1
|
Majedi M, Safaei E, Gyergyek S. New iron(iii) complex of bis-bidentate-anchored diacyl resorcinol on a Fe 3O 4 nanomagnet: C-H bond oxygenation, oxidative cleavage of alkenes and benzoxazole synthesis. RSC Adv 2023; 13:4040-4055. [PMID: 36756566 PMCID: PMC9890640 DOI: 10.1039/d2ra06818d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/17/2023] [Indexed: 01/31/2023] Open
Abstract
We have synthesized a novel, bis-bidentate, covalently anchored, 4,6-diacetyl resorcinol (DAR) ligand on silica-coated magnetic Fe3O4 nanoparticles and the corresponding bi-metallic iron(iii) complex (Fe3O4@SiO2-APTESFe2LDAR). Both the chemical nature and the structure of the homogeneously heterogenized catalyst were investigated using physico-chemical techniques. The results obtained by XPS, XRD, FT-IR, TGA, VSM, SEM, TEM, EDX, ICP and AAS revealed a magnetic core, a silica layer and the grafting of a binuclear iron complex on the Fe3O4@SiO2-APTES, as well as its thermodynamic stability. Despite many reports of metal complexes on different supports, there are no reports of anchored, bi-metallic complexes. To the best of our knowledge, this is the first report of a bi-active site catalyst covalently attached to a support. This study focuses on the catalytic activity of an as-synthesized, bi-active site catalyst for C-H bond oxygenation, the oxidative cleavage of alkenes, and the multicomponent, one-pot synthesis of benzoxazole derivatives with excellent yields from readily available starting materials. Our results indicated high conversion rates and selectivity under mild reaction conditions and simple separation using a magnetic field. The leaching and recyclability tests of the catalyst were investigated for the above processes, which indicated that all the reactions proceed via a heterogeneous pathway and that the catalyst is recyclable without any tangible loss in catalytic activity for at least 8, 5 and 5 cycles for C-H bond oxygenation, C[double bond, length as m-dash]C bond cleavage and benzoxazole synthesis, respectively.
Collapse
Affiliation(s)
- Mona Majedi
- Department of Chemistry, College of Sciences, Shiraz University Shiraz 71454 Iran
| | - Elham Safaei
- Department of Chemistry, College of Sciences, Shiraz University Shiraz 71454 Iran
| | - Sašo Gyergyek
- Department for Synthesis of Materials, Jožef Stefan InstituteJamova cesta 391000 LjubljanaSlovenia
| |
Collapse
|
2
|
Synthesis, characterization, biomolecular interaction and in vitro glucose metabolism studies of dioxidovanadium(V) benzimidazole compounds. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
3
|
Dobrov A, Darvasiová D, Zalibera M, Bučinský L, Jelemenská I, Rapta P, Shova S, Dumitrescu DG, Andrade MA, Martins LMDRS, Pombeiro AJL, Arion VB. Diastereomeric dinickel(II) complexes with non-innocent bis(octaazamacrocyclic) ligands: isomerization, spectroelectrochemistry, DFT calculations and use in catalytic oxidation of cyclohexane. Dalton Trans 2022; 51:5151-5167. [PMID: 35266945 PMCID: PMC8962992 DOI: 10.1039/d2dt00154c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/28/2022] [Indexed: 11/21/2022]
Abstract
Diastereomeric dinickel(II) complexes with bis-octaazamacrocyclic 15-membered ligands [Ni(L1-3-L1-3)Ni] (4-6) have been prepared by oxidative dehydrogenation of nickel(II) complexes NiL1-3 (1-3) derived from 1,2- and 1,3-diketones and S-methylisothiocarbohydrazide. The compounds were characterized by elemental analysis, ESI mass spectrometry, and IR, UV-vis, 1H NMR, and 13C NMR spectroscopy. Single crystal X-ray diffraction (SC-XRD) confirmed the isolation of the anti and syn isomers of bis-octaazamacrocyclic dinickel(II) complexes 4a and 4s, the syn-configuration of 5s and the anti-configuration of the dinickel(II) complex 6a. Dimerization of prochiral nickel(II) complexes 1-3 generates two