Analytical Technology and Detection of Yan’an, College of Chemistry and Chemical Engineering, Yan’an University, Yan’an 716000, China; (J.M.); (S.Z.); (Y.W.); (H.M.)
| |
Collapse
|
4
|
Xu J, Zhou X, He H, Li S, Ma C. A turn-on fluorescence strategy for hypochlorous acid detection based on DNAzyme-assisted cyclic signal amplification. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 303:123243. [PMID: 37562215 DOI: 10.1016/j.saa.2023.123243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/24/2023] [Accepted: 08/05/2023] [Indexed: 08/12/2023]
Abstract
Hypochlorous acid (HClO) is a crucial active oxygen component and one of the innate immunity's barrier substances in the body. Abnormal fluctuations in HClO concentration can lead to increased oxidative stress, cellular dysfunction, and the onset of various diseases. Thus, developing convenient, affordable, efficient, and sensitive methods to monitor HClO concentration in healthcare and pathophysiology research is highly significant. In this study, we developed a novel fluorescence strategy for HClO detection based on nucleic acid oxidative cleavage and Pb2+-dependent DNAzyme. By introducing a phosphorothioate site in the hairpin-structured nucleic acid sequence, the nucleic acid probe specifically recognized HClO and underwent oxidative cleavage. Upon cleavage, the enzyme strand is liberated, forming DNAzyme. This DNAzyme then cleaves the substrate strand, liberating the initially quenched fluorescent dyes and generating a turn-on fluorescent signal. The enzyme strand produced by the oxidative cleavage of HClO can be repeatedly utilized, thus realizing the cyclic signal amplification to reduce background noise. We verified the detection mechanism of this strategy through stepwise fluorescence spectroscopy analysis and electrophoresis. Under optimal experimental conditions, the method achieved a detection limit of 5.38 nM and a linear range of 1 nM-800 nM. This method demonstrated exceptional performance in actual biological sample testing and presented an exciting opportunity for expanded utilization in clinical diagnosis and medical research.
Collapse
Affiliation(s)
- Jiaqi Xu
- School of Life Sciences, Central South University, Changsha 410013, China; Xiangya Hospital, Central South University, Changsha 410013, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Xi Zhou
- School of Life Sciences, Central South University, Changsha 410013, China
| | - Hailun He
- School of Life Sciences, Central South University, Changsha 410013, China
| | - Shanni Li
- School of Life Sciences, Central South University, Changsha 410013, China.
| | - Changbei Ma
- School of Life Sciences, Central South University, Changsha 410013, China.
| |
Collapse
|
5
|
A fluorescence and phosphorescence dual-signal readout platform based on carbon dots/SiO2 for multi-channel detections of carbaryl, thiram and chlorpyrifos. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Kateshiya MR, Malek NI, Kumar Kailasa S. Green fluorescent carbon dots functionalized MoO3 nanoparticles for sensing of hypochlorite. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118628] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
7
|
Chen ZJ, Wu HL, Shen YD, Wang H, Zhang YF, Hammock B, Li ZF, Luo L, Lei HT, Xu ZL. Phosphate-triggered ratiometric fluoroimmunoassay based on nanobody-alkaline phosphatase fusion for sensitive detection of 1-naphthol for the exposure assessment of pesticide carbaryl. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127411. [PMID: 34629198 PMCID: PMC8877597 DOI: 10.1016/j.jhazmat.2021.127411] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 09/20/2021] [Accepted: 09/30/2021] [Indexed: 05/21/2023]
Abstract
The excessive use of carbaryl has resulted in the risk of its exposure. In this study, we isolated six nanobodies (Nbs) from a camelid phage display library against the biomarker of carbaryl, 1-naphthol (1-NAP). Owing to its characteristics of easy genetic modifications, we produced a nanobody-alkaline phosphatase (Nb-CC4-ALP) fusion protein with good stability. A dual-emission system based ratiometric fluoroimmunoassay (RFIA) for quick and highly sensitive determination of 1-NAP was developed. Silicon nanoparticles (SiNPs) was used as an internal reference and for aggregation-induced emission enhancement (AIEE) of gold nanoclusters (AuNCs), while AuNCs could be quenched by MnO2 via oxidation. In the presence of ALP, ascorbic acid phosphate (AAP) can be transformed into ascorbic acid (AA), the later can etch MnO2 to recover the fluorescence of the AuNCs. Based on optimal conditions, the proposed assay showed 220-fold sensitivity improvement in comparison with conventional monoclonal antibody-based ELISA. The recovery test of urine samples and the validation by standard HPLC-FLD demonstrated the proposed assay was an ideal tool for screening 1-NAP and provided technical support for the monitoring of carbaryl exposure.
Collapse
Affiliation(s)
- Zi-Jian Chen
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Guangdong Laboratory of Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Hui-Ling Wu
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Guangdong Laboratory of Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Yu-Dong Shen
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Guangdong Laboratory of Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Hong Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Guangdong Laboratory of Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Yi-Feng Zhang
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Guangdong Laboratory of Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Bruce Hammock
- Department of Entomology and UCD Comprehensive Cancer Center, University of California, Davis, CA 95616, United States
| | - Zhen-Feng Li
- Department of Entomology and UCD Comprehensive Cancer Center, University of California, Davis, CA 95616, United States; Guangdong Hengrui Pharmaceutical Co., Ltd., Guangzhou 510799, China
| | - Lin Luo
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Guangdong Laboratory of Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Hong-Tao Lei
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Guangdong Laboratory of Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Zhen-Lin Xu
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Guangdong Laboratory of Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
8
|
Fluorescent carbon dots for sensing metal ions and small molecules. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1016/j.cjac.2021.09.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|