1
|
Checa M, Fuhr AS, Sun C, Vasudevan R, Ziatdinov M, Ivanov I, Yun SJ, Xiao K, Sehirlioglu A, Kim Y, Sharma P, Kelley KP, Domingo N, Jesse S, Collins L. High-speed mapping of surface charge dynamics using sparse scanning Kelvin probe force microscopy. Nat Commun 2023; 14:7196. [PMID: 37938577 PMCID: PMC10632481 DOI: 10.1038/s41467-023-42583-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 10/15/2023] [Indexed: 11/09/2023] Open
Abstract
Unraveling local dynamic charge processes is vital for progress in diverse fields, from microelectronics to energy storage. This relies on the ability to map charge carrier motion across multiple length- and timescales and understanding how these processes interact with the inherent material heterogeneities. Towards addressing this challenge, we introduce high-speed sparse scanning Kelvin probe force microscopy, which combines sparse scanning and image reconstruction. This approach is shown to enable sub-second imaging (>3 frames per second) of nanoscale charge dynamics, representing several orders of magnitude improvement over traditional Kelvin probe force microscopy imaging rates. Bridging this improved spatiotemporal resolution with macroscale device measurements, we successfully visualize electrochemically mediated diffusion of mobile surface ions on a LaAlO3/SrTiO3 planar device. Such processes are known to impact band-alignment and charge-transfer dynamics at these heterointerfaces. Furthermore, we monitor the diffusion of oxygen vacancies at the single grain level in polycrystalline TiO2. Through temperature-dependent measurements, we identify a charge diffusion activation energy of 0.18 eV, in good agreement with previously reported values and confirmed by DFT calculations. Together, these findings highlight the effectiveness and versatility of our method in understanding ionic charge carrier motion in microelectronics or nanoscale material systems.
Collapse
Affiliation(s)
- Marti Checa
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.
| | - Addis S Fuhr
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Changhyo Sun
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Rama Vasudevan
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Maxim Ziatdinov
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
- Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37923, USA
| | - Ilia Ivanov
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Seok Joon Yun
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
- Department of Semiconductor, University of Ulsan, Ulsan, 44610, Korea
| | - Kai Xiao
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Alp Sehirlioglu
- Department of Materials Science and Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Yunseok Kim
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Pankaj Sharma
- College of Science and Engineering, Flinders University, Bedford Park, SA, 5042, Australia
- ARC Centre of Excellence in Future Low-Energy Electronics Technologies (FLEET), UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Kyle P Kelley
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Neus Domingo
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Stephen Jesse
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Liam Collins
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.
| |
Collapse
|
2
|
Botet-Carreras A, Marimon MB, Millan-Solsona R, Aubets E, Ciudad CJ, Noé V, Montero MT, Domènech Ò, Borrell JH. On the uptake of cationic liposomes by cells: From changes in elasticity to internalization. Colloids Surf B Biointerfaces 2023; 221:112968. [DOI: 10.1016/j.colsurfb.2022.112968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 10/14/2022] [Accepted: 10/22/2022] [Indexed: 11/06/2022]
|
3
|
Checa M, Jin X, Millan-Solsona R, Neumayer SM, Susner MA, McGuire MA, O'Hara A, Gomila G, Maksymovych P, Pantelides ST, Collins L. Revealing Fast Cu-Ion Transport and Enhanced Conductivity at the CuInP 2S 6-In 4/3P 2S 6 Heterointerface. ACS NANO 2022; 16:15347-15357. [PMID: 35998341 DOI: 10.1021/acsnano.2c06992] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Van der Waals layered ferroelectrics, such as CuInP2S6 (CIPS), offer a versatile platform for miniaturization of ferroelectric device technologies. Control of the targeted composition and kinetics of CIPS synthesis enables the formation of stable self-assembled heterostructures of ferroelectric CIPS and nonferroelectric In4/3P2S6 (IPS). Here, we use quantitative scanning probe microscopy methods combined with density functional theory (DFT) to explore in detail the nanoscale variability in dynamic functional properties of the CIPS-IPS heterostructure. We report evidence of fast ionic transport which mediates an appreciable out-of-plane electromechanical response of the CIPS surface in the paraelectric phase. Further, we map the nanoscale dielectric and ionic conductivity properties as we thermally stimulate the ferroelectric-paraelectric phase transition, recovering the local dielectric behavior during this phase transition. Finally, aided by DFT, we reveal a substantial and tunable conductivity enhancement at the CIPS/IPS interface, indicating the possibility of engineering its interfacial properties for next generation device applications.
Collapse
Affiliation(s)
- Marti Checa
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Xin Jin
- Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37235, United States
- Institute of Physics and University of the Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China
| | - Ruben Millan-Solsona
- Institut de Bioenginyeria de Catalunya (IBEC), The Barcelona Institute of Science and Technology (BIST), c/Baldiri i Reixac 11-15, 08028 Barcelona, Spain
- Departament d'Enginyeria Electrònica i Biomèdica, Universitat de Barcelona, Martí i Franqués 1, 08028 Barcelona, Spain
| | - Sabine M Neumayer
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Michael A Susner
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433, United States
| | - Michael A McGuire
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Andrew O'Hara
- Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Gabriel Gomila
- Institut de Bioenginyeria de Catalunya (IBEC), The Barcelona Institute of Science and Technology (BIST), c/Baldiri i Reixac 11-15, 08028 Barcelona, Spain
- Departament d'Enginyeria Electrònica i Biomèdica, Universitat de Barcelona, Martí i Franqués 1, 08028 Barcelona, Spain
| | - Petro Maksymovych
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Sokrates T Pantelides
- Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Liam Collins
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|