chiral centers at the bridging carbon atoms. The anti-complexes were isolated as meso-isomers (4a and 6a) and the syn-compounds as racemic mixtures of R,R/S,S-enantiomers (4s and 5s). The syn-anti isomerization (epimerization) of the isolated complexes in chloroform was disclosed. The isomerization kinetics of 5a was monitored at five different temperatures ranging from 20 °C to 50 °C by 1H NMR spectroscopy indicating the clean conversion of 5a into 5s. The activation barrier determined from the temperature dependence of the rate constants via the Eyring equation was found to be ΔH‡ = 114 ± 1 kJ mol-1 with activation entropy ΔS‡ = 13 ± 3 J K-1 mol-1. The complexes contain two low-spin nickel(II) ions in a square-planar coordination environment. The electrochemical behavior of 4a, 4s, 5s and 6a and the electronic structure of the oxidized species were studied by UV-vis-NIR-spectroelectrochemistry (SEC) and DFT calculations indicating the redox non-innocent behavior of the complexes. The dinickel(II) complexes 4a, 4s, 5s and 6a/6s were investigated as catalysts for microwave-assisted solvent-free oxidation of cyclohexane by tert-butyl hydroperoxide to produce a mixture of cyclohexanone and cyclohexanol (KA oil). The best value for KA oil yield (16%) was obtained with a mixture of 6a/6s after 2 h of microwave irradiation at 100 °C.
Collapse
Affiliation(s)
- Anatolie Dobrov
- University of Vienna, Institute of Inorganic Chemistry, Währinger Strasse 42, A-1090 Vienna, Austria.
- Universität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, 1090 Wien, Austria
| | - Denisa Darvasiová
- Institute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, SK-81237 Bratislava, Slovak Republic.
| | - Michal Zalibera
- Institute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, SK-81237 Bratislava, Slovak Republic.
| | - Lukáš Bučinský
- Institute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, SK-81237 Bratislava, Slovak Republic.
| | - Ingrid Jelemenská
- Institute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, SK-81237 Bratislava, Slovak Republic.
- Department of Chemistry, Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, 949 74 Nitra, Slovak Republic
| | - Peter Rapta
- Institute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, SK-81237 Bratislava, Slovak Republic.
| | - Sergiu Shova
- Inorganic Polymers Department, "Petru Poni" Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda 41 A, Iasi 700487, Romania
| | - Dan G Dumitrescu
- Elettra - Sincrotrone Trieste S.C.p.A., Strada Statale 14 - km 163, 5 in AREA Science Park 34149 Basovizza, Trieste, Italy
| | - Marta A Andrade
- Centro de Química Estrutural, Institute of Molecular Sciences, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Luísa M D R S Martins
- Centro de Química Estrutural, Institute of Molecular Sciences, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Armando J L Pombeiro
- Centro de Química Estrutural, Institute of Molecular Sciences, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
- Peoples' Friendship University of Russia (RUDN University), Research Institute of Chemistry, 6 Miklukho-Maklaya Street, Moscow 117198, Russian Federation
| | - Vladimir B Arion
- University of Vienna, Institute of Inorganic Chemistry, Währinger Strasse 42, A-1090 Vienna, Austria.
| |
Collapse
|
4
|
Gurbanov AV, Andrade MA, Martins LMDRS, Mahmudov KT, Pombeiro AJL. Water-soluble Al( iii), Fe( iii) and Cu( ii) formazanates: synthesis, structure, and applications in alkane and alcohol oxidations. NEW J CHEM 2022. [DOI: 10.1039/d1nj06211e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The synthesis, structure and catalytic performance of water-soluble Al(iii), Fe(iii) and Cu(ii) formazanates in the oxidation of cyclohexane and cyclohexanol to the coresponding organic products are reported.
Collapse
Affiliation(s)
- Atash V. Gurbanov
- Centro de Química Estrutural, Institute of Molecular Sciences, and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Department of Chemistry, Baku State University, Z. Xalilov Str. 23, Az 1148 Baku, Azerbaijan
| | - Marta A. Andrade
- Centro de Química Estrutural, Institute of Molecular Sciences, and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Luísa M. D. R. S. Martins
- Centro de Química Estrutural, Institute of Molecular Sciences, and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Kamran T. Mahmudov
- Centro de Química Estrutural, Institute of Molecular Sciences, and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Department of Chemistry, Baku State University, Z. Xalilov Str. 23, Az 1148 Baku, Azerbaijan
| | - Armando J. L. Pombeiro
- Centro de Química Estrutural, Institute of Molecular Sciences, and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Peoples’ Friendship University of Russia (RUDN University), Research Institute of Chemistry, 6 Miklukho-Maklaya St, Moscow, 117198, Russian Federation
| |
Collapse
|
5
|
Woźniczka M, Lichawska M, Sutradhar M, Chmiela M, Gonciarz W, Pająk M. Chemical Characterization and Biological Evaluation of New Cobalt(II) Complexes with Bioactive Ligands, 2-Picolinehydroxamic Acid and Reduced Schiff Base N-(2-Hydroxybenzyl)alanine, in Terms of DNA Binding and Antimicrobial Activity. Pharmaceuticals (Basel) 2021; 14:ph14121254. [PMID: 34959656 PMCID: PMC8706952 DOI: 10.3390/ph14121254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 11/25/2022] Open
Abstract
Five new heteroligand cobalt(II) complexes with 2-picolinehydroxamic acid and reduced Schiff base, N-(2-hydroxybenzyl)alanine, were formed in an aqueous solution over a wide pH range. The coordination properties of ligands towards the metal ion were determined using a pH-metric method, and then the speciation model was confirmed by UV–Vis studies. A stacking interaction between the Schiff base phenol ring and the 2-picolinehydroxamic acid pyridine ring was found to improve the stability of the heteroligand species, indicating more effective coordination in mixed-ligand complexes than in their respective binary systems. The antimicrobial properties of heteroligand complexes were determined against Gram-negative and Gram-positive bacteria, as well as fungal strains. The formulation demonstrated the highest bacteriostatic and bactericidal activity (3.65 mM) against two strains of Gram-negative Helicobacter pylori bacteria and towards Candida albicans and Candida glabrata; this is important due to the potential co-existence of these microorganisms in the gastric milieu and their role in the development of gastritis. The binary complexes in the cobalt(II)—2-picolinehydroxamic acid system and 2-picolinehydroxamic acid were not cytotoxic against L929 mouse fibroblasts, neither freshly prepared solutions or after two weeks’ storage. By comparison, the heteroligand complexes within the range 0.91–3.65 mM diminished the metabolic activity of L929 cells, which was correlated with increased damage to cell nuclei. The concentration of the heteroligand species increased over time; therefore, the complexes stored for two weeks exhibited stronger anticellular toxicity than the freshly prepared samples. The complexes formed in an aqueous solution under physiological pH effectively bound to calf thymus DNA in an intercalative manner. This DNA-binding ability may underpin the antimicrobial/antifungal activity of the heteroligand complexes and their ability to downregulate the growth of eukaryotic cells.
Collapse
Affiliation(s)
- Magdalena Woźniczka
- Department of Physical and Biocoordination Chemistry, Faculty of Pharmacy, Medical University of Lodz, Muszyńskiego 1, 90-151 Lodz, Poland; (M.L.); (M.P.)
- Correspondence:
| | - Marta Lichawska
- Department of Physical and Biocoordination Chemistry, Faculty of Pharmacy, Medical University of Lodz, Muszyńskiego 1, 90-151 Lodz, Poland; (M.L.); (M.P.)
| | - Manas Sutradhar
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal;
| | - Magdalena Chmiela
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland; (M.C.); (W.G.)
| | - Weronika Gonciarz
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland; (M.C.); (W.G.)
| | - Marek Pająk
- Department of Physical and Biocoordination Chemistry, Faculty of Pharmacy, Medical University of Lodz, Muszyńskiego 1, 90-151 Lodz, Poland; (M.L.); (M.P.)
| |
Collapse
|